
Using the Parallel Karatsuba Algorithmfor Long Integer Multiplication and DivisionTudor JebeleanRISC-Linz, A-4040 Linz, AustriaJebelean@RISC.Uni-Linz.ac.atAbstract. We experiment with sequential and parallel versions of theKaratsuba multiplication algorithm implemented under the paclib com-puter algebra system on a Sequent Symmetry shared-memory architec-ture. In comparison with the classical multiplication algorithm, the se-quential version gives a speed-up of 2 at 50 words, up to 5 at 500 words.On 9 processors, the parallel Karatsuba algorithm exhibits a combinedspeed-up of 10 (50 words) up to 40 (500 words).Moreover, we use the Karatsuba algorithm within long integer divisionwith remainder, using a recent divide-and-conquer technique which de-lays part of the dividend updates until they can be performed by mul-tiplication between large operands. The sequential algorithm is abouttwo times slower than Karatsuba multiplication and shows a speed-upof 2 at 200 words and of 3 at 500 words, when compared to the classicaldivision method. Using parallel multiplication on 9 processors leads to acombined speed-up of almost 3 at 100 words and more than 10 at 500words.IntroductionFast methods for operations over long integers are very important for applica-tions like cryptography and arbitrary precision arithmetic. The asymptoticallyfast algorithms (e.g. FFT - see [13]) do not yield a speed-up for lengths whichare mostly used in practice (see e.g. [15, 11]).The only exception is Karatsuba divide-and-conquer scheme for multiplica-tion [8], whose break-even point may be between 4 and 100 computer-words,depending on the implementation. Moreover, this algorithm is easy to paral-lelize { for detailed experiments on a shared-memory architecture see [11]. Weobtain similar results using the paclib [3] computer algebra system (a shared-memory parallelization of saclib [1]): the Karatsuba threshold is at 6 words(of 29 bits), at 50 words the speed-up over the classical algorithm is 2, at 100words is 2.5. On Sequent Symmetry shared-memory architecture, the speed-upof the parallel Karatsuba algorithm over the sequential one ranges from 2 (at30 words) to almost 3 (at 100 words) on 3 processors, while on 9 processors itranges from 2 (20 words) to 6.5 (100 words) to 8 (500 words). The combinedspeed-up of the Karatsuba parallel algorithm on 3 processors over the sequentialclassical algorithm is 7 (at 100 words), while on 9 processors is 16 (at 100 words)and 40 (at 500 words).



The situation is di�erent for long integer division. Although this operationhas the same theoretical complexity as multiplication (see e.g. [9], p. 275), per-forming division by Karatsuba multiplications involves a loss of about 30 timesin speed (see an analysis in [10]), which leads to a break-even point of about 1000words. If one cleverly uses squaring (half as expensive) instead of multiplication,then one can hope to decrease this point to 250 words. Also, parallelization ofinteger division is di�cult, because each iteration of the main loop depends es-sentially on the results of the previous one. Theoretical parallel algorithms havebeen designed (see [12] for a survey), but practical implementations are realizedmostly for VLSI design [14] and on systolic architectures [6, 4].In the present paper we experiment with a novel technique developed in [5],which allows to use Karatsuba multiplication for division with a slow-down ofonly a factor of two. Under the paclib computer algebra system the algorithmstarts to be faster than the classical method at 15 words, at 200 words the speed-up is 2, and it becomes 3 at 500 words. (We use here the length of the divisorand of the quotient).Embedding the parallel Karatsuba algorithm into division yields a combinedspeed-up of 2 (50 words) up to 10 (500 words) on 9 processors, and of 2 (60words) up to 7 (500 words) on 3 processors.1 MultiplicationThe Karatsuba multiplication algorithm [8], [9], p. 258, consists in splitting theoperands A;B into halves: A = A1�+A0, B = B1�+B0, where � is a suitablepower of the radix, and computing the product by:AB = (A1B1)�2 + ((A0 +A1)(B0 +B1) �A0A1 �B0B1)�+A0B0: (1)Each of the three products is computed again by the same strategy. Thenumber of digit products of this scheme is nlog 3= log 2 for length-n operands,as opposed to n2 in the classical scheme (see e.g. [9], p. 233). In practice onestops the recursion and applies the classical algorithm when the lengths of theoperands are smaller than an experimentally determined threshold. Dependingon the implementation, the threshold varies from 4 words (e.g. gnu mp package[2]) to 100 words (e.g. the �rst version of saclib, which was operating on lists{ see [7]). In our implementation under paclib, this threshold is 6 words of 29bits.Table 1 shows the timings of the classical algorithm (column 2), the Karat-suba algorithm (column 3) as well as the speed-up (column 4). The timings aregiven in milliseconds and they are averaged over 100 runs. The absolute valuesshould be regarded with the additional fact that the Sequent computer we usedhas i386 processors running at 25 MHz.Parallelization of the Karatsuba scheme is quite straight-forward: one justperforms in parallel the three multiplications occurring in (1). In our implemen-tation we perform the operations (A0 + A1)(B0 + B1) within the current task,while A0B0 and A1B1 are performed by two parallel tasks. Since the base-case



Table 1. Timing of multiplication in milliseconds, lengths are in words of 29 bits.length classic seq. Karatsuba parallel Karatsuba(C) (K) on 3 processors on 9 processorsabs. vs.C abs. vs.C vs.K abs. vs.C vs.K1 2 3 4 5 6 7 8 9 1010 4 4 1.00 4 1.00 1.00 4 1.00 1.0015 10 8 1.25 5 2.00 1.60 6 1.67 1.3320 17 12 1.42 6 2.83 2.00 6 2.83 2.0030 37 23 1.61 12 3.08 1.92 7 5.29 3.2940 65 37 1.76 15 4.33 2.47 8 8.13 4.6360 144 69 2.09 28 5.14 2.46 13 11.08 5.3180 254 110 2.31 42 6.05 2.62 19 13.37 5.79100 398 158 2.52 57 6.98 2.77 25 15.92 6.32150 892 297 3.00 105 8.50 2.83 43 20.74 6.91200 1,585 480 3.30 168 9.43 2.86 66 24.02 7.27300 3,552 898 3.96 323 11.00 2.78 120 29.60 7.48400 6,317 1,441 4.38 492 12.84 2.93 183 34.52 7.87500 9,862 2,034 4.85 704 14.01 2.89 255 38.67 7.98Karatsuba tasks are rather �ne-grained, creating a parallel task for each of themintroduces a signi�cant parallelization overhead (we measured 17% to 40% forlengths between 10 and 100 words). The overhead is minimal when we limit theparallelization depth: to 1 for using 3 processors, and to 2 for using 9 processors.Table 1 lists the experimental timings of the sequential and parallel Karatsubaalgorithm. Columns 5 and 8 show the absolute time on 3 and 9 processors re-spectively, columns 7 and 10 show the speed-up over the sequential Karatsubaalgorithm, and columns 6, 9 show the combined speed-up over the sequentialclassical algorithm. The e�ciency surpasses 75% on 3 processors already at 40words, and on 9 processors at 150 words. At 500 words the e�ciency is around90%. The combined speed-up on 3 processors ranges from 3 (at 30 words), to 7(100 words) to 14 (500 words), and on 9 processors from 5 (at 30 words), to 16(100 words) to 39 (500 words).In order to obtain a scalable algorithm one has to give up the controlover the recursion depth and to increase instead the parallelization thresholdto 4 times the Karatsuba threshold { i.e. to 24 words. Timing the program onone processor (see Fig. 1) we noticed that this decreases the overhead to anacceptable level (less than 10%). However the number of tasks created is too lowfor lengths under 100 words. The algorithm scales well until 18 processors onlyfor the length of 500 words - see Fig. 1. For this length one obtains a speed-upof 13 (e�ciency 72%) over the sequential Karatsuba algorithm and a combinedspeed-up of 61 over the sequential classical algorithm.



Fig. 1. Speed-up of the parallel Karatsuba multiplication.

0246
8101214
1618

0 2 4 6 8 10 12 14 16 18number of processors
linear +

+
+500 words 3

3 3 3 3 3 3 3200 words 4
4 4 4 4 4 4 4100 words 2
2 2 2 2 2 2 2

50 words �
� � � � � � �

2 DivisionThe classical division algorithm (see [9] p. 237) consists of a series of successiveupdates of the dividend A by subtracting the divisor B multiplied by the currentdigit of the quotientQ. (This quotient digit is computed before each update usingthe 3 most signi�cant digits of the current A and the 2 most signi�cant digitsof B.) Each update is right{shifted one position w.r.t. the previous one. Thisprocess is represented pictorially by the parallelogram in Fig. 2. The �nal valueof A will be the remainder R.The scheme introduced in [5] starts by splitting the quotient Q into its high-order part QH of length qH and its low-order part QL of length qL such thatqL � qH � qL + 1, and also the divisor B into its high order part BH of lengthbH and its low-order part BL such that qH + 3 � bH .



Q

B

A

1 2

3 4

Q

Q

B B

H

L

H L

RFig. 2. Organization of the dividend updates.Computing the high-order part QH of the quotient would normally requireto perform the updates in the upper half of the parallelogram of Fig. 2 (areas 1and 2). However, Krandick [10] proves that in most cases it is enough to updateonly 3 words below the lowest digit of A needed for the lowest quotient digitto be computed (i.e. down to the vertical line crossing area 1). Doing so, theprobability that a quotient digit will be wrong is less than qH=2w, where w isthe bit-length of the word. Moreover, such a failure is easy to detect by inspectingthe most signi�cant updated value of A at each step.This allows to split the updates of the dividend into 4 parts as shown by 1, 2,3, 4 in Fig.2, and to perform them in the order of the numbering: parts 2 and 4by Karatsuba multiplication, and parts 1 and 3 by the same recursive technique.When the recursion is applied to operands shorter than a threshold (15 wordsin our implementation), then the updates of type 1, 3 are performed by classi-cal division. This divide-and-conquer algorithm has Karatsuba-like complexity,moreover the number of digit-products performed is only 2 times higher thanthe number of digit products of Karatsuba multiplication (for details see [5]).The timing of our sequential implementation under paclib is shown in Table2. Column 1 lists the word-length of the dividend and of the divisor, columns 2and 3 list the time of the classical algorithm and the new algorithm in millisec-onds, and column 4 shows the speedup of the new algorithm. The speed-up isvisible at 15 words, it becomes 1.6 at 100 words and 3 at 500 words.The speed-up can be increased signi�cantly by using the parallel version ofthe Karatsuba multiplication algorithm presented in the previous section. Table2 shows the results of the experiments using the \controlled depth" algorithmson 3 and 9 processors. Columns 5 and 8 list the absolute time, columns 7 and10 list the speed-up over the sequential algorithm, and columns 6 and 9 list



Table 2. Timing of division in milliseconds, lengths are in words of 29 bits.dividend-len. classic seq. Karatsuba parallel Karatsuba/divisor-len. (C) (K) on 3 processors on 9 processorsabs. vs.C abs. vs.C vs.K abs. vs.C vs.K1 2 3 4 5 6 7 8 9 1016/10 4 4 1.00 4 1.00 1.00 4 1.00 1.0026/15 10 9 1.11 9 1.11 1.00 9 1.11 1.0036/20 17 15 1.13 15 1.13 1.00 16 1.06 0.9456/30 39 34 1.15 29 1.34 1.17 31 1.26 1.1076/40 70 55 1.27 45 1.56 1.22 47 1.49 1.17116/60 159 113 1.41 75 2.12 1.51 73 2.18 1.55156/80 285 186 1.53 121 2.36 1.54 114 2.50 1.63196/100 447 278 1.61 175 2.55 1.59 161 2.78 1.73236/120 644 365 1.76 205 3.14 1.78 175 3.68 2.09296/150 1,008 527 1.91 288 3.50 1.83 239 4.22 2.21396/200 1,790 881 2.03 454 3.94 1.94 365 4.90 2.41596/300 4,040 1,652 2.45 794 5.09 2.08 573 7.05 2.88796/400 7,188 2,702 2.66 1,231 5.84 2.19 866 8.30 3.12996/500 11,255 3,825 2.94 1,659 6.78 2.31 1,111 10.13 3.44the combined speed-up over the sequential classical algorithm. As expected, thee�ciency of the parallel division is much lower than the one of multiplication,because the Karatsuba multiplication is called many times, and mostly withshort-length operands. However, the combined speed-up is quite signi�cant: on3 processors it ranges from 2 times at 50 words, to 2.5 at 100 words, to almost 7at 500 words, and on 9 processors from 2 times at 50 words, to almost 3 at 100words, to more than 10 times at 500 words.Conclusions and Further WorkCombining Karatsuba multiplication with a divide-and-conquer scheme for longinteger division gives a signi�cant speed-up both in a sequential and in a parallelimplementation.As usually with long-integer algorithms, both the sequential and the paralleldevices presented in the paper are applicable to polynomial arithmetic.References1. B. Buchberger, G. E. Collins, M. J. Encarnacion, H. Hong, J. R. Johnson,W. Krandick, R. Loos, A. M. Mandache, A. Neubacher, and H. Vielhaber.SACLIB 1.1 User's Guide. Technical Report 93{19, RISC{Linz, 1993.2. T. Granlund. GNU MP: The GNU multiple precision arithmetic library, 1991.



3. Hoon Hong, Wolfgang Schreiner, Andreas Neubacher, Kurt Siegl, Hans-WolfgangLoidl, Tudor Jebelean, and Peter Zettler. PACLIB User Manual. Technical Report92-32, RISC-Linz, 1992.4. T. Jebelean. Integer and rational arithmetic on MasPar. In DISCO'96, pages162{173, Karlsruhe, Germany, September 1996. Springer Verlag LNCS 1128.5. T. Jebelean. Integer Division with Karatsuba Complexity. Technical Report 96-29, RISC-Linz, 1996. Sumitted to ISSAC 97.6. T. Jebelean. Systolic algorithms for exact division. Mitteilungen{Gesellschaft f�urInformatik e. V., Parallel Algorithmen und Rechnerstrukturen, (12):40{50, July1993.7. Tudor Jebelean. Systolic multiprecision arithmetic. Technical Report 94-37, RISC-Linz, 1994. PhD Thesis.8. A. Karatsuba and Yu Ofman. Multiplication of multidigit numbers on automata.Sov. Phys. Dokl., 7:595{596, 1962.9. D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley, 2edition, 1981.10. W. Krandick and T. Jebelean. Bidirectional exact integer division. Journal ofSymbolic Computation, 21:441{455, 1996.11. W. Kuechlin, D. Lutz, and N. Nevin. Integer multiplication on PARSAC-2 onstock microprocessors. In H. F. Mattson, T. Mora, and T. R. N. Rao, editors,AAECC-9, pages 216{217, New Orleans, 1991. Springer Verlag. LNCS 539.12. S. Lakshmivarahan and S. K. Dhall. Analysis and design of parallel algorithms:Arithmetic and matrix problems. McGraw-Hill, 1990.13. J. D. Lipson. Elements of Algebra and Algebraic Computing. Ben-jamin/Cummings, 1981.14. E. E. Swartzlander, editor. Computer Arithmetic, volume 2. IEEE Computer So-ciety Press, 1990.15. D. Zuras. More on squaring and multiplying large integers. IEEE Trans. on Com-puters, 43(8):899{908, 1994.
This article was processed using the LATEX macro package with LLNCS style


