
FPGA Implementation of an Extended Binary

GCD Algorithm for Systolic Reduction of

Rational Numbers

Bogdan Mătăsaru and Tudor Jebelean

RISC-Linz, A–4040 Linz, Austria
email: bmatasar@risc.uni-linz.ac.at

Abstract. We present the FPGA implementation of an extension of the
binary plus–minus systolic algorithm which computes the GCD (greatest
common divisor) and also the normal form of a rational number, without
using division. A sample array for 8 bit operands consumes 83.4% of an
Atmel 40K10 chip and operates at 25 MHz.

1 Introduction

Arbitrary precision (or exact) arithmetic is necessary in various computer alge-
bra applications (e. g. solving of systems of polynomial equations) and it may
consume most of the computing time [2].

Reduction of rational numbers occurs very often in exact arithmetic: sooner
or later, the reduction of the result is required in order to avoid an unacceptable
increase in size of its numerator and denominator. The usual approach is to use
the GCD (greatest common divisor) once (or twice on shorter operands [3]) and
some divisions (or better exact divisions [4, 8]). Alternatively, one can use the
extended GCD algorithm [7], but this will probably be less efficient for sequential
implementations.

In this paper we present the systolic implementation of an extension of the
binary GCD algorithm [10], more precisely of the plus-minus algorithm [1] as
improved in [5]. Extensions of the original binary algorithm have been considered
by Gosper [7], and also in [11]. Our algorithm has a different flavor [9] because
it is designed for systolic implementation.

Since it avoids the division, and it is also based on simple operations like shifts
and additions/subtractions, our device may be interesting even for classical im-
plementations on some sequential architectures. In this paper we demonstrate
the usefulness of this approach on a systolic architecture, by designing a sys-
tolic version of the algorithm and by implementing it on an Atmel FPGA (field
programmable gate array) circuit. The systolic algorithm is an extension of the
systolic GCD presented in [5] which avoids global broadcasting by pipelining
the “command” through the array. This in turn has the disadvantage that wait

states have to be introduced, because of the two-way flow of the information. Our
algorithm takes advantage of these wait states: the computations required by the



extended algorithm are done instead of wait. Hence, the speed is the same as the
one of the previous algorithm, but additionally we obtain the reduced fraction.

The circuit is presented as a systolic array, enjoying the properties of uniform
design (many identical cells) and local communications (only between adjacent
cells). The input of the operands is done in parallel manner, while the output
can be organized serially or in parallel, depending on the application.

The sample implementation of an array for 8 bit operands on the Atmel
FPGA part 40K10 consists of 968 elementary macros and consumes after layout
83.4% of the area. The longest delay is 40 ns, thus operation at 25 MHz is pos-
sible, which rivals the speed of the best software implementations on sequential
machines for words of 32 bits, but it will probably gain considerably in speed in
a special device for more words.

2 The algorithm

The input of the binary (plus-minus) GCD algorithm consists of 2 n-bit operands
a and b. The operations executed on the operands are additions, subtractions
and shifts and they are decided by inspecting the least significant two bits of
each operand.

Let us denote by ak, respectively bk, the values of the operands at step k.
The extended GCD algorithm computes also the sequences of cofactors of uk,
vk, tk, and wk such that at each step k:

uk · a + vk · b = ak · 2k, (1)

tk · a + wk · b = bk · 2k. (2)

The algorithm ends when bk = 0. Then, ak equals the GCD and tk · a + wk · b = 0,
hence a/b = −wk/tk.

The sequence of cofactors is defined recursively starting from the initial val-
ues: u0 = 1, v0 = 0, t0 = 0, w0 = 1. (We denote by x[1], x[0] the least significant
bits of an operand x.)

Shift both: (ak[0] = 0, bk[0] = 0): the cofactors remain unchanged.
Interchange and shift b: (ak[0] = 0, bk[0] = 1):

uk+1 := 2 · tk , vk+1 := 2 · wk,

tk+1 := uk , wk+1: = vk.

Shift b: (ak[0] = 1, bk[0] = 0):

uk+1 := 2 · uk , vk+1 := 2 · vk,

tk+1 := tk , wk+1 := wk.

Plus-minus: (ak[0] = 1, bk[0] = 1), plus if ak[1] 6= bk[1], otherwise minus:

uk+1 := 2 · tk , vk+1 := 2 · wk

tk+1 := u ± tk , wk+1 := vk ± wk



One can easily verify that the relations (1) and (2) are preserved at each
step, and one can prove that tk and wk remain relatively prime and at least one
of them is not null. Thus, when bk becomes null, −wk/tk is the reduced form of
the initial fraction a/b. (For the proofs and a more detailed description of the
algorithm see [9].)

3 The systolic array

The systolic array is organized as in [5]: the operands are fed in parallel, one
digit of each in each processor, the rightmost processor (P0) corresponds to the
least-significant bit – see Fig. 1. An array of N +1 processors will accommodate
operands up to N bits long. (The leftmost processor and the ones above the
significant bits of the operands will contain the sign bit). All the intermediate
values are kept in complement representation: therefore additions/subtractions
can be performed without knowing the actual sign of the operands.

Each processor communicates only with its neighbors: the commands (states)
and the carries propagate right-to-left, while the intermediate values of the
operands propagate left-to-right. All the processors except P0 are identical. P0

computes at each step a command code (depending on a[1], a[0], b[1], b[0]) which
is then propagated to the other processors and controls their operations.

Pn
a,b,tags

P1

�
cofactors cofactors

a,b,tags

command

P0

command
�

- -

�

�

Fig. 1. The systolic array for the extended binary algorithm.

Each processor has a memory of 16 one-bit registers. 8 registers are necessary
for the plus-minus GCD array and they have the same meaning as in [5]: s1, s2, s3

contain the command code (or state), a, b are bits of the operands, ta, tb (tags)
indicate their significant bits, and sa stores the sign of a.

Additionally, 8 registers are used by the extended algorithm: u, v, t, w keep
the values of the cofactors, ct and cw are carries needed for the plus-minus
operations, and u′, v′ keep intermediate values needed for left-shifts.

In the next tables we describe the operation of the processors. For a value
x on a processor, x[+] and x[−] will denote the value x on the left, respectively
right neighboring processor. (The rightmost processor receives copies its own
values as [+] values.) By < c, r >:=expr, we specify that, after the evaluation of
the expression expr, r will contain the result restricted to the register’s size and
c will contain the carry.



The operation of the processor P0:

Algorithm P0

begin

if ta[+] = 1 then sa := a[+]; [find sign of A]

else sa := sa[+];

if s 6=w then [update the cofactors on the wait step]
switch s

case C:

(u, t, u′) := (0, u, t);

(v, w, v′) := (0, v, w);

case S:

(u, u′) := (0, u);

(v, v′) := (0, v);

case P,p:

(u, u′, < ct, t >) := (0, t, u + t);

(v, v′, < cw, w >) := (0, w, v + w);

case M,m:

(u, u′, < ct, t >) := (0, t, u − t);

(v, v′, < cw, w >) := (0, w, v − w);

s :=w;
else [find the appropriate active state]

if a = 0 ∧ b = 0 then [shift both A and B]
s := B;

(a, b, ta, tb) := (a[+], b[+], ta[+], tb[+]);

if a = 0 ∧ b = 1 then [interchange A and B and shift B]
s :=C;

(a, b, ta, tb) := (b, a[+], tb, ta[+]);

if a = 1 ∧ b = 0 then [shift B]
s :=S;

(b, tb) := (b[+], tb[+]);

if a = 1 ∧ b = 1 then [plus or minus]
if a[+] = b[+] then s :=m; [minus]

else s :=P; [plus]

b := 0;
end



The rest of the processors (P1, . . . , PN ) operate like this:

Algorithm Pi

begin

if ta[+] = 1 then sa := a[+]; [find sign of A]

else sa := sa[+];

switch s[−] [right state considered]
case w: [update the cofactors on the wait step]

switch s
case C:

(u, t, u′) := (u′

[−], u, t);

(v, w, v′) := (v′[−], v, w);

case S:

(u, u′) := (u′

[−], u);

(v, v′) := (v′[−], v);

case P,p:

(u, u′, < ct, t >) := (u′

[−], t, u + t + ct[−]);

(v, v′, < cw,w >) := (v′[−], w, v + w + cw[−]);

case M,m:

(u, u′, < ct, t >) := (u′

[−], t, u − t − ct[−]);

(v, v′, < cw, w >) := (v′[−], w, v − w − cw[−]);

case B: [shift both A and B]
s := s[−]; [state is propagated leftwards]

(a, b, ta, tb) := (a[+], b[+], ta[+], tb[+]);

case C: [interchange A and B and shift B]
s := s[−]; [state is propagated leftwards]

(a, b, ta, tb) := (b, a[+], tb, ta[+]);

case S: [shift B]
s := s[−]; [state is propagated leftwards]

(b, tb) := (b[+], tb[+]);

case P,p: [plus]
s := s[−]; [state is propagated leftwards]

(a, ta) := (b, tb); [set a to old b]

< s2, b >:= a[+] + b[+] + s2; [set b to shifted sum]

tb := (ta ∧ tb) [tag the minimal correct position]

case M,m: [minus]
(a, ta) := (b, tb); [set a to old b]

< s2, b >:= a[+] − b[+] − s2; [set b to shifted difference]

tb := (ta ∧ tb) [tag the minimal correct position]
end

The wait state was introduced in the systolic GCD algorithm in order to
eliminate the global broadcasting of the operation code. In this state the pro-



cessor was not used. In the extended algorithm we replace this wait time by the
computation of the cofactors, therefore increasing the efficiency of the circuit.

Note that the data used to build the cofactors flows from right to left, either
as a carry in the plus/minus steps, or by shifting in the shift steps. That is, the
partial value of a cofactor kept in the registers of the processor Pk depends only
on the values kept on the processors P0, . . . , Pk. Moreover, the cofactors are
less or equal to the correspondent input operands, so their length is less or equal
to n. Therefore, the number of processors needed for the GCD computation is
sufficient also for obtaining the reduced form of the rational number.

The termination of the systolic GCD algorithm is detected by P0 when the
value of b is 0 and the tag of b is 1. Sometimes, the extended algorithm requires
several additional steps to finish the propagation of the “command” to the most
significant bits of the cofactors. However, this is not a problem if the result is
retrieved in a LSF way because after bk becomes 0 the circuit pipelines only B

operations which do not change the values of the cofactors tk and wk.

4 FPGA Experiments

We implemented the array on an ATMEL FPGA using the Atmel IDS environ-
ment from Cadence Systems Inc. and Workview Office from Viewlogic Systems
Inc. This represents an extension of the GCD implementation reported in in [6].

For a circuit containing 9 processors (accomodates operands up to 8 bits), the
netlist phase reports a number of 968 elementary blocks, which is smaller than
the area used by the GCD together with division presented in [6]. Some of the
intermediate values between the GCD algorithms and the two exact divisions are
not needed anymore; this simplifies the function that updates the operands. The
function that computes the cofactors requires 31 elementary gates per processor.
Thus, the circuit for computing the extended gcd is also simpler than a circuit
which computes the gcd followed by two exact divisions.

The longest delay path passes through 13 ports and it is determined by the
original GCD array - the computation of the cofactors does not increase the
computing time.

The automatic layout was successful on a Atmel AT40K10 chip, and con-
sumes 384 logical cells (83.4% of the total). The longest delay through our the
circuit is 40 ns – corresponding to a speed of 25 MHz. This gives an estimated
time of 0.005 ms for computing the reduced fraction of 32 bit operands, which
rivals the best current sequential processor (on an Ultra SPARC 60 machine with
the GMP library we have got an average time of 0.006 ms). However, a special
device constructed on the bases of this implementation for longer operands (e. g.
4 to 10 words) will gain in speed by a considerable factor, because the comput-
ing time of the systolic array increases linearly with the length of the operands,
while the sequential algorithms have quadratic complexity.



5 Conclusions and further work

We demonstrated the usefulness of the extended plus-minus GCD algorithm
for the reduction of rational fractions by an FPGA implementation. Because it
avoids the divisions altogether, this approach leads to a smaller implementation
(as number of gates/cells), while keeping the speed of the original algorithm.
Based on this sample implementation one can easily construct a device for ra-
tional arithmetic for long operands, because the circuit is uniform and can be
extended by simple tiling.

Further possible improvements of this implementation include: addition of a
bus for pipelining the input operands (this would allow pipelined preprocessing
for steps shift both and interchange and will lead to significant simplification
of the processors in the array); as well as addition of a bus for pipelining of the
output operands.

References

1. R. P. Brent and H. T. Kung, A systolic algorithm for integer GCD computation,
Procs. of the 7th Symp. on Computer Arithmetic (K. Hwang, ed.), IEEE Computer
Society, June 1985, pp. 118–125.

2. B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-

ory, Recent trends in Multidimensional Systems (Dordrecht-Boston-Lancaster)
(Bose and Reidel, eds.), D. Reidel Publishing Company, 1985, pp. 184–232.

3. P. Henrici, A subroutine for computations with rational numbers, Journal of the
ACM 3 (1956), 6–9.

4. T. Jebelean, An algorithm for exact division, Journal of Symbolic Computation 15

(1993), no. 2, 169–180.
5. , Systolic normalization of rational numbers, ASAP’93: International Con-

ference on Application–Specific Array Processors (Venice, Italy) (L. Dadda and
B. Wah, eds.), IEEE Computer Society Press, October 1993, pp. 502–513.

6. , Rational arithmetic using FPGA, More FPGAs (W. Luk and W. Moore,
eds.), Abingdon EE&CS Books, Oxford, 1994, Proceedings of FPLA’93: Interna-
tional Workshop on Field Programmable Logic and Applications, Oxford, UK,
September 1993, pp. 262–273.

7. D. E. Knuth, The art of computer programming, vol. 2, Addison-Wesley, 1981.
8. W. Krandick and T. Jebelean, Bidirectional exact integer division, Journal of Sym-

bolic Computation 21 (1996), 441–455.
9. B. Matasar, An extension of the binary GCD algorithm for

systolic parallelization, Tech. Report 99–47, RISC–Linz, 1999,
http://www.risc.uni-linz.ac.at/library.

10. J. Stein, Computational problems associated with Racah algebra, J. Comp. Phys. 1

(1967), 397–405.
11. K. Weber, The accelerated integer GCD algorithm, ACM Trans. on Math. Software

21 (1995), no. 1, 111–122.


