
Auto-Con�gurable Array for GCD Computationextended abstractTudor JebeleanRISC-LinzA-4232 Hagenberg, AustriaTel: +43 (7236) 3231-46, Fax: +43 (7236) 3231-30e-mail: tudor@risc.uni-linz.ac.atAbstractA novel one-directional pass-through array for the computation of integer greatest commondivisor is designed and implemented on Atmel FPGA. The design is based on the plus-minus GCDalgorithm and works in LSB pipelined manner. In contrast with previous designs, the length of thenew array is independent of the length of the operands: arbitrary long integers can be processed inmultiple passes. The array is auto-con�gurable: at each step, one new cell is con�gured accordingto the input from the previous computation. Preliminary experiments show that for 100 bits aspeed-up of 4 over software can be obtained using one 6010 Atmel chip.IntroductionAn emerging trend in scienti�c computing (e.g. symbolic computation) is the need for increasedprecision arithmetic - either very long or arbitrary long 
oats or rationals. Cryptography and data-compression applications also need fast long integer arithmetic.Recon�gurable computing o�ers a valuable alternative to software solutions, promising a spectac-ular increase in speed. Typically, the length of the operands in such computations vary from oneapplication to another, or even during the same computation. Thus, a �xed-size hardware coprocessorwill fail to accommodate the operands at a certain moment. In the case of systolic arrays (which isthe mostly used design technique for such arithmetic circuits) various methods have been proposedfor \packing" several processors in one [2], such that the size of the accommodated operands increasescorrespondingly. However, these methods lead to a signi�cant increase of the area consumption andalso need full reprogramming of the FPGA chip.We present a method which avoids these inconveniences. Namely, we design a pass-through arrayfor the computation of the integer greatest common divisor (GCD). The two operands are processedserially in LSB manner, and after one pass through the array either the GCD is obtained, or theoperands are reduced to shorter ones and the process is reiterated. The size of the array is completelyindependent of the lengths of the input, but, of course, a longer array will result in increased speed.The array is auto-con�gurable, that is, the functions of the cells are selected upon the values of the�rst digits which pass through. This is a technique which goes beyond usual con�gurable computing(e. g. con�gure before computation) and even beyond re-con�gurable (e. g. con�gure part of the chipduring computation): at each step (clock cycle) a new cell is con�gured according to the result of theprevious computation. Current FPGA designs do not allow a direct approach to this computing style,because the con�guration cannot be changed using the signals produced inside the chip. We use AtmelFPGA and simulate auto-con�gurability by multiplexors. Preliminary experiments show that 100-bitoperands can be processed in one pass by a 6010 Atmel chip, with a speed-up of 4 over the softwaresolution. 1



1

MUX

0

L

IN
OUT

ENABLE

ICF: Instant Config

OUT

ENABLE

IN
0

1
L

PCF: Pre-Config

MUXFigure 1: Con�guration units.1 GCD ComputationThe computation of the greatest common divisor is the most complicated operation over integers andalso the most time consuming in arbitrary precision arithmetic. VLSI implementations are based onthe PlusMinus algorithm of [1] and on its improvements [4]. We adapt here the later, which consistsof two phases:1. Preprocessing :� the least-signi�cant common null bits are discarded from both operands A and B;� after that, if the LSB a0 of A is null, then the operands are interchanged (after this, a0always becomes 1);2. Reduction is applied iteratively as follows, until B becomes null (we denote by a0; a1; b0; b1 theLSBs of the operands):� If b0 = 0 then B is shifted rightward one position (B  B=2).� if b0 = 1 then (A;B) (B; (A� B)=4), where � is plus if a1 6= b1 and minus otherwise.Correctness and termination of this algorithm are shown in [4].2 The ArrayThe auto-con�gurability of the array is done by the con�guring units PCF and ICF shown in Fig. 1.PCF (pre-con�gure) is used when the data which is used for con�guration arrives one clock before thedata which is used for computation (ENABLE signals the later event). ICF (instant con�gure) is usedwhen the data which is used for con�guration arrives simultaneously with the data which is used forcomputation (ENABLE has to become 1 one clock later).The preprocessing phase of the GCD algorithm is performed by the feeder presented in Fig. 2.This unit receives A;B serially, together with the signal START which remains high for the durationof the data transfer. The OR gate detects the �rst non-zero pair of bits, its output is AND-ed withSTART in order to trigger the next computation step, which is instant-con�gured by a0.The feeder is followed by a bu�er of latches which allows the simultaneous use of the a0; b0 and ofa1; b1 in the subsequent computation.The reduction phase of the algorithm is implemented as an array of identical con�gurable cellsas in Fig. 3. The signal representing b0 arrives on the line B1 one clock before START becomes high,and it pre-con�gures the cell to perform either shift or plus-minus. The shift is performed by delayingA and START through latches.If the cell is con�gured for plus-minus, then further instant-con�guration is done by the XOR ofa1; b1, which arrive simultaneously with a0; b0 when START becomes high. This con�guration signal2



MUX

L

L

L

ICF

START

A1

A0

B1

B0

A

B

START

1
0

0
1Figure 2: Feeder and subsequent bu�er.commands the arithmetic unit (plus or minus, with carry/borrow feedback incorporated). The resultof the arithmetic unit is then supplied as B, while A and START are delayed through two latches {this results in shifting B by two bits.In order to avoid a high delay through lines B0, B1, one inserts a bu�er (as in Fig. 2) after aconstant number of cells.We do not detail here the termination detection and the sign detection, which are solved by a simplepostprocessign circuit, as well as I/O bu�ering between the host and the coprocessor and betweenseveral chips in a multi-chip design, which is easy to perform due to the unidirectional pipelined styleof communication.Experiments and ConclusionsThe array is being implemented using Atmel 6000 FPGA series. We present here a preliminaryassesment of the performance.Each cell uses 22 Atmel logic components, and is simple enough to be manually placed and routed.Due to local communication of the systolic design, several cells are then placed and routed by simpletiling. At 50% utilization this allows the placement of 150 cells on a 6010 chip, including the pre-processing, postprocessing and I/O bu�ers. This is enough for the processing in one pass of 100-bitoperands. (By software experiments we detected that n-bit operands need in average :75 shift stepsand :75 plus-minus steps, which gives an average of 1:5n cells and 3n clock cycles.) The placed circuitruns at 5 Mhz (200 ns clock delay), hence 300 cycles will take 60 �s.For comparison, GCD computation in a fast C-implementation (see e.g. [3]) on a DEC workstation5000/200 (about same generation technology as the Atmel FPGA) takes in average 235 �s, hence thespeed-up is 4. Note that by implementing a longer array on a multi-chip module the speed-up willincrease linearly for longer operands, because the quadratic time-complexity of the seqeuntial GCDalgorithm { in contrast with the linear time-complexity of the systolic device.References[1] R. P. Brent and H. T. Kung. A systolic algorithm for integer GCD computation. In K. Hwang,editor, Procs. of the 7th Symp. on Computer Arithmetic, pages 118{125. IEEE Computer Society,June 1985. 3



PCF

STARTL

B1

B1

START

A1A1

A0
A0

B0
B0

ICF

L

LL

L

L

LL

1

1

1

1
0

0

0

0

Plus

Minus

carry feedbackFigure 3: Con�gurable cell.
4



[2] P. Dewilde and E. Deprettere. Architectural synthesis of large, nearly regular algorithms. Ann.Telecom., 46(1-2):49 { 59, 1991.[3] T. Jebelean. Comparing several GCD algorithms. In E. Swartzlander, M. J. Irwin, and G. Jullien,editors, ARITH-11: IEEE Symposium on Computer Arithmetic, pages 180{185, Windsor, Canada,June 1993.[4] T. Jebelean. Design of a systolic coprocessor for rational addition. In P. Capello, C. Mongenet,G-R. Perrin, P. Quinton, and Y. Robert, editors, ASAP '95, Strasbourg, France, July 1995, pages282{289. IEEE Computer Society Press, 1995.

5


