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Chapter 1

Introduction

. . . to be written later.
Some ideas to write about:

• thinking sequentially vs. parallel programming

Obvious advantages of parallel programming (speed, efficiency) but
much more simple to write a sequential program.

→ parallelisation of sequential programs

• the systolic architecture

Systolic architectures are considered to be a very suitable means of im-
plementing parallel algorithms in several areas, like linear algebra, sig-
nal processing, pattern matching, dynamic programming, etc. [Pet93].
The term systolic was fist introduced by Kung and Leiserson [KL78]
(see also [KL80],[Kun82]), designating the parallel computation where
the data is systematically ”pumped” from the external memory through
an array of processors, just like the human blood is pumped by the heart
through the vascular system.

Systolic arrays combine pipelining and multiprocessing techniques, and
are composed of a number of processing elements (PE), connected to-
gether by a regular interconnection. Each PE is performing - usually
the same and very simple - computations on its input data and local
memory variables, it stores data and is communicating with the neigh-
bouring PE-s. The functioning of the PE-s is synchronised by a global
clock, that results in a regular data flow through the system.

The systolic model suits very good for construction of high performance
special purpose computer devices.

. . .
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CHAPTER 1. INTRODUCTION 8

1.1 Overview

. . . To be written later (at the moment is just copy-paste from the beginning
of the chapters)

Chapter 2 (Survey): In this chapter we provide a short survey about the
state of the research done in the field of automatic generation and verification
of systolic arrays, used as starting point to our research. We first present the
systolic array design methods available in the literature and sum up the main
ideas used. We also compare them in order to find out the advantages and
weak points of the most frequently used techniques.

Concerning the available formal verification methods, they are classified
according to several comparison principles and the formal framework used.

Finally we summarise the main characteristics that we find the most
important with respect to our research.

Chapter 3 The Space-Time Transformation Methodology : The space-
time transformation method is the most commonly used design technique,
more exactly it is the common name for the main ideas used in several design
methods. All of these techniques are based on the concept of transformations
applied to the index space representing the computations. The purpose of
the transformations is to determine where and when the computations will
be performed. This is the reason for the term ”space-time” in the name of
the method.

In this chapter we give a more detailed description of this particular design
technique for the sake of a more precise comparison with our novel method
presented in Chap. 5.

An interesting case study is presented at the and of the chapter, that will
be revisited in Sect. 5.6.4, thus it can reveal the advantages and drawbacks
of the two methods. The design of the case study was actually inspired by
the online array generated with our functional–based method.

Chapter 4 Mapping Systolic Arrays onto Fixed Size Architectures:
Various attempts have been made to overcome the drawbacks of the space-

time transformation method.
We have chosen to present in this chapter an alternative method, that

starts from an input of the same form as in the case of the space-time trans-
formation methodology (recurrence equations), but the scheduling of the
computations is obtained in a much simpler way.

This method is based on the ideas presented in [KRS95], [KRS96] that
simplify the tedious task of finding an adequate timing function. The com-
putations are represented by the nodes of a directed graph and the time
function is given by the level of the nodes in the modified dependence graph
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after some empty nodes were introduces according to an algorithm based on
rewrite rules, presented in [KRS94].

However, the price for the simplicity is that the size of the problem hs
to be fixed in advance, thus the method does not work for parametrised
problems.

Again, the method is exemplified with a significative case study: a linear
systolic array is generated for the problem of sequences alignment.

Chapter 5 Functional-Based Systolic Array Design:
We introduce a functional view (or inductive view) of systolic arrays: a

systolic array is composed of a head processor and an identical tail array of
a smaller size. By exploiting the similarity between the inductive structure
of a systolic array and the inductive decomposition of the argument by a
functional program, it is possible to develop an elegant and efficient method
for the automatic synthesis of systolic arrays.

After a detailed presentation of the formal background used, we study
the functioning of different systolic array-types.

By formal analysis, the structure of the functions which can be realised by
arrays having certain properties is identified. Then, by equational rewriting,
the expression of the list function which must be realised is transformed into
an expression having the required structure. The resulting expression reveals
the scalar function which must be implemented by each individual processor.

The utility and efficiency of the design method is demonstrated through
examples and representative case studies.

Chapter 6 Conclusions and future work are summarised.
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1.2 Acknowledgements
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Chapter 2

Survey

In this chapter we provide a short survey about the state of the research
done in the field of automatic generation and verification of systolic arrays,
used as starting point for our research. We present at first the systolic array
design methods available in the literature and sum up the main ideas used.
We also compare them in order to find out the advantages and weak points
of the most frequently used techniques.

Concerning the available formal verification methods, they are classified
according to several comparison principles and the formal framework used.

Finally we summarise the main characteristics, that we find the most
important with respect to our research.
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CHAPTER 2. SURVEY 12

2.1 Design Methodologies

The first examples of systolic arrays that appeared in the early eighties were
designed intuitively, in an “ad-hoc” manner, requiring a great amount of
creativity and inspiration of its inventors. Many researchers were fascinated
by the simple and regular structure of systolic arrays, able to perform complex
computations on a great amount of data in a very efficient way. Later on they
proposed several systematic design methodologies to overcome the limitations
of heuristics and designer intuition and to provide a formal framework for
mapping algorithms to systolic architectures.

In this section we present a short survey about the research done in this
field, highlighting the most important characteristics of the distinct design
methods. We also point out the advantages and disadvantages of the several
methods.
Among the first systematic design methodologies two seemingly distinct
methods, called data dependency method and parameter method were
proposed.

The essence of the data dependency method is the representation of the
dependency structure of an algorithm in concise, matrix form. The technique
for mapping algorithms into systolic arrays is based on the mathematical
transformations of index sets and the so called data dependence vectors.
This method has been extensively studied by Fortes, Wah and Moldovan
[Mol83], [MF86], [FW87], S.Y. Kung [Kun87] and others. The procedure
based on this method and presented in [Mol83] was also implemented at
the University of Southern California in a software package called ADVIS
(automatic design of VLSI1 systems).

A procedure for the derivation of optimal systolic design was first devel-
oped in the parameter method [LW85]. This methodology presents the op-
timal mapping of algorithms that are represented as linear recurrences onto
systolic arrays. Three sets of parameters are used to characterise systolic
arrays:

- velocities of data flow

- data distribution

- periods of computation

The relationship between these parameters are represented as constraint
equations that control the correctness of the design, thus the design is for-
mulated as an optimization problem.

1Very Large Scale of Integration
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The two design methodologies, the parameter method and the data de-
pendency method are compared by O’Keefe, Fortes and Wah [OFW91],
describing the relationship between them. It is shown that the parameter
method applies to a subclass of the algorithms that can be processed by the
dependency method. Explicit mathematical relations are established between
the parameters, equations and constraints of the two important methods for
the design of systolic arrays.

Also remarkable is the research carried out at Irisa in this field ([Qui84],
[Qui87], [QR90], [QD89], [MQRS90]) that led to the design of a declarative
language for systolic array description called ALPHA (see [VMQ91], [WS94])
and the corresponding program transformation environment, called Alpha du
centaur ([GQMS88], [DVQS91]). Later another programming environment,
called MMALPHA was written in Mathematica and C for manipulating
Alpha programs.

The mentioned works, same as others like that of Delosme and Ipsen
[DI86], Nelis and Deprettere [ND88], Huang and Lengauer [HL87] contributed
to the foundation respectively the evolution of a unifying approach to the
design of VLSI algorithms usually referred to as the space-time transfor-
mation methodology. In a certain way, all the proposed methods by the
above mentioned researchers vary very little, differing slightly in the degree
of formalism and the way to approach the problem. In the ultimate instance,
they all use the concept of transformation of dependencies. A review of the
main ideas involved in these systolic algorithm synthesis methods is presented
by Song in [Son94].

The task is the transformation of a sequential algorithm, expressed in the
form of up to three nested loops, or in the form of uniform recurrence equa-
tions (see [KMW76]), into a systolic algorithm applying a set of mathematical
transformations on the dependence vectors.
The computations involved in an algorithm, as well as the dependences be-
tween computations, are transformed by a time function and a space alloca-
tion function.

- The time function maps each computation of the algorithm to a positive
integer that represents the time at which the computation is executed.

- The allocation function, on the other hand, obtains the position of the
processing element to perform the computation involved.

Such a space-time mapping must satisfy several constraints to be valid. Ba-
sically two conditions has to hold:

- if a statement depends on the result of another statement, it should be
executed after the result itself is available,
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- two statements allocated to the same processor should not be scheduled
at the same instant of time

If we restrict ourselves to the case when the transformations applied are
linear functions, it appears that the above conditions can be equivalently
expressed as a linear programming problem, when one considers uniform
recurrences. Linear transformations have proven to be very effective in order
to design locally connected architectures such as systolic arrays. These are
the main reasons why research in this domain has mainly focused on uniform
recurrences, and linear transformations.
A more detailed presentation of the space-time transformation method is
provided in Chap. 3.

In most cases, the initial specification is expressed as a recurrence equa-
tion. However, the majority of the above mentioned works have worked with
uniform recurrence equations (URE), a subclass of linear recurrence equa-
tions (LRE).

The uniformisation problem, that is to say the problem of transforming
linear recurrence equations into uniform recurrence equations is tackled by
Quinton and Dongen in [QD89], Fortes and Moldovan [FM84] and others.
Such a transformation is mandatory when the target architecture is locally
connected, as for example, a systolic array.
A more general review about the various transformations that can be applied
to a system of recurrence equations is presented by Lavenier, Quinton and
Rajopadhye in [LQR99].
The main formal manipulation techniques of SREs are summarised and ex-
emplified:

- Serialization of Reductions

- Alignment

- Localization

- Change of basis

Many algorithms were already parallelised using the efficient technique of
time-space transformations. However, this methodology also has some draw-
backs. The constraint, that a location in space is assigned to each index
value from the very beginning causes that the data will be introduced in a
regular order. This is well suited for the design of regular architectures, but
it also can lead to the exclusion of other possible solutions of the problem.
Time and space boundary conditions often constitute another problem in the
design of systolic arrays.
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The problem should usually be specified in the form of uniform recurrence
equations (URE). The class of problems that can be expressed in this form
is restricted and expressing most problems using UREs is not always an easy
task.

Various attempts have been made to overcome the drawbacks of the space-
time transformation method. A remarkable alternate approach represents the
methods based on viewing systolic design as program design.
Gribomont and Dongen presents another methodology for the mapping of
systolic arrays based on the concept of generic systolic array introduced
and illustrated in [GD92].
This approach represents a program-oriented methodology, being more closed
to the program design. The technique takes in account two points, namely
that:

- the architecture is often chosen before the real beginning of the devel-
opment

- the basic operations to be executed by the individual cells are partially
known at the beginning

Thus the development starts from a generic systolic array, whose parameters
have to be instantiated. A more detailed description of the method is given
in [GD92].

As already mentioned, this method is more closed to the program design,
thus cannot be fully automated. It still needs some creativity and intuition
from the designer.

Another disadvantage of the space-time transformation method is that it
heavily depends on finding an affine timing function. The problem with find-
ing an affine timing function is that one needs to solve a system of linear
recurrence equations, which is generally difficult, and also possible only for
systems having certain properties. The method proposed by Kazerouni, Ra-
jan and Shyamasundar in [KRS95], [KRS96] is not restricted to affine timing
functions.
They propose a general method for mapping a system of linear recurrence
equations (SLRE) onto specific systolic architectures. Their method gener-
ates solutions suitable for existing target architectures rather than designing
new ones. This means that the design method becomes easier, one does not
have to solve a system of linear equations, but the solution is of fixed size,
no parameters are taken into consideration.
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The method essentially consist of mapping normalised linear recurrence
equations, a subclass of linear recurrence equations, - which properly includes
the class of uniform recurrence equations - onto a generic architecture called
basic systolic architecture and then applying correctness preserving transfor-
mations to adopt this intermediate solution onto specific target architectures
(also presented in [KRS94]).

For additional details one may also see the short survey about the systolic
array design methods available in the literature [Sza02a],[Sza02b].
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2.2 Partitioning

The synthesis method for systolic arrays based upon space and time trans-
formations can be extended to generate systolic implementations on a fixed
number of processors. The main idea of all these extensions is to merge
many cells into a single processor, so as to compress the array. This step is
called partitioning. Algorithm partitioning is essential when the size of the
computational problem is larger than the size of the systolic array intended
for that problem.
It can take two different forms:

- The locally parallel globally sequential (LPGS) form, presented by
Moldovan in [MF86].

- The locally sequential globally parallel (LSGP) form, studied by Darte,
Delosme [DD90], [Dar91], Bu, Deprettere and Dewilde [BDD90].

The LPGS approach means that the array is first partitioned into blocks, the
size of which is the number of available processors (p), and then each block
one after the other is computed. The different computation points in the
current block are allocated and scheduled in the p processors, in accordance
to the dependence constraints. This method requires small local memories,
but a large external buffer is needed to store the data used by the next block.
In the LSGP approach the array obtained by the mapping procedure is par-
titioned into p blocks of virtual processors, each block being allocated to one
physical processor.

Of course, the different points allocated to the same processor have to
be computed at different times in the array in such a way that they can
be sequentially executed by the physical processor. This method permits to
synthesise systolic arrays with a fixed number of cells and, as a particular
case, permits to improve the efficiency of the cells in a systolic array obtained
by the projection method.
The two methods are illustrated in Fig. 2.1.

a) In the LPGS scheme, the block size is chosen to match the array size,
i.e. one block can be mapped to one array. All nodes within one
block are processed concurrently, i.e. locally parallel. One block after
another block of node data is loaded into the array and processed in a
sequential manner, i.e. globally sequential.

b) In the LSGP scheme, one block is mapped to one processing element
(PE). Each PE sequentially processes the nodes of the corresponding
block. The number of blocks is equal to the number of PEs in the array.
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Figure 2.1: LPGS and LSGP method [CK98].

In the LPGS method, a general rule is to select a (global) scheduling that
respects the data dependencies.
As to the scheduling scheme for the LSGP, after processor allocation, an
acceptable (that is sufficiently slow) schedule is chosen so that at any instant
there is at most one active PE in each block.
Note that the LPGS design has the advantage that blocks can be executed
one after another in a natural order. However, this simple ordering is valid
only when there is no reverse data dependence for the chosen blocks.

A unified partitioning and scheduling scheme is proposed for LPGS and
LSGP in [HH95]. The main contribution includes a unified partitioning
model and a systematic two level scheduling scheme. The unified partitioning
model can support LPGS and LSGP design in the same manner. The sys-
tematic two level scheduling scheme can specify the intra-processor schedule
and interprocessor schedule independently. Thus, more interprocessor par-
allelism can be effectively explored. The design methodology presented in
[CK98] also proposes such a unified approach to the partitioning problem.
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2.3 Verification of Systolic Arrays

An overview about the formal verification methods used for validating sys-
tolic arrays is presented in this section.

The traditional way of validating hardware systems was simulating and
testing. This method is limited not only because of its expensiveness, but it
is also hard to achieve total fault coverage. For this reason formal verification
methods are considered more and more often as an alternative approach to
ensure the quality and correctness of hardware designs [KG99].

Also the formal hardware verification methods have their limitation and
the most significant one is their complexity. Even so, the regularity of the
systolic systems and the simplicity of the processors make automatic reason-
ing and analysis possible.

2.3.1 General Aspects Concerning Formal Verification
Methods

Formal verification is like a mathematical proof. The correctness of the
hardware system is determined regardless of its input values, by considering
its function rather than its behaviour, and by verifying logical properties.

Generally, when a formal verification has to be performed, two descrip-
tions of the problem are given: a specification of the system and an imple-
mentation. Implementation and specification are in fact representations of
the circuit at different levels of abstraction.

• the specification of the system describes how we expect the output
data of the system to be related to the input data.

• the implementation describes how the system is built (behaviour of
PE-s and how they are connected to each other in the circuit).

The task of formal verification is to check – using rigorous mathemat-
ical reasoning (instead of an experimental approach) – whether the given
implementation really meets all parts of its specification.

A survey about formal hardware verification in general can be found in
[Gup91] or [KG99].

Hereinafter we describe some important aspects, comparison principles to
be taken into consideration when talking about formal methods of hardware
verification, specially systolic array verification.

The first step towards developing an automatic verification method is to
find an adequate formal framework that should aim to be simple, complete,
precise, coherent, automatable, efficient and reliable. There have been many
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proposals for specification of systolic systems. They differ in expressiveness,
treatment of semantics, range of applicability, etc.
The specification and implementation models used are: logic [Gor87] - propo-
sitional logic, first-order predicate logic, higher-order logic, temporal logic,
or automata/language theory [Mil91] - finite state automata, trace structure,
process algebra. An important aspect is the degree of automation offered by
a verification technique, i.e. is it enough to describe the specification and the
implementation in a proper way or we have to provide additional information
during the verification process.
In the literature we find techniques ranging from completely automated meth-
ods (e.g. [LB99]) to interactive theorem proving using logical calculi (where
the user should employ tactics or suggest appropriate lemmas during the ver-
ification process, e.g. Boyer-Moore theorem prover system [Gri88], [BM79],
HOL system (due to M. Gordon) [Gor87], NURPL proof development system
(due to N. Constable) [DLT89].

Another possibility to compare verification methods is to consider the
class of systolic arrays that can be verified with a method. The size of the
class of problems that can be verified with a certain method is usually in
inverse proportion to the complexity of the method. This means that com-
pletely automated verification methods usually can be applied to a restricted
class of systolic algorithms, while methods, which can solve a more general
class of algorithms often require ”extra information” (e.g. help lemmas, in-
duction hypotheses) to succeed in performing the proof.

A good communication between designers and implementers is also a
requirement, therefore the ease of use of a method could be an advantage
compared to very general and powerful methods, that are restricted mostly
to verification experts.

Another question concerning verification methods is how it could be ap-
plied. That means, whether it only gives a certification that the given imple-
mentation of the array is correct in respect to the problem it should solve,
or we can also learn more about the array when performing the verification
task. In the literature one can find formal frameworks and methods that are
suitable not only for verification purposes but also for the design of systolic
arrays, simulation, fault diagnoses (see [DQ94], [LB99]).

A hardware module can be abstracted at various architectural levels.
Some examples of abstraction levels could be:

- behavioural modeling (also referred to as functional or system-level) –
the hardware module is described - using a high level language - by its
logical behaviour rather than its physical implementation

- register-transfer level – where the register values are the basic operands
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with combinational logic blocks between them based on standard logic
elements (multiplexer, shifter, adder)

- gate-level – description is based on standard logic gates like and, or,
xor, not, etc.

Verification can be performed on different levels of abstraction or even
in the course of successive steps on different levels of abstraction in
a top-down or bottom-up manner. The implementation at a certain
level i becomes the specification of a more detailed level i− 1 and the
specification at level i is the implementation of a more abstract level
i + 1.

The notion of abstraction permits unnecessary detail to be hidden from
the high-level model.

Melham [Mel88] describes four different types of abstraction widespread
in hardware verification.

– Structural abstraction hides the details about the implementa-
tion’s internal structure in the specification. The specification
gives a ’black-box’ view of the design, that describes only the sys-
tem’s behaviour observable from outside, without entering into
details about the internal design.

– Behavioural abstraction suppresses details about what the com-
ponent does under operating conditions that should never occur.
Behavioural abstraction may also include ”don’t care” conditions.

– Data abstraction relates signals in the implementation to signals
in the specification when they have different representations. Data
abstraction requires a mapping that determines how the states or
signals of the implementation are to be interpreted in the specifi-
cation’s semantic domain.

– Temporal abstraction relates time steps of the implementation to
time steps of the specification.

Ling an Bayoumi [LB89] specifies also another type of abstraction,
specific for systolic arrays:

– Abstraction of Systolic features : Systolic arrays have some partic-
ular properties at the array level. These are synchrony, regularity,
repeatability, modularity, spatial and temporal locality, pipelin-
ability and parallel processing ability [Kun87].
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Abstraction of systolic features means to use a formalism (even-
tually introduce a new one) that exploits these properties.

2.3.2 Classification of the Formal Frameworks Used

Research in the domain of the formal verification of systolic arrays uses ideas,
frameworks and techniques from various research fields including first or
higher-order predicate logics, temporal logics, fixed-point induction, auto-
mated theorem proving, automata-theoretic techniques, language contain-
ment, process algebra, etc.

According to [KG99] from a conceptual point of view there are two main
approaches to the specification and to the corresponding verification of hard-
ware, referred to as: property verification respectively implementation veri-
fication.

Property Verification

This approach is concerned with specifying desired properties for the design.
Formal verification in this case is generally concerned with properties of a
temporal nature. That means, it applies to the characteristics of the system’s
behaviour on execution rather than to static attributes of the system.

Temporal logics [Eme90] are a unifying framework for expressing such
properties. Temporal logic – is a generalisation of predicate logic to enclose
the temporal domain for effective description of dynamic environments. It
substantially advances traditional logic because it can capture time and dy-
namic behaviours - essential features in hardware descriptions - with concise
clear notation. It avoids the introduction of explicit time functions and time
variables. [LB99]

The verification task consists in showing that all of the system’s possible
behaviours satisfy the temporal properties of its specification.

In [LB89] Ling and Bayoumi introduces a novel formalism based on inter-
val temporal logic (ITL), developed for systolic array reasoning, called Sys-
tolic Temporal Arithmetic (STA). The advantages of the developed formalism
are its ease of use (STA does not require users to find out any assertions or
loop invariants for verifications), the fact that the STA exploits systolic array
properties to produce notation and reasoning methods suitable for systolic
arrays to make specifications and verifications more simple and effective.
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Implementation Verification

This second approach is based on specification in terms of a high-level model
of the system. In this framework, verification requires reasoning about the
relationship between the high-level model, also referred to as specification
and a lower-level model, that is the implementation.

In order to be able to reason about the implementation and the specifi-
cation, formal interpretation must be given for their description. There are
three common approaches to this formalisation:

1. Specification of the system’s behaviour in terms of functions and pred-
icates of standard first or higher-order predicate logic.

Theorem proving systems based on first or higher-order logic have
been used to verify systolic circuits: the Boyer-Moore theorem prov-
ing system, based on first order logic, used to mechanise the verifica-
tion method presented by Purushothaman and Subrahmanyam [PS89];
higher order logic systems like HOL, described in [Gor87] or NURPL
in [DLT89].

2. Description of the system behaviour by a state transition system, whose
definition can be expressed in languages such as CSP2.

Here we mention that due to the regularity of the systolic arrays recur-
sivity is very often used in the description of such systems. Recurrence
equations, specially uniform recurrence equations are most suitable for
this purpose.

Gribomont [Gri88] uses a small language derived from Hoare’s CSP to
describe the processing units of the systolic array. Chen [Che83] uses
systems of recursive equations to describe systolic circuits.

3. Description in terms of infinite languages recognised by a finite state
automata.

In the paper of Margaria [Mar96] the internal structure of the basic cell
is specified as a Finite State Machine and implemented in hardware at
the gate-level.

2CSP– Communicating Sequential Processes, a language for describing patterns of in-
teraction between processes, introduced by C. A. R. Hoare [Hoa85]
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Top-Down Synthesis – Button-Up Abstraction –
Meet in the Middle Comparison

Another approach to systolic array verification is the combination of the
proof process with that of synthesis. In [DQ94] an interesting verification
method is presented, where the proof process is a combination of top-down
synthesis and bottom-up abstraction until a common middle-point is reached
(the idea was proposed by Hans Eveking[Eve87]). This method takes into
consideration also the available architectural synthesis methods for systolic
arrays.

The formal representation of both, the specification and the implementa-
tion of an array is given in ALPHA, a functional/equational language used
for synthesis of regular synchronous architectures [DQ94].

A circuit can be represented in the ALPHA language at different lev-
els of abstraction: structural description as well as functional or temporal
abstraction level.

The verification is performed by doing program transformations based
on the semantics of ALPHA. The proof process is semi-automatic in the
sense that the designer has to select transformations whose application is
automatic. The proof methodology deals with parametrised circuits.

• The specification of the array consists of the recurrence equations de-
scribing its operations.

• The implementation is the actual model of the array at register transfer
level.

By synthesis, the recurrence equations are transformed in an explicit ar-
chitecture.

By abstraction, the implementation is simplified by eliminating all ini-
tialization mechanisms, and some optimizations which were applied when
designing the array. The implementation is abstracted up to the same rep-
resentation level by means of induction.

The verification is completed by matching both descriptions.
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2.4 Synthesis and Verification – Conclusions

We provided in the former section a short survey about the systolic array
verification methods available in the literature, pointing out their main char-
acteristics, and we also gave some principles of comparison of these methods.

Temporal logics, specially interval temporal logic (ITL) turns out to be a
very concise and powerful framework to reason about systolic arrays. In this
case we are talking about property verification, as the formal verification is
concerned with properties of a temporal nature, i. e. the characteristics of
the system’s behaviour on execution.

Due to the regularity of systolic array structure, recursivity is frequently
used in their formal description. Therefore fixed-point induction is a com-
monly used technique in systolic array verification, though it is not always
simple to find the fix-point of a recursive system. Theorem proving systems,
based on first or higher-order logic are also used to automatically perform the
proof or at least a part of it, but beside the advantage of the computational
power of such a system there is usually also a disadvantage, namely that
additional information (in terms of lemmas) has to be given to the system
in order to succeed. This makes their use rather difficult, available only for
experts.

It is hard, actually impossible, to find a ”perfect” verification method,
suitable for a large set of problems, completely automatic and also easy to
use, not only for experts. Yet, we would like to point out some characteristics,
we find the most important in connection with our work. A very important
aspect is the appropriate choice of the modeling language, preferable to be
closer to the modeling practice of hardware designers. Another important
feature that we would expect from a verification method is not only to cer-
tificate the correctness of a given hardware but also to make it possible to
gain more information about its design.

Systolic array synthesis and verification are two research fields strongly
related to each other. In this context, we find the idea of combining the
synthesis and the verification process very useful.



Chapter 3

The Space-Time
Transformation Methodology

The space-time transformation method is the most commonly used design
technique, more exactly it is the common name for the main ideas used in
several design methods. All of these techniques are based on the concept of
transformations applied to the index space representing the computations.
The purpose of the transformations is to determine where and when the
computations will be performed. This is the reason for the term ”space-
time” in the name of the method.

In this chapter we give a more detailed description of this particular design
technique for the sake of a more precise comparison with our novel method
presented in Chap. 5.

An interesting case study is presented at the and of the chapter, that will
be revisited in Sect. 5.6.4, thus it can reveal the advantages and drawbacks
of the two methods. The design of the case study was actually inspired by
the online array generated with our functional–based method.

26
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3.1 Introduction

The space-time transformation methodology is a unifying approach to
the automatic design of systolic algorithms based on the concept of trans-
formation of dependencies. In the sequel we will present the basic notions
and commonly used ideas characteristic to this method, pointing out also the
difficulties encountered.

A common way of describing an algorithm is that of using abstract spec-
ifications such as recurrence equations.

The design methods based on the space-time transformation use as start-
ing point the representation of the sequential algorithm in terms of a system
of Uniform Recurrence Equations (URE), a subset of Linear Recurrence
Equations. The reason for using URE systems is that only such systems are
suitable for being directly mapped onto systolic architectures, as they require
local data and local interconnections between the processing elements.

In order to apply the method to a larger set of problems - e. g. Linear
Recurrence Equations - the problem of uniformisation should be studied (also
discussed in [QD89]).

Definition 3.1. Uniform Recurrence Equation System
A system of uniform recurrence equations (SURE) is a collection of s ∈ N
equations of the form (3.1) and input equations of the form (3.2):

Vi(z) = fi(V1(z − θi1), . . . , Vk(z − θik)) (3.1)

Vi(z
j
i ) = vj

i , j ∈ {1, ..., li} (3.2)

where

- Vi : D → R. Vi, i ∈ {1, . . . , s} are variable names belonging to a
finite set V . Each variable is indexed with an integral index, whose
dimension, n (called the index dimension), is constant for a given SURE
(in practice this is usually 2 or 3).

- z ∈ D, where D ⊆ Zn is the domain of the SURE. (In the following
we consider limited convex polyhedral domains. See [Wil93]).

- vj
i is a scalar constant (input), zj

i ∈ Dinp, where Dinp ⊆ Zn is the
domain of the inputs.

- θi1 , . . . , θik are vectors of Zn and are called dependence vectors of the
SURE.

- Vi(z) does not appear on the right-hand side of the equation
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- fi : Rs → R

Note: We gave a simplified form for the equations of a SURE in (3.1),
respectively (3.2). Generally a computation may consist of several cases.
Also the domains associated to the several computations may be different.
A more general form for the input equations would be the following:

Vi(z) =


fi,1(. . .) , z ∈ Di,1

. . .
fi,c(. . .) , z ∈ Di,c

(3.3)

where Di,n

⋂
Di,m = ∅ for n 6= m. Di =

⋃
j=1,c Di,j. The domain D of the

SURE is the convex hull of all Di domains. In the same way, the input
equations may also consist of more cases.

Unless it is uniform, a system of recurrence equations cannot be mapped
directly on a systolic array. Indeed, if the dependence vectors are not con-
stants, the PEs may have to communicate with an arbitrary large number of
other PEs (also called broadcasting), and this is not desirable for a systolic
array, where the PEs should only be connected with their neighbours.

Definition 3.2. (Dependence Vectors)
Let Θ =

{
θ0, θ1, . . . , θl

}
the set of vectors θi of a SURE of the form (3.1)-

(3.2). The θi vectors are called dependence vectors of a system.

Consider points z, z′ ∈ D. We say that z is dependent on z′ by θi, if
∃ θi ∈ Θ, such that

z = z′ + θi.

Given a SURE of the form given in definition 3.1, we say that the variable
instance Vi(z) depends on Vj(z

′) if there is an equation of the form (3.1),
where Vi(z) appears on the lhs. of the equation and Vj(z

′) is on the rhs. We
denote the dependence by Vi(z)← Vj(z

′).
The dependences can be represented by a directed graph called depen-

dence graph of the SURE. It abstracts the dependency relations among the
variables in the SURE.

Definition 3.3. (Dependence Graph – DG)
The dependence graph of a SURE is a directed graph G(V, E), (also denoted
by (D, Θ)), where
the set of nodes V = D, i.e. the nodes are points of D, and
the set of edges E =

{
εzz′|∃θi ∈ Θ, z = z′ + θi

}
, i.e. if z is dependent on z′

by θi, there exists an edge from node z′ to node z.
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Informally, a SURE (as well as the associated dependence graph) can be
seen as a multidimensional systolic array, where the points of the domain D
(respectively the nodes of the DG) are the PEs of the array and the com-
munication channels are determined by the dependencies (the edges of the
DG). In this context a transformation applied to the system that preserves
the number of domain points and the dependencies leads to a computation-
ally equivalent system. The goal of such a transformation is to obtain a
system where one of the indices can be interpreted as the time index and the
others as space-indices.

Linear (and affine) transformations are most commonly used because they
preserve the dependencies between the computations. Moreover, if the trans-
formation is unimodular1, then it has the advantage that it preserves the
number of points in the domain, and in addition it admits an integral in-
verse. However it is not mandatory to use unimodular transformations.

In the following sections we show how an adequate timing function re-
spectively allocation function can be found.

3.2 Timing Function

Given a URE system, we want to obtain a timing function t that schedules
the computations associated to the points of domain D. For a given z ∈ D
we assume that the computations Vi(z) are performed in parallel, and take
a unit time.

A natural requirement is that in order to perform the computations of
Vi(z), its arguments should have been computed before. The time function
t associates to each point z ∈ D the time instant when it is computed, such
that the dependencies are respected. If such a function exists, then we say
that the SURE is computable.

Definition 3.4. (Timing Function)
For each variable Vi of the SURE of the form given in definition 3.1, we call
the timing function of the variable Vi the positive function tVi

: D → N , that
gives for any point z of the domain D the time instant when Vi(z) will be
computed, such that for each dependence Vi(z) ← Vj(z

′) of an equation of
the form (3.1) should hold:

tVi
(z) > tVj

(z′) .

1A transformation x′ = Ax is unimodular if the determinant of the matrix A satisfies
det(A) = ±1.
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For each variable Vi of the equations of the form (3.1) of a SURE, we are
looking for an affine timing functions tVi

: D → N having the same linear
part:

tVi
(z) = T ∗ z + δVi

.

Note that T is an 1 × n vector T = (t1, . . . , tn). The fact that the timing
function has the same linear part for each variable assures that after per-
forming a transformation on the SURE according to the timing functions,
the uniformity of the SURE will be preserved.

Constraints

The timing function has to satisfy the following two conditions:

1. (positivity constraint) ∀V variable of the SURE, ∀z ∈ D,

tV (z) ≥ 0 (3.4)

2. (dependency constraint) For each dependence Vi(z) ← Vj(z
′) of an

equation of the form (3.1) should hold:

tVi
(z) > tVj

(z′) (3.5)

The first condition is a matter of convenience, since t is interpreted as
time. The second condition makes scheduling of dependent computations
possible.

We might also want to minimise the computation time of the system.
This would mean to add the corresponding restriction on T , namely that the
sum t1 + . . . + tn +

∑
Vi

δVi
should be minimised.

3.2.1 Finding an Adequate Affine Timing Function

The previously mentioned constraints build a system of inequalities. Any
of its solutions - if there exists any (that means, the system is computable)
- gives an adequate timing function. The problem of the computability of
a SURE in its full generality is undecidable [SQ93]. However there exists
necessary and sufficient conditions for the restricted class of affine timing
functions, which is of practical interest.

The theorem 3.1 of Quinton and Roberts gives a method to automatically
determine, whether there exists an affine timing function for a parametrised
system of equations. The method based on it is also referred to as vertex
method. Its details are presented in [Qui87] and [QD89].
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Theorem 3.1. (Quinton and Roberts [QR90])
For a given SURE, with dependence graph (D; Θ) and set VD of vertices

of D, the parameters λ0, λ1, . . . , λn−1 and γ define a timing function t iff

1. ∀vi ∈ VD, λT vi + γ ≥ 0 and

2. ∀θi ∈ Θ, λT θi > 0, or λT θi ≥ 1.

See [QR90] for the proof.

Note that if z is dependent on z′ by θi, or z = z′ + θi, then

λT θi = λT (z − z′) = t(z)− t(z′).

Thus λT θi expresses the delay between the computation of z and the com-
putation of z′. Theorem 3.1 requires this delay to be greater than 0 (at least
1).

Theorem 3.1. gives conditions for the obtainment of a time function.
Another question is that of optimality of the time function. Several criteria
for optimality can be adopted. Consider a SURE with dependence graph
(D; Θ). One criterium is to minimise the delay between dependent compu-
tations according to a dependence θk ∈ Θ. Thus we want to minimise λT θk,
subject to

λT θi ≥ 1,∀θi ∈ Θ.

An alternative method for the compression of the constraints into a finite
set is the so called Farkas method [Fea92], that uses the following version of
the Farkas Lemma:

Theorem 3.2. (affine form of Farkas lemma)
Let D be a polyhedron defined by the inequalities A ∗ z + b ≥ 0, where A

is a k × n matrix. Then the affine form φ is non negative on D if and only
if there exist λ0, Λ = (λ1, . . . , λk) ≥ 0 such that φ = Λ( A b ) + λ0.

See [Sch86] for the proof.
A linear constraint can always be written in the form that a linear function

is positive on a domain, thus one can make use of Theorem 3.2.
According to the method presented in [Fea92], the conditions (3.4) - (3.5)

that a timing function t must satisfy can be replaced in the following way
using Theorem 3.2:
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• positivity constraint:
if a variable V is defined on the domain DV = {z|aiz + bi ≥ 0, 1 ≤
i ≤ k}, the timing function tV (z) = T ∗ z + γV , (T = (τ1, . . . , τn)) is
positive on DV iff ∃λ0, Λ ≥ 0{

T ∗ z + γ −
∑k

i=1 λi(ai ∗ z + bi)− λ0 = 0
λi ≥ 0, 0 ≤ i ≤ k

(3.6)

From 3.6 we have n + 1 equations:
τj −

∑k
i=1 λi ∗ aij = 0 1 ≤ j ≤ n

γ −
∑k

i=1 λi ∗ bi − λ0 = 0
λi ≥ 0 , 0 ≤ i ≤ k

(3.7)

• dependency constraint:
If a variable V (z) depends on W (z′), by θ = z − z′ on the domain
DV W = {z|A ∗ z + b ≥ 0}, where A is an k×n matrix, then the timing
functions tV (z) = TV + γV and tW (z) = TW + γW (TV = (τV

1 , . . . , τV
n ),

TW = (τW
1 , . . . , τW

n )) respect the dependency constraints, that is tV (z)−
tW (z′)− δ ≥ 0 (δ is a delay between the computation of W and V ) iff
∃µ0, (µ1, . . . , µk) ≥ 0

{
TV ∗ z + γV − TW ∗ z′ − γW − δ −

∑k
i=1 µi(ai ∗ z + bi)− µ0 = 0

µi ≥ 0, 0 ≤ i ≤ k
(3.8)

Again, from (3.8) we have n + 1 equations:


τV
j − τW

j −
∑k

i=1 µi ∗ aij = 0 1 ≤ j ≤ n

γV − γW − δ − TW ∗ θ −
∑k

i=1 µi ∗ bi − µ0 = 0
µi ≥ 0 , 0 ≤ i ≤ k

(3.9)

• objective function constraints:
Using the Farkas method, one can find many schedules that satisfy
the positivity and dependency constraints. This additional type of
constraints depends on our choice related to the optimization of the
problem from a certain point of view (this could be for example the
minimization of the overall execution time).
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3.3 Allocation Function

Given a suitable timing function, the next step is to find an adequate allo-
cation function.

Definition 3.5. (Allocation Function)
For each variable Vi of the SURE of the form given in definition 3.1, we call
the allocation function of the variable Vi the function pVi

: D → D′, such
that D′ ⊆ Zn−1 and for any point z ∈ D, pVi

(z) is the index of the PE where
the computation of Vi(z) will take place.

Given an affine timing function with the same linear part for every variable Vi,
we are looking for an adequate allocation functions having the same property.
That is ∀Vi of the equations of the form (3.1) of the SURE we should find
an allocation function pVi

: D → D′ of the form

pVi
(z) = P ∗ z + γVi

,

where D′ ⊆ Zn−1.

3.3.1 Obtaining an Adequate Allocation Function

We describe in this section how a set of constraints can be set up for the
obtainment of suitable allocation function(s) for a given timing function.

Constraints

The following set of constraints can be defined:
General constraint:
In order to get an adequate allocation function for a given timing function,
the condition that should hold can be intuitively expressed in the following
way: two different computations performed at the same time-step should
not be mapped onto the same PE. This means that the linear part P of the
allocation function should not be parallel to the direction T corresponding
to the timing function.
Formally:

P 6= c ∗ T, (3.10)

where c ∈ Z is a constant.

Weak conditions:
For every dependence Vi(z) ← Vj(z

′) of an equation of the form (3.1) such
that Vi 6= Vj, the following condition should hold:

‖pVi
(z)− pVj

(z′)‖ ≤ tVi
(z)− tVj

(z′) (3.11)
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(that is the value Vj(z
′) should be computed ”close enough” to the place

where Vi(z) will be computed, so that it can arrive from PE with index
pVj

(z′) to PE with index pVi
(z) in tVi

(z)− tVj
(z′) time steps).

Strong conditions:
We define the data-flow direction for each variable Vi.

Definition 3.6. (Data-Flow Direction)
In the case of the variable Vi, if in the equation of the form (3.1) that com-
putes Vi(z), there is one and only one occurrence of variable Vi on the rhs of
the equation, such that Vi(z) depends on Vi(z−θVi

), then we obtain the data-
flow direction of variable Vi, denoted DirVi

by applying the linear time-space
transformation (T, P ) onto the dependence θVi

:

DirVi
= (T ∗ θVi

, P ∗ θVi
),

where the component T ∗θVi
indicates the ”velocity” of Vi and the component

P ∗ θVi
shows the ”direction” along which Vi will be transmitted.

For each dependence Vi(z)← Vj(z
′) of an equation of the form (3.1) such

that Vi 6= Vj, the following should hold:

‖pVi
(z)− pVj

(z′)‖ =

⌊
tVi

(z)− tVj
(z′)

T ∗ θVj

⌋
P ∗ θVj

(3.12)

3.4 Performing the Time-Space Transforma-

tion

Given the timing function tVi
and the allocation function pVi

for each variable
of the SURE, we apply these functions onto the system, performing a so
called ”time-space transformation” (that means a transformation performed
on the index space of the system). As a result we get an equivalent system
in which the first index of the domain can be interpreted as the time index
(representing the time instant when a certain computation takes place) and
the other indices are the space indices, denoting the number of the PE where
a certain computation takes place.

A computation Vi(z), z ∈ D will take place at the time instant t = tVi
(z)

at the PE with number p = pVi
(z). We denote the computation in the

transformed SURE corresponding to Vi(z) with Vi(t, p). The time-space
transformation corresponding to variable Vi is TrVi

: D → D, such that
∀z ∈ D, TrVi

(z) = (tVi
(z), pVi

(z)).
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There exists the inverse function Tr−1
Vi

: D → D, such that ∀(t, p) ∈
D, the computation Vi(t, p) of the transformed SURE corresponds to the
computation Vi(Tr−1(t, p)) from the original system.

The time-space transformation is performed in the following way:

• In all equations of the form (3.1):

– we replace Vi(z) on the lhs of the equation with Vi(t, p), and

– for each dependence Vi(z)← Vj(z − θ):
we replace Vj(z− θ) by Vj(tVj

(Tr−1
Vi

(t, p)− θ), pVj
(Tr−1

Vi
(t, p)− θ)).

On the following scheme the arrows depict how the correspondencies
between computations of the original, respectively the transformed
SURE are found:

n.: Vi(t, p) dep. on Vj(tVj
(Tr−1

Vi
(t, p)− θ), pVj

(Tr−1
Vi

(t, p)− θ))
↓ ↑

o.: Vi(Tr−1
Vi

(t, p)) dep. on Vj(Tr−1
Vi

(t, p)− θ)

where ”o.” stands for the original and ”n.” for the new dependency.

3.5 Polynomial Multiplication - Case Study

In this section we present a detailed case study which describes the design
process of a systolic array for polynomial multiplication. The problem is a
relatively simple one, however the array that we obtain is not trivial. The
choice for this particular problem becomes even more interesting because it is
revisited is Sect. 5.6.4 where an online array is generated with our functional–
based method. Thus the problem presented reveals the differences, advan-
tages and disadvantages of the two design methods.

Specification:

Let A and B two univariate polynomials of degree n−1 and m−1 respectively:

A = a0 + a1 ∗ x + a2 ∗ x2 + . . . + an−1 ∗ xn−1

B = b0 + b1 ∗ x + b2 ∗ x2 + . . . + bm−1 ∗ xm−1

We denote the product of A and B with C (polynomial of degree n+m−1),

C = A ∗B = c0 + c1 ∗ x + c2 ∗ x2 + . . . + cm+n−2 ∗ xn+m−2,
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where

ck =
∑

i+j=k ai ∗ bj, ∀k, 0 ≤ k ≤ m + n− 2; 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1
(3.13)

We would prefer a recursive description of the coefficients of C rather
than that given in equation (3.13). One possibility is to use the following
notation (where Ai stands for ai if 0 ≤ i ≤ n− 1, otherwise it is 0. Similarly
Bj = bj if 0 ≤ j ≤ m− 1, and 0 otherwise.):

A∗B = A0 ∗B0︸ ︷︷ ︸
C0,0

+(A0 ∗B1 + A1 ∗B0︸ ︷︷ ︸
C0,1

)∗x+(A0 ∗B2 +

C1,1︷ ︸︸ ︷
A1 ∗B1 +A2 ∗B0︸ ︷︷ ︸

C0,2

)∗x2+

+ (A0 ∗B3 +

C1,2︷ ︸︸ ︷
A1 ∗B2 + A2 ∗B1 +A3 ∗B0︸ ︷︷ ︸

C0,3

) ∗ x3 + . . .

Generally:
∀i, j : 0 ≤ i ≤ j; i + j ≤ m + n− 2

Ci,j =


Ai ∗Bi , i = j
Ai ∗Bj + Aj ∗Bi , j = i + 1
Ai ∗Bj + Aj ∗Bi + Ci+1,j−1 , j > i + 1

(3.14)

The result: ck = C0,k, ∀k, 0 ≤ k ≤ m + n− 2.

3.5.1 Uniformisation of the Recurrence Equation

In equation (3.14) Ai is needed in the computation of Ci,j for all values of j,
i ≤ j ≤ m + n − 2 − i this means a broadcast of Ai (to . . . ). Similarly Aj

is needed in the computation of Ci,j, ∀i, 0 ≤ i ≤ m + n− 2− j. A common
method to eliminate broadcast is to pipeline the given value through the
nodes where it is needed (see [QD89]). Thus we replace Ai with a new variable
A1i,i, and pipeline it in the direction (i, j) → (i, j + 1). Aj will be replaced
by the variable A20,j and pipelined through the direction (i, j) → (i + 1, j).
Bi and Bj will be replaced in the same way with B1 and B2 respectively.
We obtain the following uniform recurrence equation:

∀i, j : 0 ≤ i ≤ j; i + j ≤ m + n− 2
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A2i,j ∗B2i,j , j = i (3.15)

A1i,j ∗B2i,j + A2i,j ∗B1i,j , j = i + 1 (3.16)Ci,j =


A1i,j ∗B2i,j + A2i,j ∗B1i,j + Ci+1,j−1 , j > i + 1 (3.17)

Ai , j = i (3.18)
A1i,j =

{
A1i,j−1 , j > i (3.19)

Bi , j = i (3.20)
B1i,j =

{
B1i,j−1 , j > i (3.21)

Aj , i = 0 (3.22)
A2i,j =

{
A2i−1,j , i > 0 (3.23)

Bj , i = 0 (3.24)
B2i,j =

{
B2i−1,j , i > 0 (3.25)

Note that equations (3.18), (3.20), (3.22), (3.24) are input equations of
the form (3.2).

Now the input Ai appears in input equation (3.18) and (3.22), too. Bi

also appears in two input equation. This would mean that we have to input
the coefficients of the polynomials A and B twice.

This can be avoided by changing input equation (3.18) with

A1i,j = A2i,j , j = i (3.26)

In the same way we replace (3.20) by:

B1i,j = B2i,j , j = i (3.27)

Table 3.1. shows the dependencies of the SURE.
Note that the dependencies for A1 and B1 respectively A2 and B2 are

the same, so in the following we will only reason about A1 and A2, B1
respectively B2 can be handled in the same way.

3.5.2 Finding an Adequate Timing Function

According to the method presented in [Fea92] we are looking for affine timing
functions with the same linear part for each variable V of the SURE (3.15)-
(3.25) of the form tV = x ∗ i + y ∗ j + zV .

For each dependence of Table 3.1 of the form Vi(z) ← Vj(z
′) we are

writing the dependency constraint of the form (3.5). We get the following
inequalities:
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Equation lhs rhs Dependence vector

(3.17) Ci,j Ci+1,j−1 (−1, 1)
(3.19) A1i,j A1i,j−1 (0, 1)
(3.21) B1i,j B1i,j−1 (0, 1)
(3.23) A2i,j A2i−1,j (1, 0)
(3.25) B2i,j B2i−1,j (1, 0)
(3.17) Ci,j A1i,j, A2i,j, B1i,j, B2i,j (0, 0)
(3.26) A1i,j A2i,j (0, 0)
(3.27) B1i,j B2i,j (0, 0)

Table 3.1: Dependence vectors

Ci,j ← A1i,j ⇒ tC(i, j) > tA1(i, j)
Ci,j ← A2i,j ⇒ tC(i, j) > tA2(i, j)
Ci,j ← Ci+1,j−1 ⇒ tC(i, j) > tC(i + 1, j − 1)
A1i,j ← A1i,j−1 ⇒ tA1(i, j) > tA1(i, j − 1)
A2i,j ← A2i−1,j ⇒ tA2(i, j) > tA2(i− 1, j)
A1i,j ← A2i,j ⇒ tA1(i, j) > tA2(i, j)

(3.28)

From the conditions marked with (3.28) and the computation time min-
imisation condition we get the following system of inequalities:

zc > zA1

zc > zA2

y − x > 0
y > 0
x > 0
zA1 > zA2

x + y + zC + zA1 + zA2 → minimal

(3.29)

We also need the constraint that the time function is positive on the
domain. Then from (3.29) we get the solution:

x = 1
y = 2
zA2 = 0
zA1 = 1
zC = 2

The time functions are the following:
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tC(i, j) = i + 2j + 2
tA1(i, j) = tB1(i, j) = i + 2j + 1
tA2(i, j) = tB2(i, j) = i + 2j

(3.30)

The common linear part of the time functions is T = (1, 2).

3.5.3 Possible Allocation Functions

Given the timing functions found in section 3.5.2, we are looking for affine
allocation functions with the same linear part for each variable V of the
SURE (3.15)-(3.25) of the form pV = α ∗ i + β ∗ j + γV . The common linear
part of the allocation functions is P = (α, β).

The general constraint of the form (3.10) is in our case (α, β) 6= c ∗ (1, 2),
that is

α

β
6= 1

2
(3.31)

In Table 3.1. one can look for the dependence vector corresponding to a
certain variable. That is (−1, 1), (0, 1) and (1, 0) for variables C, A1 and A2
respectively.

For a variable V and a corresponding dependence vector θV , according to
definition (3.6) the dataflow-direction is

(T ∗ θV , P ∗ θV ) = ((1, 2) ∗ θV , (α, β) ∗ θV ) .

The weak conditions (only for dependencies of the form V (z) ← V (z′))
are:

Ci,j ← Ci+1,j−1 ⇒ |pC(i, j) > pC(i + 1, j − 1)| ≤ tC(i, j)− tC(i + 1, j − 1)
A1i,j ← A1i,j−1 ⇒ |pA1(i, j)− pA1(i, j − 1)| ≤ tA1(i, j)− tA1(i, j − 1)
A2i,j ← A2i−1,j ⇒ |pA2(i, j)− pA2(i− 1, j)| ≤ tA2(i, j)− tA2(i− 1, j)

(3.32)
The strong conditions are:

Ci,j ← A1i,j ⇒ pC(i, j)− pA1(i, j) =
⌊

1
2
(tC(i, j)− tA1(i, j))

⌋
β

Ci,j ← A2i,j ⇒ pC(i, j)− pA2(i, j) = (tC(i, j)− tA2(i, j))α

A1i,j ← A2i,j ⇒ pA1(i, j)− pA2(i, j) = (tA1(i, j)− tA2(i, j))α
(3.33)

From (3.32) we get: 
|β − α| ≤ 1
|β| ≤ 2
|α| ≤ 1

(3.34)
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From (3.33) we get: 
γC − γA1 = 0
γC − γA2 = α
γA1 − γA2 = α

(3.35)

From the conditions (3.31) and (3.34) we get the set of solutions for α
and β:

(α, β) ∈ {(−1,−1), (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0), (1, 1)} (3.36)

In (3.36) the first and the last three solutions are symmetric and the solution

(α, β) = (0, 0) can be excluded because the transformation matrix

(
T
P

)
would be then singular (that means that it would transform some points of
D lying on a line into a single point, which is not admitted). Thus we have
only three different results:

P ∈ {(0, 1), (1, 0), (1, 1)} (3.37)

From (3.37) and (3.35) we get three different solutions for adequate allo-
cation functions corresponding to the given timing functions:

pC(i, j) = pA1(i, j) = pB1(i, j) = pA2(i, j) = pB2(i, j) = j (3.38)

{
pC(i, j) = pA1(i, j) = pB1(i, j) = i
pA2(i, j) = pB2(i, j) = i− 1

(3.39)

{
pC(i, j) = pA1(i, j) = pB1(i, j) = i + j
pA2(i, j) = pB2(i, j) = i + j − 1

(3.40)

3.5.4 Mappings to Different Systolic Arrays

We apply the time-space transformation onto the SURE (3.15)-(3.25) ac-
cording to the timing functions from (3.30) and allocation functions from
(3.39). That is:

tC(i, j) = i + 2j + 2 pC(i, j) = i
tA1(i, j) = tB1(i, j) = i + 2j + 1 pA1(i, j) = pB1(i, j) = i
tA2(i, j) = tB2(i, j) = i + 2j pA2(i, j) = pB2(i, j) = i− 1
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We have chosen this transformation because this is the one the application
of which results in an online array.

The transformed SURE:

∀t, p : p ≥ 0; 3p + 2 ≤ t ≤ −p + 2(m + n)− 2;
t− p

2
∈ Z

A2t−2,p−1 ∗B2t−2,p−1 , t = 3p + 2

(3.41)

A1t−1,p ∗B2t−2,p−1 + A2t−2,p−1 ∗B1t−1,p , t = 3p + 4
(3.42)Ct,p =


A1t−1,p ∗B2t−2,p−1 + A2t−2,p−1 ∗B1t−1,p + Ct−1,p+1 , t > 3p + 4

(3.43)

A2t−1,p−1 , t = 3p + 2
(3.44)

A1t,p =

{
A1t−2,p , t > 3p + 2

(3.45)

B2t−1,p−1 , t = 3p + 2
(3.46)

B1t,p =

{
B1t−2,p , t > 3p + 2

(3.47)

A t
2

, p = 0

(3.48)
A2t,p =

{
A2t−1,p−1 , p > 0

(3.49)

B t
2

, p = 0

(3.50)
B2t,p =

{
B2t−1,p−1 , p > 0

(3.51)

Note that this transformation is not unimodular, for this reason the do-
main of the system (3.41)-(3.51) is sparse (see the (t− p)/2 ∈ Z condition).
The resulted array can be optimised: by merging two neighbouring PEs we
get the online array presented in Sect. 5.6.4.
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3.5.5 Other Solutions to the Problem

The form of the SURE used as starting point has a considerable impact on
the result of the design. If we have started from the algorithm

cj = 0, ∀j, 0 ≤ j≤ m + n− 2
for i = 0 to n− 1

for j = i to i + m− 1
cj = cj + ai ∗ bj−i

then the SURE for the same problem could have been formulated in the form
of (3.52)-(3.5.5), too. There are well known uniformisation techniques (see
[QD89]) to deduce the SURE from the given algorithm, but unfortunately
they cannot be applied in a fully automatic way. Therefore we consider the
system (3.52)-(3.5.5) as starting point to the design process.

Equations: 
Ci,j = Ci−1,j + Bi−1,j−1Ai,j−1

Bi,j = Bi−1,j−1

Ai,j = Ai,j−1

(3.52)

where 0 ≤ i ≤ n− 1, i ≤ j ≤ i + m− 1

Input equations:
B−1,i = bi+1, −1 ≤ i ≤ m− 2
C−1,i = 0, 0 ≤ i ≤ m− 1
Ci−1,i+m−1 = 0, 1 ≤ i ≤ n− 1
Ai,i−1 = ai, 0 ≤ i ≤ n− 1

(3.53)

The results are considered to be the values of the following variables:

ci =

{
Ci,i, 0 ≤ i ≤ n− 2
Cn−1,i, n− 1 ≤ i ≤ n + m− 2

Figure 3.1 presents the dependence graph associated to the SURE (3.52)-
(3.5.5), when n = 3, m = 4.

Each of the points of the domain D = {(i, j)|0 ≤ i ≤ 2, i ≤ j ≤ i + 3}
corresponds to a computation, while the arrays represent the data depen-
dencies. The placement of the input values can also be read from the figure,
however this was determined after the computation of the timing function.

The small dots between the points (i, j), (i + 1, j + 1) of the domain D
indicate a delay, that is the b values need two time steps to move from point
(i, j) to (i + 1, j + 1).
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Equation lhs rhs Dependence vector

(3.17) Ci,j Ci+1,j−1 (−1, 1)
(3.19) A1i,j A1i,j−1 (0, 1)
(3.21) B1i,j B1i,j−1 (0, 1)
(3.23) A2i,j A2i−1,j (1, 0)
(3.25) B2i,j B2i−1,j (1, 0)

Table 3.2: Dependence vectors
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Figure 3.1: Dependence Graph for Polynomial Multiplication n = 3, m = 4
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Now we have the dependencies shown in Table 3.5.5
If under the assumption of the positivity and dependency constraints we

would like to minimise the computation time, we get the time function

t(i, j) = i + j .

We do not give the details of the computations in the description of this
particular case, they were performed in the way described in [Fea92].

The general constraint that the allocation function has to satisfy is that
its linear part P can not be parallel with the direction T corresponding to
the time function (in our case T = (1, 1)).

For the given time function we get the following allocation functions that
satisfy the needed conditions and in addition the each transformation that
we obtain is unimodular:

p(i, j) = j − i
p(i, j) = i
p(i, j) = j

Choosing the allocation function p(i, j) = j− i, after applying the space-
time transformation we get the linear systolic array shown on Fig. 3.2.

- - - - -
� � � � �

b0 b1 b2 b3..
. . . .

a0a1a2

c0 c1 c2 c3 c4 c5

Figure 3.2: Systolic array for polynomial multiplication (the allocation func-
tion p(i, j) = j − i was used)

With the allocation function p(i, j) = i we get the systolic array from
Fig. 3.3, while with p(i, j) = j the array from Fig. 3.4 is obtained. The
placement of the inputs is also depicted on the figures. In case of Fig. 3.3
the structure of the array respectively the transition function is also shown.

The data flow in the arrays of Fig. 3.3 and Fig 3.4 is unidirectional. In
the case of the array of Fig. 3.3 the elements of the result appear after n time
steps (where n is the number of PEs) as the output of the PE on the right
edge of the array, while in the case of the array from Fig. 3.4 the results are
computed in the local memories of the PEs.

The systolic array depicted on Fig. 3.2 is bidirectional, but the PEs work
alternately and they only perform useful computation at each second time
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a)

- -
- -

cI cQ

bI bQ

a
db

b) Computations:

cQ = cI + a ∗ bI

bQ = db
db = bI

c)

- - - -
- - - -a0 a1 a2. . .b0b1b2b3

c0c1c2c3c4c5

Figure 3.3: Unidirectional systolic array for polynomial multiplication (the
allocation function p(i, j) = i was used for the projection) a) structure of a
PE, b) transition function, c) structure of the array and placement of the
input values

- - - - - - -
- - - - - - -

c0 c1 c2 c3 c4 c5

. . . . . .b0

b1 b2
b3

a0a1a2

Figure 3.4: Systolic array for polynomial multiplication (the allocation func-
tion p(i, j) = j was used)
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step. There are some well-known techniques to transform such arrays into a
more efficient one. Some ideas are presented in Sect. 5.5.4.



Chapter 4

Mapping Systolic Arrays onto
Fixed Size Architectures

Various attempts have been made to overcome the drawbacks of the space-
time transformation method.

We have chosen to present in this chapter an alternative method, that
starts from an input of the same form as in the case of the space-time trans-
formation methodology (recurrence equations), but the scheduling of the
computations is obtained in a much simpler way.

This method is based on the ideas presented in [KRS95], [KRS96] that
simplify the tedious task of finding an adequate timing function. The com-
putations are represented by the nodes of a directed graph and the time
function is given by the level of the nodes in the modified dependence graph
after some empty nodes were introduces according to an algorithm based on
rewrite rules, presented in [KRS94].

However, the price for the simplicity is that the size of the problem hs
to be fixed in advance, thus the method does not work for parametrised
problems.

Again, the method is exemplified with a significative case study: a linear
systolic array is generated for the problem of sequences alignment.

47
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4.1 Introduction

A significative disadvantage of the space-time transformation method is that
it heavily depends on finding an affine timing function. The problem with
finding such a timing function is that one needs to solve a system of linear
recurrence equations (see the description form Sect. 3.2), which is generally
a tedious and difficult task.

In this section we present an alternative method based on the ideas pro-
posed in [KRS95], [KRS96], which solves the problem of scheduling without
the need for solving a system of linear equations. Moreover, this method
is not restricted to affine timing functions, but as it is shown, the size of
the problem has to be fixed in advance, thus it cannot handle parametrised
problems.

The method of Kazerouni, Rajan and Shyamasundar is extended to work
with Directed Linear Recurrence Equations (DREs), a subclass of linear re-
currence equations which properly includes the class off UREs, however in
this presentation we will restrict ourselves to problems that can be expressed
as UREs of the form (3.1)-(3.2) (see Def 3.1).

The main ideas used in the method presented hereafter are the following:

• It starts from the graphical abstraction of the recurrence equation, the
dependence graph (DG) (see Def. 3.3). The edges of the DG are labelled
and the input variables are also considered. To avoid confusion, we
call this structure Computation Graph (CG). The Θ set of dependence
vectors (see Def 3.2) is determined and each variablename is associated
to the corresponding dependence vector.

• The set of data-flow channels is identified, that is the set of maximal
directed paths of the labelled DG, starting with a node from the input
domain Dinp and labelled with the same label.

• The labelled dependence graph is transformed into a so called Modified
Dependence Graph (MDG) by simple, semantics-preserving rules. The
level of the nodes in the MDG yields the timing function.

• The General Systolic Architecture (GSA) is determined by associating
coordinates to the nodes.

• Finally, a projection scheme is chosen, which maps the GSA onto a
given systolic architecture.

The method is exemplified with an interesting case-study. We describe
the design steps of a bidirectional systolic array for sequences comparison.
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The method is simple, thus its implementation is also much easier than that
of the space-time transformation method. Unfortunately the method also
has a major shortcoming: the price for the mentioned advantages is that the
size of the problem has to be fixed in advance, thus it can not be applied to
parametrised problems.
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4.2 Steps of the Design Algorithm

We present in this section the details of the algorithm, step by step.

1st Step (Determination of the labelled DG and the dependencies)

• We determine the Θ set of dependence vectors of the system (3.1)-(3.2)
and associate each variable name Vk with the corresponding dependence θVk

(this is possible if in the computation of Vk the same variablename does not
appear twice on the rhs. of the equation).

Formally:
Θ′ = {(Vk, θVk

)|Vk ∈ V, θVk
∈ Θ}

• We construct the Computation Graph (CG), where the nodes are indices
of D

⋃
Dinp, the edges indicate the dependencies and the edges are labelled.

Definition 4.1. (Computation Graph – CG)
The computation graph of a SURE is a directed graph CG = G(N, E ′),
where
N = {z|z ∈ D

⋃
Dinp} is the set of nodes, and

E ′ = {(z′, z, Vk)| ∃(Vk, θVk
) ∈ Θ′ ∧ z′ = z − θVk

} is the set of directed edges
labelled with the variable name Vk.

Note: The dependence vector associated with a variable name X will
indicate the direction of the X data-flow through the array.

2nd Step (Data-Flow Channels)

• We determine the set of Data-Flow Channels (DFC), where each data-
flow channel is a maximal directed path of the CG starting with a node from
the input domain Dinp and labelled with the same label. The set DFC is
determined using the following algorithm:

DFC=Ø

for all pairs (zj
i , Vk), where (zj

i ∈ Dinp) ∧ (Vk ∈ V )

if ∃ a path in CG starting with node zj
i and labelled with Vk, then

let newc be the path of maximal length.
DFC = DFC

⋃
{newc}

Note:
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- We represent a channel as an ordered list of pairs consisting of nodes,
associated with the variable name corresponding to the label of the
edges of the path, that is, a channel is represented as a succession of
pairs of the form (Vk, z).

- We assumed that in the computation of Vk the same variable does not
appear more than once on the rhs. of the equation, which assures
that there could not be more then one edges starting from a node and
labelled with the same label.

3rd Step (Determine the GSA)

In this step the CG is transformed into the so called General Systolic Archi-
tecture (GSA). At first the following transformations are performed, in order
to find an adequate scheduling for the problem:

• We insert empty nodes into the channels in order to have all the nodes
with the same indices on the same level (we consider that the first node of a
channel has level 0).

Apply the following rule successively beginning with the nodes of the
data-flow channels in DFC at the first level until MaxDepht(DFC):
if (nc is a node in channel c of DFC) ∧ (n′c′ is a node in channel c′) ∧

(Level(nc) > Level(n′c′)) then
insert empty node into the channel c′ at level Level(nc).

Note: This modified structure yields the timing function, that is, the level of
a node z in a channel with edges labelled with Vk indicates the time instant
when the computation of the variable Vk(z) takes place. Thus the timing
function is actually not computed explicitly.

The termination of the algorithm is proven in [KRS96]. Also note that
maximal depth of the DFG has to be known, which means that the size of
the problem has to be fixed in advance.

• Afterwards we determine the General Systolic Architecture (GSA) by as-
sociating coordinates with the nodes of the channels of DFC according to
the following rules:

- If z is a node of the domain D (we call it ”real node”), then:
replace it with the pair (z, z)
(that is, a real node is associated with coordinates corresponding to the
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index itself)
- empty nodes between two real nodes:

will be interpreted as a delay of one time instant for each of them, so
they all will be mapped onto the real node preceding them and will
be associated with its coordinate.
(Note that the delay of a data can be modelled by using memory
variables: output = memvar; memvar = f(input))

- Coordinates corresponding to the input nodes and
the empty nodes between an input node and a real one of a channel
labelled with Vk:

are calculated by subtracting θVk
from the coordinate of the node

following it

Let D∗ be the set of coordinates of the GSA.

Note that the SURE and the GSA are computationally equivalent (see the
argumentation of [KRS96]).

4th Step (Projection)

The last step is the projection of the GSA onto a systolic architecture.

• We choose a projection scheme for the GSA. A projection scheme, that is
a ’projection along an axis’ or ‘translation along an axis’ is defined as follows:

Definition 4.2. (Projection Scheme)[KRS96]

1. Projection along an axis.
For any point q = (x1, . . . , xn) ∈ D∗ the projection along the xi axis is
defined as follows:
pr : (x1, . . . , xn) 7→ (x′1, . . . , x

′
n−1) such that

(∀ 1 ≤ j < i, x′j = xj) ∧ (∀i ≤ j < n, x′j = xj+1)

2. Translation along an axis.
For any point q = (x1, . . . , xn) ∈ D∗ we define the translation along
the xi axis by
tr : (x1, . . . , xn) 7→ (x′1, . . . , x

′
n) such that

(∀ 1 ≤ j < i, x′j = xj) ∧ (∀i < j ≤ n, x′j = xj) ∧ (x′i = xi ± xk)∧
(1 ≤ k ≤ n) ∧ (k 6= i) .

The chosen projection scheme maps the coordinates of the GSA to co-
ordinates of the processing elements (PE) of a systolic architecture, and it
should satisfy the following condition:
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- There should be not two distinct variables computed at the same time
instant that are mapped onto the same PE.

Note that this last step of the algorithm, namely the choice for the pro-
jection scheme is not automatic.
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4.3 The Problem of Sequences Comparison -

Case Study

In this section we apply the method described in Sect. 4.2 for the problem of
optimal alignment of two sequences [NW70], which appears to be particularly
interesting for problems in computational biology. We presented this case
study in [SC03].

The problem of similarity determination arises in comparing two se-
quences while allowing certain mismatches between them.

In order to get the similarity between two sequences, we firstly have to
align them.

Given two sequences (e.g. DNA), the problem consists in finding the ’best’
alignment between them. The problem is largely presented in the literature
(according to [AFM03]). The most algorithms used are based on dynamic
programming.

The problem is to make the sequences to be of the same size, inserting
gaps. The best alignment is one that maximises some scoring function. For
instance, we will score +1 for each match, −1 for each mismatch and −2 for
each gap.

Example:

G A − C G G A T T A G A A
G A T C G G A A T A G − −
1 1 −2 1 1 1 1 −1 1 1 1 −2 2

Total score: 1 + 1− 2 + 1 + 1 + 1 + 1− 1 + 1 + 1 + 1− 2− 2 = 2.

The basic algorithm

Let s = s1s2 . . . sm and t = t1t2 . . . tn be the two sequences. The matrix
A(m× n) will contain the items of s along the rows and the items of t along
the columns, and each entry A(i, j) corresponds to the optimal alignment of
the ith prefix of s with the jth prefix of t.

A(i, j) = max


A(i− 1, j)− 2 align s(i) with a gap
A(i, j − 1)− 2 align t(j) with a gap
A(i− 1, j − 1)± 1 align s(i) with t(j),

+1 for a match,
−1 for a mismatch.

(4.1)



CHAPTER 4. MAPPING SYSTOLIC ARRAYS ONTO FIXED SIZE ARCHITECTURES55

Note: The value A(i, 0) stands for aligning the ith prefix of s with the 0th

prefix of t. The optimal score is −2. Analogous, A(0, j) stands for aligning
the 0th prefix of s with the jth prefix of t. The optimal score is also -2.

In Fig. 4.1 we indicate the matrix A for scoring alignments of s = AACG
and t = AGG.

GA

A

A

C

G

−

− G

0 −6

−2 1 −3

−4 −1 0 −2

−6 −3 −1

t

s

−8 −5 −2 −1

−2

−2

−1

−4

Figure 4.1: Matrix A for scoring alignments of s = AACG and t = AGG

The best alignment is given by A(m,n), and we want to know which one
is that. In our example, A(4, 3) gives −1, which is the score for the best
alignments. The arrows in Fig. 4.1 show from which entry in the matrix we
derive the maximum score for a given entry.

In this particular case we have three optimal alignments for s and t. These
are:

−AGG A−GG AG−G
AACG AACG AACG
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4.3.1 Generating the Systolic Solutions for the
Sequences Alignment Problem

In order to obtain the SURE for the algorithm (4.1) we need to rename some
variables, respectively to normalise the equation system (all variables should
have an index set of the same dimension).

After the changes, the SURE corresponding to the basic algorithm (4.1)
has the following form (for the sake of simplicity we use the notation Xi,j

rather than X((i, j)), where X is a variable name and (i, j) an index from
the domain of the SURE):

Ai,j = f1(Ai−1,j − 2, Bi,j−1 − 2, f2(Si,j−1, Ti−1,j) + Ci−1,j−1) (4.2)

Bi,j = f1(Ai−1,j − 2, Bi,j−1 − 2, f2(Si,j−1, Ti−1,j) + Ci−1,j−1) (4.3)

Ci,j = f1(Ai−1,j − 2, Bi,j−1 − 2, f2(Si,j−1, Ti−1,j) + Ci−1,j−1) (4.4)

Si,j = Si,j−1 (4.5)

Ti,j = Ti−1,j (4.6)

i = 1, m, j = 1, n,

where f1(a, b, c) = Max(a, b, c), and f2(x, y) =

{
1 , if x = y
−1 , if x 6= y

The input equations are the following:

A0,j = −2j, j = 1, n (4.7)

Bi,0 = −2i, i = 1, m (4.8)

C0,0 = 0 (4.9)

Ci,0 = −2i, i = 1, m− 1 (4.10)

C0,j = −2j, j = 1, n− 1 (4.11)

Si,0 = si, i = 1, m (4.12)

T0,j = tj, j = 1, n (4.13)

• We apply the 1st step of the algorithm and we get three distinct de-
pendence vectors: (1, 0) = (i, j) − (i − 1, j), (0, 1) = (i, j) − (i, j − 1) and
(1, 1) = (i, j)− (i− 1, j− 1). After associating them with the variable names
we get:

Θ′ = {(A, (1, 0)), (B, (0, 1)), (C, (1, 1)), (S, (0, 1)), (T, (1, 0))}
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• In the 2nd step we determine the data-flow channels. From the input
equations (4.7)-(4.13) we get 3(m+n)− 1 input variables serving as starting
nodes for the data-flow channels. (In the example presented in subsection 4.3
m = 4 and n = 3.)

For example the path starting with node (0, 2) and labelled with the
variable name C determines the channel
{(C, (0, 2)), (C, (1, 3))} ,
while the path starting with node (1, 0) and labelled with B leads to channel
{(B, (1, 0)), (B, (1, 1)), (B, (1, 2)), (B, (1, 3))}.
Note that the difference between the indices of two adjacent elements in the
channel is exactly the dependence vector corresponding to the given variable
name (see Θ′ determined in the 1st step), (0, 1) in case of variable name B.

Other two channels that we will use as example in the presentation of the
following steps are
{(B, (2, 0)), (B, (2, 1)), (B, (2, 2)), (B, (2, 3))} and
{(C, (0, 1)), (C, (1, 2)), (C, (2, 3))}.
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Figure 4.2: Bidimensional systolic array for sequences alignment
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• We apply the rule corresponding to the 3rd step of the algorithm succes-
sively beginning with the nodes of the channels on the first level.

In the channel starting with (C, (0, 2)) the node (1, 3) is at the first level,
while in the channel starting with (B, (1, 0)) it is on level 3. After the appli-
cation of the rule twice to the corresponding channel we get
{(C, (0, 2)), (empty), (empty), (C, (1, 3))}.

The channel with head (B, (1, 0)) will remain unchanged, while the other
two channels taken as example will be
{(B, (2, 0)), (empty), (B, (2, 1)), (B, (2, 2)), (B, (2, 3))} and
{(C, (0, 1)), (empty), (C, (1, 2)), (empty), (C, (2, 3))}.

Now the GSA is determined simply by associating coordinates to the
elements of the channels according to the described rules.
Note that in our example in channel with head (C, (0, 1)) we have an empty
node between the two real nodes (C, (1, 2)) and (C, (2, 3)). This will be
interpreted as a delay of one time instant of the data corresponding to variable
name C and moving in direction (1, 1). The coordinate of a real node remains
the corresponding index itself, while the coordinates for the other elements
are calculated with the help of the dependence vectors associated to the
corresponding variable names.

We can see the graphical representation of the GSA obtained as result
of this step in Fig. 4.2. As the dimension of the URE system was 2 the ob-
tained GSA can already be interpreted as a working two dimensional systolic
architecture without applying any projection scheme from the 4th step.

The computations that take place at each PE in one time instant are
deduced from the equations (4.2)-(4.6). The delay element which appears in
the channels associated with the variable name C will be modelled by the
introduction of a memory variable, as shown in Fig. 4.3. a).

αi, βi, γi, δi, εi are inputs to the PE corresponding to variable names
A, B, C, S respectively T .

Concerning the result, we get the score for the best alignment given by
A(m, n) (which corresponds in our systolic array to any of Am,n, Bm,n or
Cm,n) at PEm,n at time instant m + n− 1, but actually we are interested not
only in getting this final score: in order to reconstruct the best alignment(s)
of the two sequences we need the data from the table in Fig. 4.1. More exactly
we only need to know the position of the arrows that show from which entry
in the matrix we derive the maximum score for a given entry.

We observe that the C values move with a delay of one time instant
relative to the other values, which means that the variable Ci,j is computed
at a certain time instant t, but it is sent to the neighbouring PEi+1,j+1 only
at time instant t + 2. We can send the result in the direction (1, 1) of the
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Computations:
αo = f1(αi − 2, βi − 2, f2(δi, εi) + γi)
βo = f1(αi − 2, βi − 2, f2(δi, εi) + γi)
γo = mold

δo = δi

εo = εi

mnew = f1(αi − 2, βi − 2, f2(δi, εi) + γi)
ζo = f3(αi, βi, γi, δi, εi, ζi)

Figure 4.3: Bidimensional systolic structure for the problem of sequences
alignment. Computations of a PE.

main diagonals on a new communication channel as shown in Fig. 4.3. b),
where the function that computes the result is given by

f3(a, b, c, x, y, z) =

{
z , if a = Null

IndLstOfMax(a− 2, b− 2, f2(x, y) + c) , if a 6= Null

The function IndLstOfMax(x1, x2, x3) returns a list of indices of the max-
imal elements of the ordered list {x1, x2, x3}
(e. g. IndLstOfMax(4, 6, 9) = {3}, IndLstOfMax(4, 9, 9) = {2, 3}).
We will get the results through the processing elements PEm,j, j = 1, n and
PEi,n, i = 1, m− 1 in the order illustrated in Fig. 4.4. a), so that after m+n
steps we get the results for all the entries of the matrix. We have associated
to each entry a subset of {1, 2, 3} that shows from which neighbouring entry
(or entries) we derive the maximum score (see Fig. 4.4. b)). The direction
denoted by 1 should be interpreted as ”align s(i) with a gap”, 2 means ”align
t(j) with a gap”, while 3 stands for ”align s(i) with t(j)”.

We also observe that at a given time instant only the PEs from one
secondary diagonal of the array are performing computations. In this case
we can improve the efficiency of the array by using it for the computation of
the best alignment for more sequences one after the other.
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Figure 4.4: Getting the result for the sequences alignment problem

• Finally, we can also apply the 4th step of the design algorithm choosing as
projection scheme the translation along the j-axis followed by the projection
along the i-axis: prscheme : (i, j) 7→ j − i. This projection leads to a linear
systolic architecture with m+n−1 processing elements, indexed with 1−m,
2−m, . . . , n− 1 (see indices above the PEs in Fig. 4.5.).

Figure 4.5. illustrates the structure of the array, respectively the place-
ment of the input data at the beginning (note: ’∗’ stands for the place of the
C values written under the PEs).

The elements of the chains labelled with the variable C are all mapped
onto the same PE (as prscheme(i, j) = prscheme(i + 1, j + 1) = j − i), thus
the communication is replaced by a simple memory assignment.
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−3 −2 −1 0 1 2

∗ ∗ ∗ ∗ ∗ ∗

Figure 4.5: Linear systolic array for sequences alignment

Figure 4.6. a) shows the computations performed in a PE. Note that
instead of γi and γo (as in the case of the bidimensional array) we have m2,
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i.e. the C values will be evaluated in the local memories of the PEs of the
array.
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m2new = m1old

δo = δi

εo = εi

m1new = f1(αi − 2, βi − 2, f2(δi, εi) + m2old)

m3new = IndLstOfMax(αi − 2, βi − 2, f2(δi, εi) + m2old)

Figure 4.6: Computations of a PE in the linear array for sequences compar-
ison

Again, if we are interested in the reconstruction of the table from Fig. 4.1.
one more computation is needed, as shown on Fig. 4.6. b).

In comparison with the bidimensional array, where only the PEs from
the secondary diagonal were performing computations at a time instant, here
every second PE is working at each time instant, when the array is loaded.



Chapter 5

Functional-Based Systolic
Array Design

We introduce a functional view (or inductive view) of systolic arrays: a sys-
tolic array is composed of a head processor and an identical tail array of a
smaller size. By exploiting the similarity between the inductive structure of
a systolic array and the inductive decomposition of the argument by a func-
tional program, it is possible to develop an elegant and efficient method for
the automatic synthesis of systolic arrays.

After a detailed presentation of the formal background used, we study
the functioning of different systolic array-types.

By formal analysis, the structure of the functions which can be realised by
arrays having certain properties is identified. Then, by equational rewriting,
the expression of the list function which must be realised is transformed into
an expression having the required structure. The resulting expression reveals
the scalar function which must be implemented by each individual processor.

The utility and efficiency of the design method is demonstrated through
examples and representative case studies.

62
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5.1 Introduction

Most of the systolic array design methods available in the literature (see a
short survey presented in Chap. 2) follow an iterative view of systolic arrays
(and systolic computations): the arrays (and the computations) are repre-
sented as [multidimensional] matrices of a certain size (see the space-time
transformation methodology described in Chap. 3).This leads to complex
operations over the multidimensional index space, and in fact to many rep-
etitions in the synthesis process. Other methods that imply more simple
computations only work for a fixed size (see the design method presented in
Chap. 4).

In this chapter we introduce a functional view (or inductive view): an
infinite systolic array is composed of a head processor and an identical tail
array. Similarly, functional programs for list operations describe how to
compute the head and the tail of the result in function of the head and the
tail of the argument. By exploiting this similarity, we will show that in some
cases the synthesis problem can be solved by [essentially] rewriting of the
functional programs.

5.1.1 Functional View of Systolic Arrays

Informally, a linear systolic array with n processing elements (PEs) can be
seen as a device, that is composed of a head processor (PE0), connected to
a tail-array, which is an identical array of size n− 1, as shown on Fig. 5.1.

Array of size n

- -

� �

-

�

Array of size
n− 1

LRI LRQ

R

RLQ RLI
PE0

Figure 5.1: Informal view of a linear systolic array

The arrows indicate the direction of the data-flow, from left to right (LR)
or from right to left (RL). The letter I stands for input channels, Q indicates
the output channels and R stands for the internal state registers (also called
local memory).
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At each time step the PEs update their internal state (the values of the
output channels, respectively that of the internal registers) in function of the
input, respectively the value of the internal state registers in the previous
time step. The computations performed by a PE are given by the so called
transition function.

The global input is fed step by step into the array through the input chan-
nels of the PEs on the edge, while the result appears at one or more output
channels of the marginal PEs (in some cases the result may be computed in
the internal state registers).

Note that the LRQ output of PE0 is the input of the array of size n− 1,
and the output of this array in right–to–left direction is input to PE0, denoted
RLI.

When all the data advance in the same direction we are talking about
unidirectional arrays. When there are data channels in both (left-to-right
and right-to-left) directions, then the array is a bidirectional array.

In the subsequent sections we will study the behaviour of different types
of linear systolic arrays. In Sect. 5.4 we study the behaviour of arrays with
unidirectional data-flow, while in Sect. 5.5 and Sect. 5.6 we present the arrays
with bidirectional data-flow.

Because the building blocks of systolic arrays are [identical] PEs, in
Sect. 5.3 we start with the presentation of the most simple PE-structure,
and proceed towards more complex ones. We detect the class of functions
that can be realised by a certain type of PE. We will make use of this knowl-
edge in the design process for systolic arrays. In some cases the design of a
systolic array can be reduced to the design of a single PE.

The goal of the formal analysis is to find a recursive description for the
formal process that characterises the functioning of a certain type of array.

This logic can be also used backwards: if we can describe a problem in
such a recursive form, that fits to one (or more) of the recursive descriptions
characterizing a certain type of array, we can easily map the problem to that
type of array.
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5.2 Formal Background

In this section we introduce the notations that we use for the well known
notions of lists, programs, and systolic arrays. We define the class of functions
that are candidate for the transition function of a PE and analyze their
properties.

5.2.1 Scalars and Lists

Both the systolic arrays and the functional programs which we consider act
upon (finite or infinite) lists of fixed-size objects.

• Scalars and scalar types:
A fixed-size object is an object of a scalar type: A scalar type is an
elementary type or a fixed-size tuple of scalar types. An elementary
type (such as a finite set of symbols or a fixed-precision number type)
can have only a finite number of instantiations. A fixed-size object will
be called a scalar.

• Lists and list types:
A list type over a certain scalar type characterises all the tuples (finite
and infinite) of objects of that scalar type. A list is an object of a
certain list type.

We denote the list type over the scalar type st by 〈st〉.

• Length of a list:
The length of a list X is denoted by ‖X‖ and it is ∞ if the list is
infinite.

• List notation:
We denote by Xi the infinite list 〈xi, xi+1, xi+2 . . .〉 (note that i can also
be negative). X stands for X0. Xn,n+m (where n ∈ Z and m ∈ N)
denotes the finite list having m + 1 elements: 〈xn, xn+1, . . . xn+m〉.
We will denote by an the list of n elements all equal to a and by a∞

the infinite constant list with all elements equal to a.

• Head and Tail function:
For any list X = 〈x0, x1, . . . , xn, . . .〉, we denote by H[X] = x0 the head
of it, and by T [X] = 〈x1, . . . , xn, . . .〉 the tail of it.

The kth tail of X: Tk[X] = 〈xk, xk+1, . . . , xn, . . .〉 is obtained by iterat-
ing T k times and removes the first k elements of X, when k is positive.
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By convention, T0[X] = X, and note that T1 = T . We extend the defi-
nition of the tail function of order k (Tk) also for negative k numbers:
T−1[Xi] = Xi−1, which means that a new value (xi−1) is inserted in the
front of the list. If this value is not known, then a “blank” value will
be inserted. Tk, when k < 0 is obtained by iterating T−1 |k| times.

The kth head of X is Hk[X] = H[Tk[X]] and gives the (k+1)th element
of X (thus H0 = H).

• Prefix of order n:
The prefix of order n of a list is Pn[X] = 〈x0, . . . , xn−1〉 = X0,n−1, that
is, it selects the first n elements of the list.

• Concatenation of lists:
The concatenation of two lists is denoted by “^”:

〈a0, a1, . . . , ak〉 ^X = 〈a0, a1, . . . , ak, x0, x1, . . .〉.

The first operand must be finite, but the second may also be infinite.

We also use “
�
^ ” for prepending a scalar to a (finite or infinite) list:

a
�
^ X = 〈a〉^X.

Since in practice one actually uses only finite lists, we consider here only
lists having a finite number of “interesting” values. Namely, we use (as in the
theory of cellular automata) a special quiescent symbol “$” (which belongs to
all scalar types) in order to encode the “blank” values. Thus, an infinite list
will start to have only blank values after a certain finite number of elements.
We also allow a list to start with a certain number of blanks, but we will
not allow “$” to be arbitrarily interspersed among other elements. In case
of sparse lists the occurencies of “$” follow a regular pattern.

• Sparse lists:
We define the term sparse list in a functional way, with the help of
the list function Sparsek, where the parameter k (k ∈ N) indicates the
frequency of the ”interesting” data:

Sparsek[X] = H[X]
�
^ ($k^Sparsek[T [X]])

For brevity we denote Sparsek[X] by X$k.
X$1 = X$ = 〈x0, $, x1, $, . . .〉. By convention X$0 = X.
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Properties:

T Sparsek = $k �
^ Sparsek T

H Sparsek = H
Tm Sparsek = Sparsek T m

k+1
, if (k + 1)|m

in particular (k = 1) :

Tm Sparse1 =

{
Sparse1 Tm

2
, if m is even

$
�
^ Sparse1 Tm+1

2
, if m is odd

• k-step lists:
k-step lists are defined with the help of the Stepk function in the fol-
lowing way:

Stepk[X] = H[X]
�
^ Stepk[Tk[X]],

where k ∈ N, k ≥ 1.

That is, the function Stepk selects every kth element of a list, starting
with the first one: Stepk[X] = 〈x0, xk, x2k, x3k, . . .〉.
For brevity we denote Stepk[X] by X{k}. Note that X{1} = X

Properties:

T Stepk = Stepk Tk

H Stepk = H
Tm Stepk = Stepk Tm∗k
Stepk Tm = Tm

k
Stepk, if k|m

StepkSparsek−1X = X 6= Sparsek−1StepkX , for k ≥ 1
in particular :
X$ {2} = X 6= X{2} $

5.2.2 Functions

We are operating with scalar-, list- and mixed type functions. Hereafter we
present the class of functions used and some useful properties characterising
these functions.

• Scalar functions:
Functions from scalar types to scalar types will be called scalar func-
tions. Informally, scalar functions can be computed in constant time.

Ex.: f : {0, 1}, {0, 1} → {0, 1, 10}, f [a, b] = a
� �
+ b,

where ”
� �
+ ” denotes the addition of two binary digits.
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• List functions:
Functions from list types to list types will be called list functions. We
will consider only list functions acting upon infinite lists and producing
infinite lists.

Ex.: F : 〈{0, 1}〉, 〈{0, 1}〉 → 〈{0, 1}〉, F [A, B] = A ∧B,
where ”∧” represents the bitwise logical ”and” operation applied to the
corresponding elements of A and B.

List functions are defined in a functional way:

F [a
�
^ A, b

�
^ B] = (a

� �
∧ b)

�
^ F [A, B] ,

where
� �
∧ is the logical ”and” operation applied on bits (scalars from

the set {0, 1}).
We use the following convention: if op is an operation on two lists, then

we denote by
�
op the corresponding operation between a scalar and a

list (this kind of operation is usually also defined in a functional way),

while
� �
op stands for an operation between two scalars.

• Mixed type functions:
Functions having both, scalar and list type arguments and producing
[scalar and] list type results are mixed type functions.

Ex.: F : {0..9}, 〈{0..9}〉 → 〈{0..9}〉, F [c, A] = c
� →
+ A,

where ”
� →
+ ” denotes the addition with carry propagation. That is

F [c, a
�
^ A] = (c

� �
+ a)mod10

�
^ F

[⌊
(c

� �
+ a)/10

⌋
, A

]
We will also assume that our scalar functions produce blanks when applied

to blanks, and that our mixed type functions or list functions are producing
[blanks and] lists of blanks when applied to [blanks and] lists of blanks.

By convention we will denote scalar functions by lowercase letters and
list- or mixed type functions by capital letters, unless we want to indicate
that the list function F is the transitive extension of the scalar function f
(see Def. 5.6). In this case we will also use the notation ~f for F .

Since we have in mind concrete computations over lists, it is reasonable to
consider those list functions F whose values can be computed in an incremen-
tal fashion: the values of any finite prefix of F [X] can always be computed
from some finite prefix of X.
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Definition 5.1. Regular function
A function F on infinite lists is called regular iff, for any natural n, there
exists a natural m, such that for any list X0,n+m−1 of length n + m, and for
any infinite lists Y, Y ′:

Pn[F [X0,n+m−1^Y ]] = Pn[F [X0,n+m−1^Y ′]] .

The minimal m as above is called the regularity index of F , denoted
rF [n] = m.

Definition 5.2. k–look–ahead function
A function whose regularity index is constant is called look–ahead function.
The constant rF [n] = k is called the look–ahead index.
We also use the term k–look–ahead function for a look–ahead function whose
look–ahead index is k.

We have a special interest towards functions with a look–ahead index equal
to 0.

Definition 5.3. Online function
A 0–look–ahead function is called online function.
That is, the n–th value of an online function depends only on the first n
elements of the input.

Note: for an online function, the regularity condition for n = 0 (note that
the head function gives exactly the prefix of order 0) is:

H[F [x
�
^ X]] = H[F [x

�
^ X ′]] ,

thus one may define the function

FH [x] = H[F [x
�
^ $∞]] .

Definition 5.4. Scalar projection of an online function
Let F : 〈L1〉 → 〈L2〉 be an online function.
The scalar function FH : L1 → L2, such that

FH [x] = H[F [x
�
^ $∞]] .

is called the scalar projection of the online function F ,

Obviously:

FH [x] = H[F [x
�
^ X]] for any X, and

F [x
�
^ X] = FH [x]

�
^ T [F [x

�
^ X]] .
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However, one must take care that only online functions have a scalar projec-
tion.
A special role will be played by list functions which commute with T . We
will call these functions transitive.

Definition 5.5. Transitive function
A list function F is called transitive if it commutes with the tail function:

F [T [X]] = T [F [X]] or simply FT = TF .

(Note that we use square brackets for function application, moreover we
will sometimes omit them when the context is sufficiently clear.)
For online transitive functions we have:

F [x
�
^ X] = FH [x]

�
^ F [X] ,

thus the function F is “constructed” by its scalar projection FH .

Definition 5.6. Transitive extension of a scalar function
Let f be a scalar function. We call the transitive extension of f the list
function denoted by ~f , constructed in the following way

~f [x
�
^ X] = f [x]

�
^ ~f [X] .

Note: the syntactic restriction to one argument (and one value) is not es-
sential. Indeed, a multiple scalar can be assigned a new scalar type, and a
multiple list can be seen as single list by transposition:

〈x �
^ X, y

�
^ Y, . . .〉T = 〈x, y, . . .〉T �

^ 〈X, Y, . . .〉T .

Functions with mixed-type (scalar and list) argument and/or mixed-type
value reduce to functions taking one scalar and one list and producing one
scalar and one list.

In the sequel we will use sometimes functions having multiple arguments,
however these are understood to be of the form exhibited above. That is, if
several scalars occur as arguments, the function is assumed to have only one
scalar argument, which is the tuple of those scalars. Similarly, if several lists
occur as arguments, the function is assumed to have only one list argument,
which is the transposed of the tuple of those list arguments.

Note: one can easily verify that if W = 〈X1, X2, . . . Xn〉T is a multiple list
composed of X1, X2, . . . , Xn then the selector functions that return the
corresponding component, FXi [W ] = X i, 1 ≤ i ≤ n, are online transitive
functions.
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Online and mixed-type functions
The mixed-type functions that we will consider can also be associated to

some special online transitive list functions.
Given an initial value r0, and an infinite list X let us consider the list R =
〈r0, r1, . . .〉 generated by a function fr in the following way:

r0 = r0, (5.1)

ri = fr[ri−1, xi−1],∀i ≥ 1 (5.2)

R can also be described in a functional way. Let FR be a mixed-type function
and fr a scalar function such that

FR[r, x
�
^ X] = fr[r, x]

�
^ FR[fr[r, x], X] .

Then
R = r0

�
^ FR[r0, X]

If we apply an online transitive function F on an argument composed of
R and X, then it has the following property:

F [r0
�
^ R1, x0

�
^ X1] = FH [r0, x0]

�
^ F [R1, X1] , (5.3)

where FH is the scalar projection of F and R is generated in the way described
in (5.1)–(5.2).

In this case (5.3) can be described in a more concise way with the help
of the mixed type function F ′, that is defined in the following way:

F ′[r, x
�
^ X] = f [r, x]

�
^ F ′[fr[r, x], X] , (5.4)

where f = FH and the function F ′[r0, X] with mixed type argument, respec-
tively the list function F [R,X] are computing the same result.

F ′[r0, X] = F [R,X] .

The reason for using this kind of mixed-type functions is explained is
Sect. 5.3.

5.2.3 Properties of Online Transitive Functions

In this section we describe some useful properties of online transitive func-
tions.
From the considerations in the previous section follows:

Property 5.1. An online function is transitive if and only if it is a transitive
extension of its scalar projection.
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Proposition 5.1. The composition of online transitive functions is also on-
line and transitive.

Proof: (... in fact just a simple verification...)
Let F : 〈L1〉 → 〈L2〉 and G : 〈L2〉 → 〈L3〉 be two online transitive functions.
Let us denote the composition of G on F by F ′, F ′ : 〈L1〉 → 〈L3〉.

F is online, that is for any natural n and for any infinite list Y and Y ′

Pn[F [X0,n−1^Y ]] = Pn[F [X0,n−1^Y ′]] . (5.5)

The same holds for G.
We want to prove that the composite function F ′ = G◦F is also an online

function, that is, for any natural n and any infinite list Y and Y ′

Pn[F ′[X0,n−1^Y ]] = Pn[F ′[X0,n−1^Y ′]] . (5.6)

Indeed, because G is online, the nth prefix of G[F [X0,n−1^Y ]] only depends
on the first n elements of the argument of G. That is,

Pn[G[F [X0,n−1^Y ]]] = Pn[G[Pn[F [X0,n−1^Y ]]^Y ′′]] ,

for any infinite list Y ′′ (let us take the infinite list of blank values, $∞).
According to (5.5) the lhs. of (5.6) is equal to

Pn[G[Pn[F [X0,n−1^Y ′]^$∞]] ,

for any infinite list Y ′ (we can consider again the infinite list $∞), then the
rhs. of (5.6) can be transformed into the same expression, using the same
logic for any infinite list Y and Y ′, which means that the composite function
is also online.

According to Prop. 5.1 F and G are transitive extensions of their scalar
projections, thus we have

F [x
�
^ X] = HF [x]

�
^ F [X] (5.7)

and
G[y

�
^ Y ] = HG[y]

�
^ G[Y ] (5.8)

Then we have

F ′[x
�
^ X] = G[F [x

�
^ X]]

(5.7)
=

= G[HF [x]
�
^ F [X]]

(5.8)
= HG[HF [x]]

�
^ G[F [X]] .
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It follows that F ′[x
�
^ X] = HF ′ [x]

�
^ F ′[X], where HF ′ = HG ◦ HF , that

is F ′ is the transitive extension of its scalar projection, consequently it is
transitive.

Example: Let X be an infinite list having three components (of the same
scalar type), X = 〈A, B, C〉T and the list function F , defined in the following
way

F [X] = FA[X] ∗ FB[X] + FC [X] , (5.9)

where

• FA, FB and FC are the functions that select the corresponding compo-
nent of X: FA[X] = A, FB[X] = B and FC [X] = C.

• the addition ”+” of two lists is defined as:

(a
�
^ A)+(b

�
^ B) = (a

� �
+ b)

�
^ (A+B) .

• the product ”∗” of two list is considered to be the dot product, defined
as:

(a
�
^ A) ∗ (b

�
^ B) = (a

� �∗ b)
�
^ (A ∗B) .

The selector functions FA, FB and FC are online transitive functions.
From the definition of ”+” and ”∗” follows that they are also online and
transitive functions, consequently F is also an online transitive function.

In the sequel we will omit the explicit use of the selector functions for
the sake of a more simple and concise notation. In our example we can write
instead of F [X]:

F [A, B, C] = A ∗B + C ,

which is understood to be of the form (5.9).

Online Transitive Functions and the Sparse Function

Proposition 5.2. Let F be an online transitive function. Then

(F [X])$ = F [X$] .

Verification:
We can easily verify Prop. 5.2 by showing that ith head of the lhs respectively
the rhs is equal ∀i ≥ 0.

Proposition 5.3. Let F ′ be a mixed type function having property (5.4).
Then

(F ′[r, X])$ = F ′[r, X$] .
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Verification:
We will verify Prop. 5.3 by showing that the ith head of the lhs respectively
the rhs is equal ∀i ≥ 0.
We assume, that i is even. For the lhs we have

Hi[(F
′[r, X])$] = HTi[(F

′[r, X])$] = H[(T i
2
[F ′[r, X]])$] =

= H[T i
2
[F ′[r, X]]] = H i

2
[F ′[r, X]] .

Let F be the corresponding online transitive function of the form (5.3) such
that F ′[r, X] = F [R,X].
Then we have

H i
2
[F ′[r, X]] = H i

2
[F [R,X]] = H[T i

2
[F [R,X]]] =

= H[F [T i
2
R, T i

2
X]] = FH [r i

2
, x i

2
] .

For the rhs let us consider again the corresponding online transitive function
F of the form (5.3) such that F ′[r, X$] = F [R′, X$].
We have

Hi[F
′[r, X$]] = H[Ti[F

′[r, X$]]] = H[Ti[F [R′, X$]]] = H[R′
i, X i

2
] = FH [r′i, x i

2
] .

Thus the problem reduces to showing that r′i = r i
2
.

If FR is defined as

FR[r, x
�
^ X] = fr[r, x]

�
^ FR[fr[r, x], X] ,

then
R = r0

�
^ FR[r0, X]

and
R′ = r0

�
^ FR[r0, X$] .

Because fr[r, $] = r, it follows that

R′ = r0
�
^ FR[r0, X$] = r0

�
^ (fr[r0, x0]

�
^ FR[r1, $

�
^ X1$]) =

= 〈r0, r1〉^(fr[r1, $]
�
^ FR[r1, X1$]) = . . . =

= 〈r0, r1, r1, r2, r2, . . . , ri, ri〉^FR[ri, Xi$]⇒
⇒ R′

{2} = R

Thus
r i

2
= H i

2
[R] = HT i

2
[R′

{2}] = H[R′
i{2}] = H[R′

i] = r′i .

We can verify in the same manner that the property also holds for the case
when i is odd.
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5.2.4 Functional Programs

The input to our design method is given in form of functional programs.
Hereafter we specify what a functional program consists in.

• A program describing a scalar function f is an expression involving
elementary scalar functions (considered as “known”):

f [x] = E .

• A program describing a list function F must indicate how to compute
the head and the tail of the result, by starting from the head and the
tail of the argument.

F [x
�
^ X] = E [x, X] ,

where E is a mixed (scalar–list) expression involving already known
functions, but also F . The simplest definitions have the shape:

F [x
�
^ X] = E[x]

�
^ E [X] ,

where E is a scalar expression and E is a list expression.

For parametrised list functions a recursive description with respect to
the size parameter should also be given.

• The most general case for a functional program describing a mixed type
function is:

F [x, y
�
^ Y ] = 〈E[x, y], E ′[x, y, Y ]〉 ,

where E is a scalar expression and E ′ is a mixed type expression.

5.2.5 Unfolding

A very important transformation of expressions describing list [or mixed
type] functions is unfolding. This consists in isolating the scalar expression
which represents the first element of the list computed by the list function, by
transformations of the expression of the function. In other terms, the purpose

of unfolding a list expression E is to transform it into E
�
^ E ′, where E is a

scalar expression representing the first element of the list.
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The transformations use certain straightforward unfolding rules (also pre-
sented in [JS05]), as well as the functional definitions of the functions which
occur in the expressions.

Unfolding provides a systematic method for the detection of online transi-

tive functions: if we manage to transform the expression of F [x
�
^ X] into the

expression E[x]
�
^ E [x, X], then the function is online and E[x] is its scalar

projection. Moreover, the function is transitive if and only if F [X] = E [x, X].
We will show hereafter how this transformation can be implemented as a

set of equational rewrite rules.
The unfolding function U is implemented in the following way:

• Scalar expressions, as well as already unfolded ones remain unchanged:

U [E] = E, (5.10)

U [E
�
^ E ] = E

�
^ E . (5.11)

• A list variable or the tail of it is further decomposed into head and tail:

U [X] = H0[X]
�
^ T1[X]. (5.12)

U [Ti[X]] = Hi[X]
�
^ Ti+1[X]. (5.13)

• If ~g is a list function, then one first unfolds the [list] argument, and
then applies the recursive definition of ~g:

U [~g[E ]] = U [~g[U [E ]]] , (5.14)

U [~g[E
�
^ E ]] = E ′ �

^ E ′ , (5.15)

where E, E , E ′ and E ′ are the corresponding instances of the expressions
occurring in the definition of ~g.

• Similar rules apply to mixed scalar–list functions:
If G is a mixed type function having property (5.4), then

U [G[E, E ]] = U [G[E, U [E ]]]

U [G[E, E ′ �
^ E ]] = E ′′ �

^ E ′
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5.3 Systolic Processors

We use here the term “systolic processor” for designating just a fixed size
processor (or hardware unit), with or without internal memory just in order
to emphasise the fact that such units may be used as individual processors
in a systolic array.

In this section we study the behaviour of several types of such processors,
namely we investigate the properties of the functions which are realised by
them.

5.3.1 Systolic Processor without Internal State

A systolic processor without internal state is the simplest building block of
a systolic array. It is also called combinatorial cell in the literature.

The processor depicted in Figure 5.2 receives as input the list X =
〈x0, x1, . . .〉 and computes the output list Y = 〈y0, y1, . . .〉. The transition
function, that is the computation performed by the processor at each time
step is f , such that y = f [x].

If the processor computes the function Y = F [X], then the following
equation characterises its functioning:

F [x
�
^ X] = f [x]

�
^ F [X] (5.16)

From the discussion in Sect. 5.2.2, it follows that the class of
functions which can be realised by a systolic stateless processor is
exactly the class of online transitive functions.

- -X Y
Computation:

yt+1 = f [xt]

Figure 5.2: Systolic processor without internal state

Note: the scalar argument x of f stands for the value(s) of all input channels
of the PE, that is it also can be a multiple of simple scalar types. If we denote
by ~f the transitive extension of f , then ~f is the list function constructed by
f if we pipeline X through the PE: F = ~f .



CHAPTER 5. FUNCTIONAL-BASED SYSTOLIC ARRAY DESIGN 78

Hereafter we specify the design problem for such a simple PE.

Problem:
The design problem consists in finding f , when F is given.

Method:
Unfold F and if the result is an equation of the form (5.16), then f is
found by projection.

Example 5.1. - Polynomial addition
Let A = 〈a0, a1, a2, . . .〉 and B = 〈b0, b1, b2, . . .〉 be the list of the coeffi-
cients of the univariate polynomials

A = a0 + a1x + a2x
2 + . . . + an−1x

n−1, respectively

B = b0 + b1x + b2x
2 + . . . + bm−1x

m−1,

such that ai = $ = 0,∀i ≥ n and bj = $ = 0,∀j ≥ m.

The function F to be computed is F [A, B] = A + B.

We unfold F :

F [A, B] = (a0
�
^ A1) + (b0

�
^ B1) = (a0

� �
+ b0)

�
^ F [A1, B1] (5.17)

Equation (5.17) is of the form of equation (5.16), thus we conclude that

the transition function should be f [a, b] = a
� �
+ b.

5.3.2 Systolic Processor with Internal State

The architecture of a systolic processor with internal state, depicted in Fig-
ure 5.3 differs from that of Fig. 5.2 only in having one more additional el-
ement: the internal state register r. The list of values of the internal state
register is denoted by R.

The processor will not only output a new y element of the result at
each time step, but will also update the value of its internal state register r
depending on the input, respectively the value of the internal state register
r at the previous time step.

The output list Y computed by the processor is characterised by the
following equation:

F [r, x
�
^ X] = fy[r, x]

�
^ F [fr[r, x], X] . (5.18)
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- -
X YR

Computations:

yt+1 = fy[rt, xt]
rt+1 = fr[rt, xt]

Figure 5.3: Systolic processor with internal state register

The processor updates its internal state (consisting of the output y and
the internal state register r) at each time step according to the given com-
putations, also shown on Figure 5.3.

We denote by G[R,X] the function computed by the array, that includes
all the values of the internal state:

G[r
�
^ R, x

�
^ X] = 〈fy[r, x], fr[r, x]〉 �

^ G[R,X] . (5.19)

One notes that G is the transitive extension of g = 〈fy[r, x], fr[r, x]〉 (in other
terms G = ~g), and g is the transition function of the PE. The fy component
of the transition function calculates the values of the output channels, respec-
tively the fr component updates the value(s) of the internal state register(s).

Figure 5.4 presents an alternative view of the systolic processor with
internal state register. From this point of view such a processor is similar
to a processor without internal state register with input 〈R,X〉. The only
difference is that in case of R, only the first element r0 is given from outside,
the rest of the elements of R are computed step by step, according to the
rule:

rt+1 = fr[rt, xt]

Equation (5.19) is of the form (5.16). Thus we conclude that equation
(5.16) characterises the transition function of both PE-types (with and with-
out internal state register), however in case of the transition function of a
PE with internal state register the following form is more concise:

G′[r, x
�
^ X] = g[r, x]

�
^ G′[fr[r, x], X] . (5.20)

Problem:
The design problem consists in finding F [r, X], r0, fy and fr, when
F ′[X] is given, such that (5.18) holds and F ′[X] = F [r0, X].
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- -

-

�

-r0

X Y

R Computations:

r0 − given,
rt+1 = fr[rt, xt],∀t ≥ 0
yt+1 = fy[rt, xt]

Figure 5.4: An alternative view of the systolic processor with internal state
register

Method:
We unfold F ′[X] at first: F ′[x

�
^ X] = f ′[x]

�
^ F ′[x, F ′[X]]. From F ′

we ”guess” F and r0, then we unfold F .

Example 5.2. - Integer addition
Let A = 〈a0, a1, a2 . . .〉 and B = 〈b0, b1, b2 . . .〉 be the list representation
of two arbitrary large integers. A represents a0 + a1β + a2β

2 + . . .,
where β > 1 is the radix for integer representation. The function F ′,
that computes the sum of the two integers is given:

F ′[A, B] = A + B.

By unfolding F ′ we get:

F ′[A, B] = A + B = (a0
�
^ A1) + (b0

�
^ B1) =

= (a0

� �
+ b0)modβ

�
^ (

⌊a0

� �
+ b0

β

⌋ �
+ A1 + B1︸ ︷︷ ︸

F

)

From the result of unfolding, that is in our case
⌊

a0

� �
+ b0
β

⌋ �
+ A1 + B1,

we choose for the function F the form F [c, A, B] = c
�
+ (A + B).

By unfolding F we get:

F [c, A, B] = c
�
+ (a0

�
^ A1) + (b0

�
^ B1) =

= (a0

� �
+ b0

� �
+ c)modβ

�
^ (

⌊
a0

� �
+ b0

� �
+ c

β

⌋ �
+ A1 + B1)
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From here we have fy[c, a, b] = (a
� �
+ b

� �
+ c)modβ

fc[c, a, b] = ba
� �
+ b

� �
+ c

β
c

The last step is to find out the initialization value for c0, such that the
equality F [c0, A,B] = F ′[A, B] holds:

F [c, A, B] = c
�
+ (A + B)⇒ F ′[A, B] = A + B = F [0, A,B]⇒ c0 = 0.

Note that the difference of two integers can be computed in a similar way.

5.3.3 Systolic Processor with Delay

In Sect. 5.3.1 we have seen that a function F [X], having property (5.16) can
be realised by a single processor.

For a positive constant k, let us consider functions F [X] having the prop-
erty:

F [X] = G[X, T [X], T [T [X]], . . . , Tk[X]] (5.21)

for some online transitive function G. We show now that such a function can
be computed by a so called systolic processor with k-delay.

Since G can be computed by a single processor, we only need to use k
input channels for the shifted elements of the same input X.

One can in fact avoid the multiplication of the input by introducing k
transition registers, denoted by dx|1|, dx|2|, . . . , dx|k|, which perform the
computation shown on Figure 5.5. This solution will result in a delay of
the result with k steps.

- -

- -

X Y

SI SQ

dx|1|

...
dx|k|

Computations:

dx|1|t+1 = xt

dx|j|t+1 = dx|j − 1|t,∀2 ≤ j ≤ k
yt+1 = f [xt, dx|1|t, . . . , dx|k|t]
sqt+1 = sit

Figure 5.5: Systolic processor with k-delay

We denote the initial values of the transition registers dx|1|, dx|2|, . . .,
dx|k| with x−1 = T−1[X], x−2 = T−2[X], . . ., x−k = T−k[X] respectively.
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These are blank values, which do not contribute to the computation of the
result.

Register dx|k| realises the list X−k, dx|k − 1| the list X−(k−1) and so
on. . . , finally dx|1| realises the list X−1, while the input x generates the list
X. However such a processor can output the first result only beginning with
the k + 1th time step. If we consider the generated list expressions after
k steps, then register dx|k| can be associated with the list Tk[X−k] = X,
register dx|k − 1| with the list Tk[X−(k−1)] = T [X] . . . , register dx|1| with
the list Tk[X−1] = Tk−1[X] and the input x with the list Tk[X].

The processor has an output y at each time step, but as already explained,
in case of this processor-type the first ”interesting” output appears only at
the k+1th time step. If the constant k is known, one can obtain the result by
simply dropping the first k elements of Y (that is one considers only Tk[Y ]),
but a more general solution is to introduce a control signal S that indicates
the appearance of the real results.

The elements of the control signal SI are output unchanged at the next
time step (SQ) as shown on Figure 5.5. The the first k−1 elements of the SI
input representing the control signal are 0, while the other elements starting
with the kth one are 1, thus an output y at time step t is considered to be a
valid output if the corresponding sqt is 1.

Problem:
The design problem consists in finding the scalar projection of G when
F [X] = G[X, T [X], . . . Tk[X]] is given.

Method:
Unfold F and verify that the resulting equation has the property (5.21).

Introduce the transition registers dx|1|, . . . , dx|k| and add the control
signal SI, then project the occurrence of Tk[X] into register x, and all
occurrences of Ti[X] (0 ≤ i ≤ k − 1) into the corresponding transition
register dx|k − i| to find f .

Note that some of the arguments X,T [X], . . . , Tk−1[X] could also be
missing. In this case we only need the transition registers from the one
corresponding to Tk−1[X] to the register associated with Tmin[X].

In the particular case when F [X] = G[Tk[X]] no transition register is
needed, but the control signal still can be used to indicate the appear-
ance of the first result.
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Example 5.3. - The shift operation
Let A = 〈a0, a1, . . .〉 and B = 〈b0, b1, . . .〉 be two lists of any scalar type
and X = 〈A, B〉 is considered to be the input to the problem. We want
to compute Y = 〈A, T2[B]〉, that is the component A of the input X
will be associated with the component B shifted by two positions.

We define the function FA and FB that select the list A respectively B
from the input X = 〈A, B〉:

FA[X] = FA[〈A, B〉] = A
FB[X] = FB[〈A, B〉] = B

Then the list of the results is Y = 〈FA[X], FB[T2[X]]〉. Also note
that both FA and FB have the property (5.16), from here results that
F [X, T2[X]] = 〈FA[X], FB[T2[X]]〉 has property (5.21).

Because in this example k = 2, we introduce two transition registers
dx|1| and dx|2| (each of them has a component for A and one for B,
thus we also can talk about four registers denoted by da|1|, db|1|, da|2|
and db|2|. In the same way we can talk about the input channels a and
b, being the two components of the input x).

By projecting X into dx|2| and T2[X] into the input channel x we get
the computations performed by the processor:

y = 〈FA[dx|2|], FB[x]〉

In other terms:
y = 〈da|2|, b〉

The list corresponding to the control signal is SI = 〈0, 0, 1, 1, 1, . . .〉.
In this particular case a further optimization is possible: db|1| and db|2|
is not used, thus they can be eliminated.

5.3.4 Auto-configurable Systolic Processor
(with Delay)

Now let us suppose that F [X] depends on a fixed length (say k) prefix of X.
More exactly, F [X] = G[〈H[X], H1[X], . . . , Hk−1[X]〉, Tk[X]], where G has
the property

G[a, x
�
^ X] = g[a, x]

�
^ G[a, X]. (5.22)
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Note that in the case of a mixed type function G[a, X], this property can
be rewritten (by considering the scalar a as a parameter) as:

Ga[x
�
^ X] = ga[x]

�
^ Ga[X],

which is of the form of (5.16) – thus Ga is the transitive extension of ga.
We used the notation a = 〈H[X], H1[X], . . . , Hk−1[X]〉, in order to write

the property (5.22) in the form of (5.16), however this means that the pro-
cessor ”knows” the H[X], H1[X], . . . Hk−1[X] scalar values, or at least these
values are preloaded in some local registers of the processor.

- -X Y

x|0|
...

x|k − 1|
st

Computations:

x|j|t+1 = x|j|t, if (stt > j) ∨ (stt < j)
= xt, if stt = j,∀0 ≤ j ≤ k − 1

stinit = 0
stt+1 = stt + 1, if stt < k

= stt, otherwise
yt+1 = f [xt, x|0|t, . . . , x|k − 1|t]

Figure 5.6: Systolic processor that computes F [x0, x1, . . . , xk−1, Tk[X]]

Alternatively, we can use k static registers (denoted by x|0|, x|1|, . . .x|k−
1|, as shown on Fig. 5.6) that will store the first k values of the input, then
beginning with the k +1th time step the “interesting” results start to appear
on the output.

A static register x|j| stores the input x at time step t = j, then it keeps
its value unchanged. Because the processor is not aware of the time, a state
register st is introduced, that is initialised with 0, then incremented at each
time step up to the value of k.

An auto-configurable processor constitutes a particular case of such pro-
cessors:
If in the expression of the function G[〈x0, x1, . . . , xk−1〉, Tk[X]] the scalars
x0, x1, . . ., xk−1 do not contribute directly to the computation of the result,
they are only used to verify whether a condition holds or not, then the func-
tioning of the processor can be optimised by introducing a state register s.
Rather then verifying the condition at each time step, the state register s
will be set in the kth time step according to the condition, that depends on
x0, x1, . . . , xk−1. Afterwards, beginning with time step k + 1, when the first
interesting result should be computed, the computation will be performed in
the function of the value of the state register s which is already set in the
proper way.
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Note that in this case we actually do not need the values x0, x1, . . . , xk−1

after the kth time step, so it is useless to store them. That is why in this
case we can use transition registers instead of static registers, and the state
register st is not needed. k − 1 transition registers are sufficient, then in the
kth time step Hk−1[X] = xk−1 is input to the processor, while the elements
x0, x1, . . ., xk−2 are stored in the transition registers dx|k− 2|, dx|k− 3|, . . .,
dx|1|, respectively. At this time step the state register s can be set according
to the first k values of X, then beginning with the k + 1th step the results
can be output in function of the s state register’s value.

Except for the state register, the processor is functioning just like a pro-
cessor with k−1-delay, which means that it also can compute a function of the
form F [x0, . . . , xk−1, X, T [X], . . . , Tk−1[X]] (with the restriction that in the
case of the first k−1 elements of the result – that is Hj[F ], 0 ≤ j ≤ k−1 – the
jth result depends only on the first j elements of the input, that is on x0, . . . xj,
the state register is not involved). Thus we can call it auto-configurable sys-
tolic processor with k − 1 delay. Moreover an auto-configurable processor,
that sets its state register according to the first k values of the input can be
combined wit a processor with m-delay. The number of transition registers
used should be max(k − 1, m).

The only question is how does the processor know when should the state
register s be set. This problem can be solved using the same control signal
SI as in the case of a processor with delay. The list of input signals SI will
have k− 2 leading 0 elements, then starting with position k− 1 the value of
the elements will be 1 and the first 1 value will indicate the moment when s
has to be set. The state register s is initialised with a blank value, we denote
it by $.

The computations performed by such a processor are shown on Fig. 5.7.

- -

- -

X Y

SI SQ

dx|1|
...

dx|k − 1|
s

Computations:

dx|1|t+1 = xt

dx|j|t+1 = dx|j − 1|t,∀2 ≤ j ≤ k − 1
yt+1 = fy[st, xt(, dx|1|t, . . . , dx|k − 1|t)]
sqt+1 = sit
sinit = $ (blank value)
st+1 = fcond[x, dx|1|t, . . . , dx|k − 1|t],

if (st = $) ∧ (sit = 1)
= st, otherwise

Figure 5.7: Auto-configurable systolic processor (with k − 1-delay)
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Hereinafter we specify the design problem for such a processor.

Problem:
The design problem consists in finding f = 〈gy, gcond〉 when
F [X] = G[x0, . . . , xk−1, (X, T [X], . . . , )Tk[X]]
is given, such that for G the property (5.16) (respectively property
(5.21)) holds.

Method:
Unfold F and verify that the appropriate property holds.

Introduce the k − 1 transition registers.

gcond is a function that associates to ”if” statements integer values from
{1, 2, . . . m}, where m is the number of different cases that depend on
x0, x1, . . . , xk−1 in the definition of F .

Obtain gy by projection. Each ”if condi(x0, x1, . . . , xk−1)” statement is
projected to a corresponding ”if s = i” statement. (The other projec-
tion rules are similar to the rules for processors with delay.)

Neither of the following two examples is a typical one, but we will use
them in building up the systolic array for GCD computation. A more
complex example for such a processor is presented in Sect. 5.4.5.

Example 5.4. - conditional exchange
Let A = 〈a0, a1, . . .〉 and B = 〈b0, b1, . . .〉 be two lists of any scalar type
and X = 〈A, B〉 is considered to be the input to the problem. If a0

is equal to a given constant (we denote it by exch) of the same scalar
type as that of the list A, the output should be 〈B, A〉 otherwise it will
remain 〈A, B〉. This means that the two components of the input are
exchanged depending on the first element of A:

F [a0, 〈A, B〉] = 〈B, A〉, if a0 = exch
= 〈A, B〉, otherwise

Using notation FA[X] = A and FB[X] = B we can write:

F [H[X], X] = 〈FB[X], FA[X]〉, if FA[H[X]] = exch
= X, if FA[H[X]] 6= exch

Both, FA and FB have property (5.16), so one can easily verify that
FH[X] also satisfy property (5.16). Because k = 1 no transition register
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is needed, but because F depends on X, the first output will already
appear at the first time step, at the same moment when the state
register s is set.

The function F involves two ”if”-statements. The first one will be
projected to s = 1 and the second one to s = 2. The computations
performed by the processor are described on Figure 5.8. For the list
of results we use the notation Y = 〈YA, YB〉. The list corresponding to
the control signal is SI = 〈1, 1, . . .〉

- -

- -

- -

B YB

A YA

SI SQ
s

Computations:

yt+1 = 〈bt, at〉, if (st = 1)∨
((st = $) ∧ (at = exch))

= 〈at, bt〉, if (st = 2)∨
((st = $) ∧ (at 6= exch))

sqt+1 = sit
sinit = $
st+1 = 1 if (st = $) ∧ (sit = 1)∧

(at = exch)
= 2 if (st = $) ∧ (sit = 1)∧

(at 6= exch)
= st, otherwise

Figure 5.8: Auto-configurable systolic PE for input-exchange

Example 5.5. - Cutting off the least significant zeroes of a binary
integer
Let A = 〈a0, a1, . . .〉 be the list representation of a binary integer. We
want to cut off the least significant zeroes of A, which means we want to
compute Y = F [A] = Tk[A] such that Hk[A] = 1 and Hj[A] = 0,∀0 ≤
j ≤ k − 1.

The first remark is that here only the kth tail of the input appears in
the computation of the result, which means that we do not need any
transition register.

The second remark is that here k is not known in advance, but it can be
computed in function of the input, which induces a slight modification
in the computation of the control signal, that indicates the appearance
of the first result, respectively in the computation of the state register
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s: both of them will be computed in function of the input A rather then
using the input SI, which is unimportant. The output SQ is computed
in the following way:

sqt+1 = 0 , if (st = $) ∧ (xt = 0)
= 1 , if (st 6= $) ∨ (xt = 1)

The computations for s are:

st+1 = 1, if (st = $) ∧ (xt = 1)
= st, if (st 6= $) ∨ (xt = 0)

The first 1 value of SQ indicates the beginning of the output.

Tk[A] is projected to the input register a, thus the computation of the
result (we denote the output register associated to it with y) is very
simple:

yt+1 = at
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5.4 Unidirectional Arrays

Figure 5.9. depicts the architecture of a unidirectional systolic array with
n processing elements. The initialization scheme is also given. The term
”unidirectional” refers to the data-flow that moves in only one direction. The
input data (denoted by X) as well as the (partial) results advance (through
the channels denoted by y) in the same direction. The list X = 〈x0, x1, x2, . . .〉
represents the input to the array, introduced element by element at each
time step, respectively Y 0 denotes the list of initial values, which contribute
to the computation of the results (usually the same y0 value is introduced
repeatedly, then Y 0 = (y0)∞, or simply a blank value, that we denote by $,
then Y 0 = $∞).

- -

- -
. . .

- - -

- - -

Y 0 y−1 y−2 y−(n−1)

X x−1 x−2 x−(n−1)PE0 PE1 PEn−1

Figure 5.9: Unidirectional array

The xi, respectively yi values, where i < 0 represent the initialization
values of the array. At each time step t a new result leaves the array at
PEn−1.

We use the following notation: whenever a variable wi
t is mentioned, the

upper index i denotes the number of PE, the variable belongs to (that is the
space index), while the lower index is the time index. Thus wi

t is the value
of variable w at PEi at the time instant t. wt (variable with only the lower
index) is either an input value or an initialization value, while wi (variable
with only the upper index) represents either an input channel or an internal
state register that belongs to PEi.

The transition function (that indicates the computations performed by a
PE) depends on the input to the PE, in this case x and y, respectively on
the values of the internal state registers in the previous time step.

A PE may or may not have internal state registers and the data can move
with the same or with different speed. In the sequel we study in detail these
cases.
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5.4.1 Unidirectional Array with
Input ”Pass-Through”

We consider here that the x inputs are just ”passing through” the array from
PEi to PEi+1, that is xi+1

t+1 = xi
t, while the outputs move with the same speed.

We will formalise at first the computation performed by such a simple array
that does not have any other registers.

In Fig. 5.10. the computations of a PE are given for an array of this type.

- -

- -

yi

xi

yi+1

xi+1

Computations:

yi+1
t+1 = f [xi

t, y
i
t]

xi+1
t+1 = xi

t

Figure 5.10: Unidirectional array with input ”pass-through”. Computations
of a PE

The transition function is composed of two functions, one for the compu-
tation of the partial results (y), and another one for the computation of the
x component, which is the identity function (fx[x] = x is considered to be
known). We also call the latter one the trivial part of the transition function.

The first n−1 elements of the result that leave the array at PEn−1 depend
only on the internal initialization values:

yn
1 = f [xn−1

0 , yn−1
0 ] = f [x−(n−1), y−(n−1)]

yn
2 = f [xn−1

1 , yn−1
1 ] = f [xn−2

0 , f [xn−2
0 , yn−2

0 ]] =

= f [x−(n−2), f [x−(n−2), y−(n−2)]]
. . .
yn

n−1 = . . . = f [x−1, f [x−1, . . . f︸ ︷︷ ︸
n−1 times

[x−1, y−1] . . .]
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The first element, that also involves the input X is yn
n:

yn
n = f [xn−1

n−1, y
n−1
n−1] = f [xn−2

n−2, f [xn−2
n−2, y

n−2
n−2]] = . . .

= f [x0
0, f [x0

0, . . . f︸ ︷︷ ︸
n times

[x0
0, y

0
0] . . .] = f [x0

0, f [x0
0, . . . f︸ ︷︷ ︸

n times

[x0
0, y

0] . . .]

. . .
yn

n+i = f [x0
i , f [x0

i , . . . f [x0
i , y

0
i ] . . .] = f [x0

i , f [x0
i , . . . f [x0

i , y
0] . . .]

If Y is the list of the outputs, then we denote by Yn = Tn[Y ] the nth tail
of the list of results, that contains the elements depending on the input X.
We consider the list extension ~f of f , then we can write the equation that
characterises this type of array in a more concise form:

Yn = ~f [X, ~f [X, . . . ~f︸ ︷︷ ︸
n times

[X, Y 0] . . .] . (5.23)

Note that ~f satisfies property (5.16). Equation (5.23) can be expressed
recursively. Let F [n,X] be the function that computes Yn (n is the size
parameter of the computation), then (5.23) can be expressed by the following
recursive description:{

F [n, X] = ~f [X, F [n− 1, X]]

F [1, X] = ~f [X, Y 0] .

The previous considerations allow us to formulate the design problem for
such an array.

Design Problem 5.1. (Unidirectional array with input ”pass-through”)
Given a functional program describing F [n, X]
find y0 (where Y 0 = (y0)∞) and the nontrivial part of the transition

function f such that

F [n,X] = ~f [X, F [n− 1, X]] (5.24)

F [1, X] = ~f [X, Y 0] , (5.25)

where ~f satisfies condition (5.16).

Note: One can observe that yn
n+i only depends on xi (and y0). It follows

that for an input of finite length X0,k = 〈x0, . . . , xk〉, a function F [n,X0,k]
that satisfies the conditions (5.24)-(5.25) can be computed by a SIMD vector
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. . .x0

y0

x1

y1

x2

y2

xk

yk

Computations:

yi
t+1 = f [xi

t, y
i
t]

xi
t+1 = xi

t

Figure 5.11: An alternative for the computation performed by an array char-
acterised by (5.23)

processor in n time steps, as shown on Fig. 5.11 (no communication is needed
between the neighbouring processing elements).

Example 5.6. - Computing the nth power of the elements of a list

Given a list X, we want to compute F [n, X] = Xn = 〈xn
0 , x

n
1 , x

n
2 . . .〉.

We can define F [n, X] recursively, in the following way:

F [n, X] = X∗F [n− 1, X] , (5.26)

where the operation ∗ is the scalar product of two lists. This means

(a
�
^ A) ∗ (b

�
^ B)

def
= 〈a � �∗ b〉 �

^ A ∗B

Equation (5.26) is of the form (5.24). Indeed, in equation (5.26) we have

X∗F [n− 1, X] = x0∗H[F [n− 1, X]
�
^ X1∗T [F [n− 1, X]]] =

= x0∗xn−1
0

�
^ X1∗Xn−1

1 ⇒

⇒ the function from the rhs. of (5.26) and the corresponding scalar function

f [x, y] = x
� �∗ y satisfies condition (5.16).

We obtained the transition function f from (5.26) by projecting the input
list X into the input register x and the function F that computes the result
into the output register y.

We now verify condition (5.25).

The following equality should hold: F [1, X] = ~f [X, Y 0].

That is X = X∗Y 0. From x = x
� �∗ y0 ⇒ y0 = 1. Thus Y 0 = 1∞.
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Internal state registers having constant values

The most simple internal state register, a PE could have, is that one having
a constant value. We analyse this particular case separately. In this case we
have in addition to the PE presented in Fig. 5.10. an internal state register
qi, that does not change its value (qi

t+1 = qi
t = qi).

Let Q0, n− 1 = 〈q0, q1, . . . , qn−1〉 be the finite list of the internal state register
values corresponding to PE0, PE1 . . . PEn−1 respectively.
Because q0, q1, . . . , qn−1 are constant values, we can treat them as ”param-
eters” of the problem. Now the computation for yi+1

t also involve qi. The
computations for a PE are:

yi+1
t+1 = f [qi

t, x
i
t, y

i
t] = f [qi, x

i
t, y

i
t]

xi+1
t+1 = xi

t

qi
t+1 = qi

t = qi

Now the computation of the register q also belongs to the trivial part of
the transition function. The equation that characterises the array is of the
following form:

Yn = ~f [qn−1, X, ~f [qn−2, X, . . . ~f︸ ︷︷ ︸
n times

[q0, X, Y 0] . . .] . (5.27)

The design problem can be now formulated in the following way:

Design Problem 5.2. (Unidirectional arrays with input ”pass-through”
and constant internal state registers)

Given a functional program describing Fw0,w1,...,wn−1 [n, X],
(where W0,n−1 = 〈w0, w1, . . . , wn−1〉 is the list of parameters)

find Q0,n−1 which is a permutation of W0,n−1, y0 (where Y 0 = (y0)∞) and
the nontrivial part f of the transition function such that

FQ0,n−1 [n, X] = ~f [qn−1, X, FQ0,n−2 [n− 1, X]] (5.28)

Fq0 [1, X] = ~f [q0, X, Y 0], (5.29)

such that if we consider q a parameter of the function f (for this reason we

use the notation fq), then ~fq[〈X, Y 〉] satisfies property (5.16).

Note: In this case each value of the result also depends on the values
q0, q1, . . . qn−1, which means that if we would like to perform the computations
with a SIMD vector processor (similar to the one shown on Fig. 5.11), then
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the values qn−1, . . . , q0 respectively should be broadcasted at the consecutive
time steps to each of the processors.

For that reason the systolic solution to the problem might be more rea-
sonable, because it avoids global broadcasting.

Example 5.7. - Evaluating a given polynomial for several distinct values

Let Pn(x) = a0 +a1∗x+a2∗x2 + . . . an−1∗xn−1 be a univariate polynomial
of degree n− 1.
We want to evaluate the polynomial for some given values. That is, given
the input list
X = 〈x0, x1, . . .〉, and the list of coefficients A0,n−1 = 〈a0, a1, . . . an−1〉, we
want to compute Yn = 〈Pn(x0), Pn(x1) . . .〉 = Pn(X).

We have

Yn = a0 + a1∗X + . . . an−1∗Xn−1 = a0 + X∗(a1 + a2∗X + . . . + an−1∗Xn−2)

From here we conclude that with

Q0,n−1 = 〈an−1, an−2, . . . , a1, a0〉

and

FQ0,n−1 [n,X] =
n−1∑
j=0

qn−1−j∗Xj

we get

FQ0,n−1 [n, X] = qn−1

�
+ X∗FQ0,n−2 [n− 1, X],

that is of the form (5.28). (We use the notation
�
+ to explicitly indicate

that this is an operation between a scalar and a list. Int the same way
� �
+

denotes the addition between two scalars.) By projecting the list expression
into the corresponding scalar expression, we obtain the transition function

f [q, x, y] = q
� �
+ x

� �∗ y and Q0,n−1 = 〈q0, . . . qn−1〉 such that qi = an−1−i,∀0 ≤
i ≤ n− 1.

Verifying condition (5.29) we have Fq0 [1, X] = ~f [q0, X, Y 0]. That is

an−1 = an−1 + X∗Y 0. From an−1 = an−1

� �
+ x

� �∗ y0 we get y0 = 0. Thus
Y 0 = 0∞.
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Internal state registers having variable values

The next step is to consider also internal state registers with variable value.
The case of registers having constant values studied in section 5.4.1 can be
also considered a particular case of this more general one.

We denote the internal state register of variable value by r. A PE may
have, of course, more internal state registers, however we will talk hereafter
-without loss of generality- about only one (this can be of a simple or a
multiple scalar type).

The (nontrivial part of the) transition function, denoted by f is now
composed of : fy, which computes the (partial) results and fr, which updates
the value of register r at each time step. More formally:

f [ri
t, x

i
t, y

i
t] = 〈ri

t+1, y
i+1
t+1〉 , such that

ri
t+1 = fr[r

i
t, x

i
t, y

i
t]

yi+1
t+1 = fy[r

i
t, x

i
t, y

i
t]

The function that characterises a unidirectional linear array with input
”pass through”, having internal state register with variable value is of the
following form:

Yn = ~fy[R
n−1
n−1, X, ~fy[R

n−2
n−2, X, . . . ~fy︸ ︷︷ ︸

n times

[R0
0, X, Y 0] . . .] (5.30)

Ri
i = 〈ri

i, r
i
i+1, . . .〉, such that (5.31)

ri
t+1 = fr[r

i
t, x

i
t, y

i
t], t ≥ i

ri
t = ri, t ≤ i

We suppose that the initialization of the array is uniform. Let us denote
the initialization value for ri with r0,∀i, 0 ≤ i ≤ n− 1. Moreover, as already
mentioned, the scalar functions produce blank values when applied to blank
arguments, thus fr[$, $, $] = $. Let us assume that fr[$, r0, $] = r0, which
means that the value of rn−1

t will remain r0 in the fist n− 1 time steps, until
the first ”interesting” input appeares at PEn−1 (see Fig. 5.12).

If the array computes the function F [n,X], then the tail array depicted
on Fig. 5.12 computes F [n− 1, X].

This kind of view leads to the following recursive description that char-
acterises the functioning of the array:{

F [n,X] = G[r0, X, F [n− 1, X]]
F [1, X] = G[r0, X, Y 0] ,
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Tail array
- -

- -

-

-

Y 0

r0

X
PEn−1

Figure 5.12: Functional view of a unidirectional array with internal state
register

where the function G, having one scalar argument r and a composed list
argument 〈X, Y 〉 has property (5.20).

Design Problem 5.3. (Unidirectional arrays with input ”pass-through”
and internal state registers)
Given a functional program describing F [n, X]

find

• the initialization value for the internal state registers: r0

• y0 (where Y 0 = (y0)∞) and the (nontrivial part of the) transition func-
tion f = 〈fy, fr〉 such that

F [n, X] = ~f [r0, X, F [n− 1, X]] (5.32)

F [1, X] = ~f [r0, X, Y 0] , (5.33)

and ~f [r, 〈X, Y 〉] satisfies property (5.20)

Example 5.8. - Alternating two functions that depend on the same size
parameter n

Given the input list X = 〈x0, x1, x2, . . .〉 we want to compute the list
obtained by alternatively applying on the consecutive elements of X two
different functions that depend on the same size parameter n (let these func-
tions be the nth multiple and the nth power of a scalar x). The function to
be computed is:

F [n, X] = 〈n ∗ x0, x
n
1 , n ∗ x2, x

n
3 , . . .〉
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The two functions that are alternatively applied on the elements of the
input are:

mult[n, x] = n ∗ x
power[n, x] = xn

They both can be expressed recursively:

mult[n, x] = x + (n− 1) ∗ x = x + mult[n− 1, x], ∀n, n > 1
mult[1, x] = x
power[n, x] = x ∗ xn−1 = x ∗ power[n− 1, x], ∀n, n > 1
power[1, x] = x

Now we can also write F [n,X] = 〈mult[n, x0], power[n, x1], . . .〉, but if we
want to express the function F in a recursive manner, an auxiliary variable s
should be used to indicate which one of the two functions has to be applied.

We define the function MultPower in an inductive way:

MultPower[n, s, x
�
^ X] =

=

{
mult[n, x] if s = 0
power[n, x] if s = 1

�
^ MultPower[n, 1− s, X]

Now F [n, X] = MultPower[n, 0, X], where MultPower is a parametrised
function, and MultPowern[s, X] satisfies property (5.20).

By using the recursive description of the scalar functions mult and power
we can define the function F in a recursive way with respect to the size
parameter. If

PlusMult[s, x
�
^ X, y

�
^ Y ] =

{
x + y, if s = 0
x ∗ y, if s = 1

�
^ PlusMult[1−s, X, Y ]

then
F [n,X] = PlusMult[0, X, F [n− 1, X]] (which is of form (5.32)) and
F [1, X] = PlusMult[0, X, Y 0] (which is of the form of (5.33)).

From here we have the initialization value for s: s0 = 0. And the transi-
tion function composed of fy and fs is: fy[s, x, y] =

{
x + y, if s = 0
x ∗ y, if s = 1

fs[s] = 1− s

We obtain Y 0 by verifying condition (5.33)):
F [1, X] = X = PlusMult[0, X, Y 0] = 〈x0 + y0

0, x1 ∗ y0
1, a2 + y0

2, . . .〉 ⇒ Y 0 =
〈0, 1, 0, 1, . . .〉.

Note that in this case the elements of the result Y are computed by two
alternating functions, that is why the initialization value also depends on two
functions. Thus Y 0 = (〈y0

0, y
0
1〉)∞ = (〈0, 1〉)∞.
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5.4.2 Unidirectional Arrays with Delayed Input

We consider here unidirectional arrays with delayed input. This means that
we have one or more special registers in a PE serving as delay elements,
which are temporarily storing the input data. We denote a delay element by
dx. Generally, the delay of the input with k time steps is realised by k delay
elements, denoted by dx|1|, . . . , dx|k|. The following equations describe the
computations performed by a PE:

yi+1
t+1 = f [xi

t, dx|1|it, . . . , dx|k|it, yi
t]

xi+1
t+1 = dx|k|it

dx|j|it+1 = dx|j − 1|it, 2 ≤ j ≤ k

dx|1|it+1 = xi
t

Figure 5.13. presents the computation of a PE, where the input is delayed
by one time step. For the sake of simplicity we only consider the equations
describing such an array, afterwards the generalization is straightforward.

- -

- -

yi

xi

yi+1

xi+1
dxi

Computations:
yi+1

t+1 = f [xi
t, dxi

t, y
i
t]

xi+1
t+1 = dxi

t

dxi
t+1 = xi

t

Figure 5.13: Computation of a PE in an array with delayed input

Figure 5.14. depicts how the array is initialised. The initialization values
are the following:

- we denoted by x−1, x−3, . . . the initial value of the delay elements dx
(dxi

0 = x−(2i+1), ∀ i = 0, . . . , n− 1).

- the value of the input channel to PEi is x−2i, (xi
0 = x−2i,∀i = 1, . . . , n−

1)

- the values of the output channels are y−1, y−2, . . . (yi
0 = y−(i+1),∀i =

1, . . . , n)
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- -

- -
. . .

- - -

- - -

Y 0 y−1 y−2 y−(n−1)

X

x−1

x−2

x−3

x−4 x−(2n−2)

x (2n 1)- -

x−2nPE0 PE1 PEn−1

Figure 5.14: Initial state of the array with delayed input

The computation of x and dx belongs to the trivial part of the transition
function.

The first n− 1 elements of the result Y depend only on the initial values
of the internal registers:

yn
1 = f [xn−1

0 , dxn−1
0 , yn−1

0 ] = f [x−(2n−2), x−(2n−1), y−(n−1)]

yn
2 = f [xn−1

1 , dxn−1
1 , yn−1

1 ] = f [dxn−2
0 , xn−1

0 , f [xn−2
0 , dxn−2

0 , yn−2
0 ]] =

= f [x−(2n−3), x−(2n−2), f [x−(2n−4), x−(2n−3), y−(n−2)]]
. . .
yn

n−1 = . . . = f [x−n, x−(n+1), f [x−(n−1), x−n, . . . f︸ ︷︷ ︸
n−1 times

[x−2, x−3, y−1] . . .]

The first result that also involves the input X is yn
n:

yn
n = f [xn−1

n−1, dxn−1
n−1, y

n−1
n−1] =

= f [dxn−2
n−2, x

n−1
n−2, f [xn−2

n−2, dxn−2
n−2, y

n−2
n−2]] =

= f [xn−2
n−3, dxn−2

n−3, f [xn−3
n−4, dxn−4

n−3, f [. . . f︸ ︷︷ ︸
n times

[x0
0, dx0

0, y
0
0] . . .] =

= f [x0
−(n−1), x

0
−n, f [x0

−(n−2), x
0
−(n−1), . . . , f [x0

0, x
0
−1, y

0
0] . . .]

. . .
yn

n+i = f [x0
−(n−1)+i, x

0
−n+i, f [x0

−(n−2)+i, x
0
−(n−1)+i, . . . , f [x0

i , x
0
i−1, y

0
i ] . . .]

The equation that characterises the array is of the following form:

Yn = ~f [X−(n−1), X−n, ~f [X−(n−2), X−(n−1), . . . ~f︸ ︷︷ ︸
n times

[X,X−1, Y
0] . . .] (5.34)
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Note: The first result that depends only on relevant values of the input (we
mean by ”relevant values” the elements of X) is

yn
2n = f [x1, x0, f [x2, x1, . . . f [xn, xn−1, y

0
n] . . .]

Design Problem 5.4. (Unidirectional arrays with delayed input)
Given a functional program describing F [n, X]

find y0, (where Y 0 = (y0)∞) and the (nontrivial part of the) transition
function, denoted by f such that

F [n, X] = ~f [X−(n−1), X−n, F [n− 1, X]] (5.35)

F [1, X] = ~f [X,X−1, Y
0] , (5.36)

where ~f fulfills condition (5.16).

Example 5.9. - Computing
∑n−1

i=0 Wi

Given a list W = 〈w0, w1, . . .〉, we would like to compute

n−1∑
i=0

Wi = 〈w0 +w1 + . . .+wn−1, w1 +w2 + . . .+wn, w2 +w3 + . . .+wn+1, . . .〉

Extracting the first element of the sum, we can write
∑n−1

i=0 Wi = W0 +∑n−1
i=1 Wi. In order to obtain a recursive description of the form (5.35)-(5.36)

we use the following notation:
Let X = WN−1 and F [n,X] =

∑N−1
i=N−n Xi−(N−1). (Note that for N = n

the function F [n,X] computes exactly the sum, we are interested in, that is
F [n, X] =

∑n−1
i=0 Wi.)

Then F [n, X] = X−(n−1) +
∑N−1

i=N−(n−1) Xi−(N−1) = X−(n−1) + F [n − 1, X],

which is of the form of equation (5.35). From here we get by projecting
X−(n−1) into x and F [n − 1, X] into y, the transition function f [x, dx, y] =
x + y.

We now verify condition (5.36): F [1, X] = ~f [X, X−1, Y
0], that is X =

X + Y 0. From here we conclude that y0 = 0. Thus Y 0 = 0∞.
Note: Because X = WN−1 the initialization values x−1, x−2, . . . are not

all blank values, but are equal to the value of the corresponding element of
W .

Internal registers

Considering that a PE also has an internal register with constant value, we
can reason in the same way as in section 5.4.1. If we introduce a constant
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state register qi = qi to each PEi, the equation (5.34), that describes the
functioning of the array will change in the following way:

Yn = ~f [qn−1, X−(n−1), X−n, ~f [qn−2, X−(n−2), X−(n−1), . . . ~f︸ ︷︷ ︸
n times

[q0, X,X−1, Y
0] . . .]

(5.37)

Design Problem 5.5. (Unidirectional arrays with delayed input and con-
stant internal state registers)
Given FU0,n−1 [n, X]

find Q0,n−1, which is a permutation of U0,n−1, y0 (such that Y 0 = (y0)∞)
and the (nontrivial part of the) transition function, denoted by f such that

FQ0,n−1 [n,X] = ~f [qn−1, X−(n−1), X−n, FQ0,n−2 [n− 1, X]] (5.38)

Fq0 [1, X] = ~f [q0, X,X−1, Y
0] , (5.39)

where the list function ~fq[〈X, X ′, Y 〉] satisfies condition (5.16). In other

terms ~f [q, 〈X, X ′, Y 〉] satisfies condition (5.20) with f = 〈fy, fq〉 and fq[x] =
x.

Example 5.10. - Convolution of a finite and an infinite sequence

Given a finite sequence A0,n−1 = 〈a0, a2, . . . , an−1〉, and an infinite one,
X−(n−1) = 〈x−(n−1), x−(n−2), . . . , x0, x1, . . .〉, the convolution of A0,n−1 and
X−(n−1) is
Y = 〈y0, y1, . . .〉, where

yi =
n−1∑
j=0

aj∗xi−j,∀i = 0, 1, 2, . . .

In other terms:

Y =
n−1∑
j=0

aj∗X−j (5.40)

(where a∗(x �
^ X) = 〈a∗x〉 �

^ (a∗X))
We can write

FA0,n−1 [n, X] =
∑n−1

j=0 aj∗X−j = an−1∗X−(n−1) +
∑n−2

j=0 aj∗X−j =

= an−1∗X−(n−1) + FA0,n−2 [n− 1, X],

which is of the form (5.38). From here we conclude by projection that the
transition function is f [x, dx, a, y] = a∗x + y.
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Verifying condition (5.39) we have: Fa0 [1, X] = ~f [a0, X,X−1, Y
0], that is

a0∗X = a0∗X + Y 0 ⇒ y0 = 0 and Y 0 = 0∞.

We now consider the more general case, when a PE also has internal
register(s) with variable value. This register-type is denoted by r, while q
denotes the registers with constant value. As already mentioned, a register
with constant value can be seen as a special case of the former one, however
we distinguish between the two register-types in the following description,
because we consider the case when the constant register values are given as
parameter of the problem.

Design Problem 5.6. (Unidirectional arrays with delayed input and inter-
nal state registers)
Given a functional program describing FU0,n−1 [n, X]

find Q0,n−1, which is a permutation of U0,n−1, the initialization value for
the internal state registers: r0, y0 (such that Y 0 = (y0)∞) and the (nontrivial
part of the) transition function, f = 〈fy, fr〉 such that

FQ0,n−1 [n, X] = ~fy[r0, qn−1, X−(n−1), X−n, FQ0,n−2 [n− 1, X]] (5.41)

Fq0 [1, X] = ~fy[r0, q0, X,X−1, Y
0] , (5.42)

where the function ~fy[〈r, q〉, 〈X, X ′, Y 〉] satisfies condition (5.20).

Example 5.11. - multiplication of two fixed size integers
Let A0,n−1 = 〈a0, a1, a2 . . . , an−1〉 and B0,m−1 = 〈b0, b1, b2 . . . , bm−1〉 be the
list representation of two fixed size integers. A represents a = a0 + a1β +
a2β

2 + . . . + an−1β
n−1, where β > 1 is the radix for integer representation.

We want to compute the product of the two integers: c = a ∗ b.

The first task is to express the computation as a functional program,
that is to express the computations using list representation and also find a
recursive description for the function to be computed.

One of the input lists (let us take B0,m−1) will be extended to an infinite
list by adding an infinite number of trailing zeroes, which does not change
the value of the represented number.
B = B0,m−1^0∞ = 〈b0, b1, . . . bm−1, 0, 0, 0, . . .〉.

There are more solutions to express the product recursively. We use the
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following idea:

a ∗ b = an−1an−2 . . . a1a0 ∗ bm−1bm−2 . . . b1b0 =

= a0 ∗ bm−1bm−2 . . . b1b0 +

+ a1 ∗ bm−1bm−2 . . . b1b00 +
. . .

+ an−1 ∗ bm−1bm−2 . . . b1b0 00 . . . 0︸ ︷︷ ︸
n−1 times

=

= an−1 ∗ bm−1bm−2 . . . b1b0 00 . . . 0︸ ︷︷ ︸
n−1 times

+

+ an−2 . . . a1a0 ∗ bm−1bm−2 . . . b1b0

Using list representation bm−1bm−2 . . . b1b00 is expressed by B−1, where
the introduced blank value is 0. In the same way B−i, where i > 0 represents
the number b shifted with i positions to the left (B−i = 0i^B).

The product of the two numbers can be written as

FA0,n−1 [n,B] =
n−1∑
j=0

aj ∗B−j ,

where the sum operator applied on lists does not stand for the simple addition
of lists but involves the addition with carry propagation.

The function that defines the addition with carry propagation of two lists
(denoted by ~ac) is defined in the following way:

~ac[r, u
�
^ U, v

�
^ V ] = (r + u + v)modβ

�
^ ~ac

[⌊
r + u + v

β

⌋
, U, V

]
(5.43)

Note that the ~ac function has property (5.20).
Because FA0,n−1 [n, B] = ~ac[0, an−1 ∗B−(n−1),

∑n−2
j=0 aj ∗B−j], we can write

FA0,n−1 [n, B] = ~ac[0, an−1 ∗B−(n−1), FA0,n−2 [n− 1, B]],

which is of the form of (5.41).
From here we conclude that the initialization value for the internal state

register r that stores the carry is 0. Q0,n−1 of (5.41) is equal to A0,n−1, and
the transition function f = 〈fy, fr〉 is:{

fy[r, a, x, dx, y] = (r + a ∗ x + y)modβ

fr[r, a, x, dx, y] = b r+a∗x+y
β
c
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Verifying condition (5.42) we have:

a0 ∗B = ~ac[0, a0 ∗B, Y 0] ,

from here y0 = 0 and Y 0 = 0∞.

5.4.3 Unidirectional Arrays with Delayed Output and
Input ”Pass-Through”

We consider here unidirectional linear arrays, where the input is ”passing
through” the array, in the same way as described in section 5.4.1, but the
output is delayed with one or more time steps. Delay elements, denoted by
dy|1|, . . . dy|k| are introduced, that temporarily store the y values for k time
steps. We describe in the sequel in detail the case when the output is delayed
by one time step.

Figure 5.15. describes the computations performed by a typical PE of
such an array. Here the computation of x and y belongs to the trivial part
of the transition function.

- -

- -

yi

xi

yi+1

xi+1

dyi

Computations:
dyi

t+1 = f [xi
t, y

i
t]

yi+1
t+1 = dyi

t

xi+1
t+1 = xi

t

Figure 5.15: Computation of a PE in an array with delayed output

On Fig. 5.16. the initialization of the array is presented.
In case of such an array the first n − 1 results that leave the array at

PEn−1 depend only on the initialization values, but even if the nth element
of the result already involves elements of the input X, the first intermediary
result computed at PE0 in the first time step will be part of the result that
leaves the array at PEn−1 only at the time instant 2n.



CHAPTER 5. FUNCTIONAL-BASED SYSTOLIC ARRAY DESIGN 105

- -

- -
. . .

- - -

- - -

Y 0 y−2 y−4 y−(2n−2)

X

y−1

x−1

y−3

x−2 x−(n−1)

y (2n 1)- -

x−nPE0 PE1 PEn−1

Figure 5.16: Initialization of the array with delayed output

The first 2n− 1 elements of the result are:

yn
1 = dyn−1

0 = y−(2n−1)

yn
2 = dyn−1

1 = f [xn−1
0 , yn−1

0 ] = f [x−(n−1), y−(2n−2)]

yn
3 = f [xn−1

1 , yn−1
1 ] = f [xn−2

0 , dyn−2
0 ] = f [x−(n−2), y−(2n−3)]

. . .
yn

2n−2 = . . . = f [xn−3, f [xn−4, . . . f︸ ︷︷ ︸
n−1 times

[x−1, y−2] . . .]

yn
2n−1 = . . . = f [xn−2, f [xn−3, . . . f︸ ︷︷ ︸

n−1 times

[x0, y−1] . . .]

The common characteristic of the results that appear beginning with the
2nth time instant is that they all involve the application of the transition
function f n times:

yn
2n = . . . = f [xn−1

2n−2, f [xn−2
2n−4, . . . , f︸ ︷︷ ︸

n times

[x0
0, y

0
0]] =

= f [xn−1, f [xn−2, . . . , f︸ ︷︷ ︸
n times

[x0, y0]]

. . .
yn

2n+i = . . . = f [xn−1+i, f [xn−2+i, . . . , f︸ ︷︷ ︸
n times

[xi, yi]]

The equation that characterises the array is of the following form:

Y2n = ~f [Xn−1, ~f [Xn−2, . . . ~f︸ ︷︷ ︸
n times

[X, Y 0] . . .] . (5.44)



CHAPTER 5. FUNCTIONAL-BASED SYSTOLIC ARRAY DESIGN 106

Design Problem 5.7. (Unidirectional arrays with delayed output)
Given a functional program describing F [n, X]

find y0 (where Y 0 = (y∞) and the (nontrivial part of the) transition
function, f , such that

F [n, X] = ~f [Xn−1, F [n− 1, X]] (5.45)

F [1, X] = ~f [X, Y 0] , (5.46)

where ~f has property (5.16).

In case if the PEs of the array also have a constant internal state register
q (see the description in section 5.4.1), the equation that characterises the
array will be the following:

Y2n = ~f [qn−1, Xn−1, ~f [qn−2, Xn−2, . . . ~f︸ ︷︷ ︸
n times

[q0, X, Y 0] . . .] (5.47)

Design Problem 5.8. (Unidirectional arrays with delayed output and con-
stant internal state registers)
Given a functional program describing FU0,n−1 [n, X]

find Q0,n−1 which is a permutation of U0,n−1, y0, (where Y 0 = (y0)∞) and
the (nontrivial part of the) transition function f such that

FQ0,n−1 [n, X] = ~f [qn−1, Xn−1, FQ0,n−2 [n− 1, X]] (5.48)

Fq0 [1, X] = ~f [q0, X, Y 0] , (5.49)

where ~fq[〈X, Y 〉] has property (5.16).

Example 5.12. - Convolution of a finite and an infinite sequence
We are now revisiting the problem presented in example 5.10.

We use the following notation:
W = X−(N−1) and FQ0,n−1 [n, W ] =

∑N−1
j=N−n aj∗WN−1−j, where Q0,n−1 is a

permutation of A0,n−1. Equation (5.40) can be written in the following way:

FQ0,n−1 [n, W ] = aN−n∗W+
N−1∑

j=N−n

aj∗WN−1−j = aN−1−n∗W+FQ0,n−2 [n−1, W ],

which is of the form (5.48) if we choose Q0,n−1 = 〈an−1, . . . , a1, a0〉. Note
that for N = n the computation performed by the function FQ0,n−1 [n,W ] is
equivalent with (5.40).
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By projection we get the transition function f [w, q, y] = q∗w + y. Then
we verify condition (5.49):

Fq0 [1, W ] = ~f [W, q0, Y
0]

That is q0∗W = q0∗W + Y 0 ⇒ y0 = 0 and Y 0 = 〈0, 0, . . .〉.
In the even more complex situation when the PE also has internal state

register(s) we can formulate the design problem in the following way.

Design Problem 5.9. (Unidirectional arrays with delayed output and in-
ternal state registers)
Given a functional program describing FU0,n−1 [n, X]

find Q0,n−1, which is a permutation of U0,n−1, the initialization value for
the internal state registers: r0, y0 (such that Y 0 = (y0)∞) and the (nontrivial
part of the) transition function, f = 〈fdy, fr〉, such that

FQ0,n−1 [n, X] = ~fdy[r0, qn−1, Xn−1, FQ0,n−2 [n− 1, X]] (5.50)

Fq0 [1, X] = ~fdy[r0, q0, X, Y 0] , (5.51)

where the function ~fdy[〈r, q〉, 〈X, Y 〉] satisfies condition (5.20).

Example 5.13. - Multiplication of fixed size integers
We are revisiting the problem presented in example 5.11.

We use the same idea and the notation X = 0n−1^B. Now the function
to be computed can be written in the following form:

FQ0,n−1 [n, X] =
n−1∑
j=0

an−1−j ∗Xj ,

where Q0,n−1 is a permutation of A0,n−1 and the sum operator again involves
the addition with carry propagation (5.43).

Because FQ0,n−1 [n, B] = ~ac[0, a0 ∗Xn−1,
∑n−2

j=0 an−1−j ∗Xj], we can write

FQ0,n−1 [n, X] = ~ac[0, q0 ∗Xn−1, FQ0,n−2 [n− 1, X]] ,

with Q0,n−1 = 〈an−1, an−2, . . . , a1, a0〉, which is of the form (5.50).
From here we get the (unknown part of the) transition function f =

〈fdy, fr〉: {
fdy[r, q, x, dy, y] = (r + q ∗ x + y)modβ

fr[r, q, x, dy, y] = b r+q∗x+y
β
c
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The initialization value for the internal state register r that stores the
carry is 0. By verifying condition (5.51) we conclude that Y = 0∞.

Note: we added a number of n − 1 zeroes to the input, thus we obtained
a recursive description of the product that involves the application of the
function ~ac n times. Because in the case of integer multiplication the first
n− 1 elements of the result can be actually computed by applying the same
function only 1, 2, . . . , n − 1 times respectively, the resulted array can be
optimised by using directly B as input instead of X = 0n−1^B.

5.4.4 Unidirectional Pass–Through Array

We present here a very simple type of unidirectional array consisting of pro-
cessing elements (PEs) that modify the input and send its elements to the
next PE.

Figure 5.17 presents the functional view of such an array: we can say
that it is composed of a head processor (PE0), while the rest of PEs form the
tail array (the part of the array marked with dashed line), the functioning of
which is similar to the whole array.

The list X is the global input to the array (its elements are fed into the
array through PE0 at each time step). If the array computes the function
F [X] and the head processor PE0 outputs the modified list K[X] that satisfies
property (5.16), then the tail array will compute F [K[X]].
Y is the list of results.

Head Tail

- -. . .- - -
X Y

PE0

Figure 5.17: Unidirectional Pass-Through array

The recursive equation that characterises the functioning of the array is
of the following form

F [X] = F [G[X]] , (5.52)

where G is an online transitive function.
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Specification:
The design problem consists in finding the scalar projection of G when
a recursive description of the form (5.52) of F is given.

Design method:
Determine G[X] from the recursive description of F .

The problem reduces to the design problem of a single systolic processor
that computes G.

The condition for termination has to be analyzed separately. Note that
the equation (5.52) does not tell anything about the termination of the
problem. We either know the number of iterations (and from here we
can conclude the number of PEs) or a special termination condition
is given, that also depends on the input, then the transition function
should also verify whether this condition holds.

5.4.5 Unidirectional Array for GCD Computation –
Case Study

In order to demonstrate the use of our functional–based method on a more
complex example, we give here the detailed description of the design steps
of a unidirectional pass-through array which computes the greatest common
divisor (GCD) of multiple precision integers. We presented this case study
in [RJ06].

Definition of the algorithm for GCD Computation

Let a = a0+2∗a1+22∗a2+ . . . and b = b0+2∗b1+22∗b2+ . . . be two integers
expressed in radix two1. We use the lists of digits as representations of the
numbers, and we assume that the least significant digits are at the beginning.
The lists may be considered infinite, since padding zeroes at the end of the
finite representation does not change the value of the number. In fact, the
GCD algorithm below may produce intermediate negative values, and it is
designed for numbers in complement representation. The representation of a
negative number will be padded with ones.

The PlusMinus algorithm for GCD computation (from [Jeb94a], which
improves [BK85], which is based on [Ste67]) proceeds in three steps:

1The PlusMinus GCD algorithm has be generalised to representations using as radix an
arbitrary power of two [Jeb93], which can be implemented on a systolic array in the same
manner as shown here – but this version would unnecessarily complicate the presentation.
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First step: We remove the common least significant null digits of a and
b and obtain as and bs, that is, we divide both a and b by the same power
of 2, say 2k. The GCD of these numbers, GCD′ = GCD(as, bs) is called the
”pseudo-GCD” of a and b, and obviously

GCD = 2k ∗GCD′.

Moreover, GCD′ is not divisible by 2.
Our systolic device will perform this operation, and then compute the

pseudo-GCD, but will not handle the computation of k, neither the multi-
plication by 2k. In a practical situation, it is reasonable to assume that the
systolic array is under the control of some main device (either a usual com-
puter or some other complex hardware), which supplies the input operands
and collects the result. We assume that the final multiplication (in fact a
shift) by 2k is performed by this main device, and also one sees that it is
straightforward to add to the systolic array a counter which identifies the
value of k and sends it to the main device.

Second step: We interchange as and bs if necessary, such that the least
significant digit of as is 1. This is an invariant throughout the rest of the
algorithm, which simplifies the operations.

Third step: We calculate now the pseudo GCD of a and b (the a and
b values from the following algorithm are actually the as and bs obtained in
the previous steps).

GCD[a, b] = a, if b = 0 (5.53)

= GCD

[
a,

b

2

]
, if b0 = 0 (5.54)

= GCD

[
b,

a + b

4

]
, if (b0 = 1) ∧ (a1 6= b1) (5.55)

= GCD

[
b,

a− b

4

]
, if (b0 = 1) ∧ (a1 = b1) (5.56)

The last three transformations are correct because the pseudo GCD is not
divisible by 2. Note also that these transformations preserve the invariant
(a0 = 1), thus a cannot become 0 (therefore GCD[0, b] = b is not necessary).

Termination follows from the decrease of maximum of the significant
lengths of a and b. Indeed, by adding or subtracting the arguments in the
respective cases, the last two bits of the numbers always become zero. Since
the sum or the difference will be at most one bit longer, after two shifts it
will become one bit shorter. (The full details of the analysis are presented in
[Jeb94b].)
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The reader may note that the usage of complement arithmetic is essential
for the correct implementation of this algorithm. Indeed, since only the least
significant digits of a and b are inspected, in cannot be known whether a−b is
negative or positive, thus at a certain moment one or both of the arguments
will be negative.

Design steps of the Unidirectional Array for GCD Computation

In the previous section we described the algorithm for GCD computation.
In the sequel we describe the systematic design of a unidirectional systolic
array, able to solve the problem.

Let A = 〈a0, a1, . . .〉 and B = 〈b0, b1, . . .〉 be the list representation of the
two integers, a respectively b.

Step 1 can be computed by a single processor (see example 5.5).
Step 2 can also be computed by a single processor (see example 5.4).
Step3:

In equation (5.54) b/2 appears, which in case of an even binary number
means a shift to the right of the digits of b. In the list representation this is
equivalent to T [B]. In the same way the equivalent in the list notation for
b/4 is the second tail of B, that is T2[B].

Using the list notation we can rewrite equations (5.53)-(5.56) in the fol-
lowing way:

GCD[A, B] = A, if B = 0
= GCD[A, T [B]], if H[B] = 0
= GCD[B, T2[A + B]], if (H[B] = 1) ∧ (H1[A] 6= H1[B])
= GCD[B, T2[A−B]], if (H[B] = 1) ∧ (H1[A] = H1[B])

The function GCD appears three times on the rhs. of the definition. Thus
the computation of the GCD function can be also written in the following
way:

GCD[〈A, B〉] = A, if B = 0
= GCD[
〈A, T [B]〉, if H[B] = 0,
〈B, T2[A + B]〉, if (H[B] = 1) ∧ (H1[A] 6= H1[B]),
〈B, T2[A−B]〉, if (H[B] = 1) ∧ (H1[A] = H1[B])
]

which is of the form (5.52) (except for the first equation, which is the stop
condition and will be discussed later).
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We know that if a0 = b0 = 1, then T2[A−B] = T2[A]−T2[B], when a1 = b1

and T2[A + B] = 1
�
+ T2[A] + T2[B], when a1 6= b1 . If we use the notation

X = 〈A, B〉 and FA and FB are the already used functions that return the A
respectively B component of the input, the K function computed by a PE
is:

K[H[X], H1[X], X, T [X], T2[X]] =

= 〈FA[X], FB[T [X]]〉 if FB[H[X]] = 0 (5.57)

= 〈FB[X], 1
�
+ FA[T2[X]] + FB[T2[X]]〉 if (FB[H[X]] = 1) ∧ (5.58)

(FA[H1[X]] 6= FB[H1[X]])

= 〈FB[X], FA[T2[X]]− FB[T2[X]]〉 if (FB[H[X]] = 1) ∧ (5.59)

(FA[H1[X]] = FB[H1[X]])

Equation (5.57) satisfies property (5.16), while the equations (5.58) and
(5.59) satisfy property (5.18). The latter two equations induce the intro-
duction of an internal state register, that we denote by r. It will store the
carry from the addition (respectively subtraction) operation (for details see
example 5.2). The carry is initialised with 1 respectively 0 when s is set,
depending whether addition or subtraction has to be performed.

On the other hand we can conclude from the form of the definition of
the K function (equations (5.57)-(5.59)) that the function can be computed
by an auto-configurable processor with 2-delay. Two transition variables are
introduced to delay the input. Because in the ”if” statements appear only
the first two elements of the input, the state register will be set at the time
step when the second input is fed into the PE. The list of control signals will
be SI = 〈0, 1, 1, 1, . . .〉.

Note that here we are not interested in indicating the appearance of the
first result (k = 2 is known), but it is very important that the list of control
signals SQ that leaves the processor PE0 is an adequate sequence of control
signals which are input to the next PE. This means that the control signals
associated to the first element of the result should be 0, the other values 1.
To obtain such a list of output signals one needs to delay the control signal,
too by k = 2 elements (two transition registers for the control signal have
to be included, as shown on Figure 5.18, in the same way as the inputs are
delayed).

Stop condition: The condition GCD[A, B] = A if B = 0 as it is can
not be verified in a systolic way. We should provide some information about
the length of the inputs. If the processor knows the beginning of the input
(this can be deduced with the help of the control signal) and another signal
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indicates the end of the input, then the processor can decide when the input
is null (note that in our case this can be only the input B).

The indication of the size of the input can be achieved by associating an
additional tag-bit to each binary digit of the input. The value of the tag-bit
will be 0 for each significant digit of the binary number and 1 beginning with
the sign bit of the number.

Now the input lists A and B both have two components xx = 〈tx, x〉,
where tx is the tag-bit (that indicates the end of the input) and x is the
digit. Let Tag, and Dig be the list functions that select from the input the
list of tag-bits and digits, respectively.

Because A and B are binary numbers, in the expression (A+B)/4 (T2[A+
B] in list notation) A + B can have at most one more digit than the longer
number out of A and B. This means that (A + B)/4 is at least one digit
shorter than the longer number. This property assures the termination of
the algorithm as shown in [Jeb94b].

The list of tag-bits that indicate the longer number out of A and B is
determined by the expression Tag[A] ∧ Tag[B] (where ∧ is the bitwise and
operation). That is why the tag-list corresponding to a number that is ”one
digit shorter” than the longer out of A and B is

T [Tag[A] ∧ Tag[B]] = T [Tag[A]] ∧ T [Tag[B]] .

The computation of the GCD can now be rewritten in the following way:

GCD[〈A, B〉] = A, if (H[Dig[B]] = 0)∧
∧(H1[Tag[B]] = 1)

= GCD[
〈A, T [B]〉, if (H[Dig[B]] = 0)∧

∧(H1[Tag[B]] = 0),
〈B,
〈T [Tag[A]] ∧ T [Tag[B]],

1
�
+ T2[Dig[A]] + T2[Dig[B]]〉〉, if (H[Dig[B]] = 1)∧
∧(H1[Dig[A]] 6= H1[Dig[B]]),
〈B,
〈T [Tag[A]] ∧ T [Tag[B]],
T2[Dig[A]]− T2[Dig[B]]〉〉, if (H[Dig[B]] = 1)∧
∧(H1[Dig[A]] = H1[Dig[B]])

]

The final expression for K can be automatically projected into the scalar
space -using the rules described in Sect. 5.3.4- to obtain the computations of
a PE.
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Figure 5.18 presents the structure of a PE for the 3rd step of the GCD
computation. dxx|j| (where x stands for either a or b and j is 1 or 2) denotes
the transition register with two components: 〈dtx|j|, dx|j|〉, where the first
component is the correspondent of the tag-bit and the second one corresponds
to the digit. We use the notation xxi for the two components of the input
〈tai, ai〉 or 〈tbi, bi〉.

- -

- -

- -

〈tai, ai〉 〈taq, aq〉
〈tbi, bi〉 〈tbq, bq〉

si sq

s r
ds|1| ds|2|
〈 〉:
〈 〉:
〈 〉:
〈 〉:

daa|1|
dbb|1|
daa|2|
dbb|2|

Figure 5.18: PE for the problem of GCD computation

Note that T [Dig[X]] = Dig[T [X]] and H[Dig[X]] = Dig[H[X]], which
holds for the Tag function, too.

To avoid the repetition of the same computation for a and b, in the
following description x stands for either a or b.
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Computations of a PE:

〈aqt+1, bqt+1〉 = 〈$, $〉 if st = $ (5.60)

= 〈da|2|t, $〉 if st = 1 (5.61)

= 〈da|2|t, db|1|t〉 if st = 2 (5.62)

= 〈db|2|t, low[ait
� �
+ bit

� �
+ rt]〉 if st = 3 (5.63)

= 〈db|2|t, low[ait
� �
− bit

� �
− rt]〉 if st = 4 (5.64)

〈taqt+1, tbqt+1〉 = 〈$, $〉 if st = $ (5.65)

= 〈dta|2|t, $〉 if st = 1 (5.66)

= 〈dta|2|t, dtb|1|t〉 if st = 2 (5.67)

= 〈dtb|2|t, dta|1|t ∧ dtb|1|t〉 if (st = 3) ∨ (st = 4)(5.68)

rinit = $ (5.69)

rt+1 = 1 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (5.70)

∧(bit 6= ait)

= high[ait
� �
+ bit

� �
+ rt] if st = 3 (5.71)

= 0 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (5.72)

∧(bit = ait)

= high[ait
� �
− bit

� �
− rt] if st = 4 (5.73)

= rt otherwise (5.74)

dxx|1|t+1 = xxit (5.75)

dxx|2|t+1 = dxx|1|t (5.76)

sqt+1 = ds|2|t (5.77)

ds|2|t+1 = ds|1|t (5.78)

ds|1|t+1 = sit (5.79)

sinit = $ (5.80)

st+1 = 1 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 0) ∧ (5.81)

∧(tbit = 1)

= 2 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 0) ∧ (5.82)

∧(tbit = 0)

= 3 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (5.83)

∧(bit 6= ait)

= 4 if (st = $) ∧ (sit = 1) ∧ (db|1|t = 1) ∧ (5.84)

∧(bit = ait)

= st, otherwise (5.85)
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The result is given by the PE, where the state register s is set to 1.
Note that the stop condition only detects the termination of the trans-

formations of the argument: from this point on, all the PE’s must leave the
arguments unchanged. Effective termination of the algorithm on a concrete
systolic array is a closely related, but different issue. Namely, since a concrete
systolic array has a finite number of PE’s, the result (i. e. pseudo GCD) will
be generated at the right-hand-side of the array only if the number of PE’s
exceeds the number of steps which are necessary for the particular arguments
of the respective computation. In practice, this problem can be tackled in
various ways, which are in fact the same for all the arrays of this type. One
solution is to handle arguments of a maximum known size by an array having
a number of processors superior to the upper bound of the number of steps.
An alternative solution is to pick-up the output even if the computation is
not finished, and then to re-enter it again into the re-initialised array. The
latter allows to handle arguments of arbitrary type, even though the array
has a fixed size, which is an interesting feature specific to the pass-through
arrays.
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5.5 Bidirectional Arrays

We study in this section bidirectional linear systolic arrays, that is arrays with
two directional data-flow: left-to-right and right-to-left. Some of the arrays
have two input PEs for the global input: the leftmost and the rightmost PE.
In case of other bidirectional arrays the global input is introduced only at
the leftmost PE. The left-to-right output of the rightmost PE may be fed
in again into the array from right to left, in this case the rightmost PE is
slightly different from the other PEs of the array (see Fig. 5.30).
The case of online–arrays, a special class of bidirectional arrays, is addressed
separately in Sect. 5.6.

5.5.1 Bidirectional Array with One Directional
”Pass-Through” Input

Figure 5.19 represents a bidirectional array with input list X and the list of
results Y moving in opposite directions with the same velocity. Y n = Y init =
y∞init denotes the list of initial values that contribute to the computation of
the result. We denoted by xi, respectively yi, −(n− 1) ≤ i ≤ −1 the initial
values of the input, respectively output data channels.

� �

- -
. . .

� � �

- - -

Y ny−(n−1) y−(n−2) y−1

X x−1 x−2 x−(n−1)PE0 PE1 PEn−1

Figure 5.19: Bidirectional array with one ”pass-through” input. Initial state.

The computations performed by a PE are presented in Fig. 5.20.
The list of results leaves the array at PE0. The first result that involves yinit

is y0
n, that is the y value which leaves PE0 at time step n:

y0
n = f [Xn−1, f [Xn−3, . . . , f [X−(n−3), f︸ ︷︷ ︸

n times

[X−(n−1), yinit]] . . .]

However the first result that involves only the elements of the input (no initial
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yi

xi

yi+1

xi+1

Computations:

yi
t+1 = f [xi

t, y
i+1
t ]

xi+1
t+1 = xi

t

Figure 5.20: Computation of a PE in a bidirectional array with one input
”pass-through”

value) appears only at time step 2n− 1:

y0
2n−1 = f [x2n−2, f [x2n−4, . . . , f [x2, f︸ ︷︷ ︸

n times

[x, yinit]] . . .]

...
y0

2n−1+i = f [x2n−2+i, f [x2n−4+i, . . . , f [x2+i, f︸ ︷︷ ︸
n times

[xi, yinit]] . . .]

...

In the more concise list notation this is

Y 0
2n−1 = ~f [X2n−2, ~f [X2n−4, . . . , ~f [X2, ~f︸ ︷︷ ︸

n times

[X, Y init]] . . .] .

The functioning of the array can now be formulated in a functional way. Let
F [n,X] = Y 0

2n−1, then

F [n, X] = ~f [X2n−2, F [n− 1, X]] (5.86)

F [1, X] = ~f [X, Y init] (5.87)

Note that yi, i ≥ 2n−1 depends on xi−1, xi−3, . . . , xi−(2n−1), that is it depends
on Pn[Xi−(2n−1){2}]. This means that the list of results computed by such an
array can be split into two distinct parts, the elements of which can be
computed using two independent lists. Y 0

2n−1{2} depends on the elements of

X{2} while Y 0
2n{2} depends on the elements of X1{2}.

Let F ′ be a list function such that Y 0
2n−1{2} = Step2[F [n,X]] = F ′[n, X{2}].
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The functional description of the computation of Y 0
2n−1{2} is

F ′[n, X{2}] = ~f [X2n−2{2}, F
′[n− 1, X{2}]] (5.88)

F ′[1, X{2}] = ~f [X{2}, Y
init] . (5.89)

Let X{2} = W . Note that

Step2 T2k X = Tk Step2 X = Tk X{2} = Tk W = Wk .

Thus (5.88)-(5.89) can be written in the following form

F ′[n,W ] = ~f [Wn−1, F
′[n− 1, W ]] (5.90)

F ′[1, W ] = ~f [W, Y init] , (5.91)

which is of the form of (5.45)-(5.46), the functional description that charac-
terises unidirectional arrays with input ”pass-through” and delayed output.

In the same way for Y 0
2n{2} = Step2[T [F [n,X]]] = F ′[n, X1{2}], with

X1{2} = V we get a functional description of the same form.

Note: Let us define the function I that interleaves two lists as

I[a
�
^ A, b

�
^ B] = 〈a, b〉^I[A, B] .

For X = I[W, V ] the array computes simultaneously two identical (indepen-
dent) problems, F ′[n, W ] and F ′[n, V ], where F ′ is of the form (5.45)-(5.46).
We get the results every second time step, the elements of F ′[n, W ] leave the
array beginning with time step 2n − 1, and those of F ′[n, V ] starting with
time step 2n.

It turns out that a bidirectional array with one directional pass-through
input can in fact solve the same class of problems as a unidirectional pass-
through array with delayed output. The difference is that in case of the
unidirectional one we get the elements of the result at each time step, start-
ing with time step 2n, while the bidirectional array solves simultaneously
two problems of the same type and the elements of the results of these two
problems appear interleaved, at each second time step, starting with time
step 2n − 1 respectively 2n. This means that if we want to solve a single
problem, we can do it twice as faster if we use the unidirectional array, but if
one solves the same type of problem (with different input) repeatedly, then
we cannot spare time with either of them, because the throughput of the two
arrays is the same.
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� �

- -
. . .
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yinit yinit$ . . .
y−n−1

2 $ $

x0x1. . . $ $ x−1 x−n−1
2PE0 PE1 PEn−1

Figure 5.21: Bidirectional array with sparse input (n is odd). Initial state.

Figure 5.21 depicts the bidirectional array with sparse input X$ for solving
a single problem of type (5.90)-(5.91). The array is an inefficient one, because
the PEs are idle at each second time step.

There are common techniques for the optimization of arrays with sparse
input. Some ideas are presented in Sect. 5.5.4.

Note:

• If we assume that f [$, y] = y (that is, if the input of the PE is a blank
value, then the output is not changed) and
yi = yinit,∀−(n−1) ≤ i ≤ −1 (the initial values of the output channels
and the initial values yinit are the same), then the array can be reduced
to a single PE (see the considerations from Sect. 5.6.1).

• If we are only interested in the elements of the results which involve
only the input values of X then the computation of these elements start
only after n timesteps. Thus we can consider the first n − 1 steps the
initialisation steps, while the real computations begin at time step n.
If we would like to study only the computation-part, then we can con-
sider that the initialization values of the array on Fig. 5.19 are the first
n − 1 elements of X (that is Pn−1[X]) instead of X−(n−1),−1, and the
global input to the array is Xn−1 instead of X.

5.5.2 Bidirectional Array with Internal State

We study separately the case of constant and variable internal state registers.
In case of constant internal state, the values of the local memory variables
can be considered as parameters of the problem, while in case of variable
internal state values only a scalar is given, which serves az initial value of
the internal state registers.
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Internal State Registers with Constant Value

Each PE has an internal state register, denoted by q, the value of which
remains unchanged during the computations. For PEi (0 ≤ i ≤ n − 1) we
have ∀t ≥ 0, qi

t = qi = qi, where Q0,n−1 = 〈q0, q1, . . . qn−1〉 is the finite
list of the internal state register values. These values can be considered as
”parameters” of the problem solved by the array.

� �

- -

qi

yi

xi

yi+1

xi+1

Computations:
yi

t+1 = f [xi
t, q

i
t, y

i+1
t ]

xi+1
t+1 = xi

t

qi
t+1 = qi

t = qi

Figure 5.22: Computation of a PE in a bidirectional array with one input
”pass-through” and constant internal state variables

The computations performed by a PE are presented in Fig. 5.22.
The 2n − 1th tail of the list of results (which consists of elements that does
not depend on the initial values, only on the elements of the input) is:

Y 0
2n−1 = ~f [X2n−2, q0, ~f [X2n−4, q1, . . . , ~f [X2, qn−2, ~f︸ ︷︷ ︸

n times

[X, qn−1, Y
init]] . . .] .

We can conclude that such an array can solve simultaneously two prob-
lems of the form (5.48)-(5.49), which depend on the same set of parameters
W0,n−1 = 〈qn−1, qn−2, . . . , q1, q0〉.

Internal State Registers with Variable Value

After discovering the connection between uni- and bidirectional arrays with-
out internal state registers respectively with constant internal state registers,
it would be interesting to find out what is the relation between a bidirectional
array with variable internal state registers and a corresponding unidirectional
one with delayed output. The internal state register with variable value is
denoted by r. Figure 5.23 presents the computations performed by a PE.

We assume that the initial value for ri is r0, ∀0 ≤ i ≤ n − 1 and
fr[r0, $, $] = fr[r0, $, y] = fr[r0, x, $] = r0, that is ri will not change its
value if at least one of the inputs of PEi is a blank value.
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Figure 5.23: Computation of a PE in a bidirectional array with one input
”pass-through” and variable internal state registers

The firs result which involves the application of the transition function n
times will appear at PE0 after n time steps:

y0
n = fy[r

0
n−1, x

0
n−1, y

1
n−1] = fy[r

0
n−1, x

0
n−1, fy[r

1
n−2, x

1
n−2, y

1
n−1]] =

= . . . = fy[r
0
n−1, x

0
n−1, fy[r

1
n−2, x

1
n−2, . . . fy︸ ︷︷ ︸

n times

[rn−1
0 , xn−1

0 , yn
0 ] . . .]

Note that if the input and output channels of the array are initialised
with blanks (xi = yi = $,∀i,−(n− 1) ≤ i ≤ −1), then ri

k = r0, ∀k, 0 ≤ k ≤
n− 1− i.

We consider as results the elements of the output starting with time step
n. Thus the list of results, Y 0

n is:

Y 0
n = ~fy[R

0
n−1, Xn−1, ~fy[R

1
n−2, Xn−3, . . . ~fy︸ ︷︷ ︸

n times

[Rn−1
0 , X−(n−1), Y

n
0 ] . . .] , (5.92)

where the R lists are generated by the scalar function fr involving the cor-
responding X respectively Y lists, as follows:

Let FR be a mixed-type function and fr a scalar function such that

FR[r, x
�
^ X, y

�
^ Y ] = fr[r, x, y]

�
^ FR[fr[r, x, y], X, Y ] .

Then
Ri

n−1−i = r0
�
^ FR[r0, Xn−1−2i, Y

i+1
n−1−i] .

We denote by ~f ′y the mixed type function characterised by (5.4), then
(5.92) can be written in the more concise form:

Y 0
n = ~f ′y[r0, Xn−1, ~f ′y[r0, Xn−3, . . . ~f ′y︸ ︷︷ ︸

n times

[r0, X−(n−1), Y
n
0 ] . . .] . (5.93)
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Let F ′[n, r0, X] be the function which computes the list of results. Then
F ′[n, r0, X] = Y 0

n can be expressed recursively in the following way:

F ′[n, r0, X] = ~f ′y[r0, Xn−1, F
′[n− 1, X−1]] (5.94)

F ′[1, r0, X] = ~f ′y[r0, X, Y n
0 ] . (5.95)

Design Problem 5.10. (Bidirectional arrays with input ”pass-through” and
internal state registers)
Given a functional program describing F [n, X]

find

• the initialization value for the internal state registers: r0, and the mixed
type function F ′ such that F ′[n, r, X] = F [n, X]

• y0 (where Y n = (y0)
∞) and the (nontrivial part of the) transition func-

tion f = 〈f ′y, fr〉 such that

F ′[n, r0, X] = ~f ′y[r0, Xn−1, F
′[n− 1, r0, X−1]] (5.96)

F ′[1, r0, X] = ~f ′y[r0, X, Y n] , (5.97)

and ~f [r, 〈X, Y 〉] satisfies property (5.20)

In this case we cannot split anymore the result into two independent parts
as in the case of bidirectional arrays without internal state registers or with
constant internal state registers. Indeed, the first element of Y 0

n depends
only on the elements of X−(n−1)$, but the r register values are also updated
in function of these input elements, thus the next element of the result will
already depend on each element of X−(n−2).

. . .
An interesting case: fr[r, x, y] = x. ← idea to find a meaningful example.

(a very (too) simple example (but maybe good enough for an example) which
can be solved in this way: F [n, X] =

∑2n
i=0 Xi).

. . .

The question whether such an array can solve a problem of the same type
as a corresponding unidirectional array, might be still interesting.

Let us consider the same array, but with sparse input X$. Because we
assumed that fr keeps the value of r unchanged, if at least one of the inputs
is blank, it follows that each PE will update the value of its internal state
register only at each second time step.
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We assume that n is odd.
The list of results will now be the sparse list Y 0

n$:

Y 0
n$ = F ′[n, r0, X$] = ~f ′y[r0, (X$)n−1, F

′[n− 1, r0, (X$)−1]] =

= ~f ′y[r0, Xn−1
2

$, F
′[n− 1, r0, $

�
^ X$]] = . . . =

= ~f ′y[r0, Xn−1
2

$,
~f ′y[r0, Tn−2[$

�
^ X$], . . . , ~f ′y[r0, X−n−1

2
$, Y

n
0 $] . . .] =

= ~f ′y[r0, Xn−1
2

$,
~f ′y[r0, Xn−3

2
$, . . . ,

~f ′y[r0, X−n−1
2

$, Y
n
0 $] . . .] .

The list which contains the relevant elements of the result, that is (Y 0
n$){2} =

Y 0
n , can be determined by applying Prop. 5.3 recursively:

Y 0
n = ~f ′y[r0, Xn−1

2
, ~f ′y[r0, Xn−3

2
, . . . , ~f ′y[r0, X−n−1

2
, Y n

0 ] . . .] . (5.98)

Let W be a list such that X = Tn−1
2

W , that is W = T−n−1
2

X. Then

from (5.98) we get:

Y 0
n = ~f ′y[r0, Wn−1

2
+n−1

2
, ~f ′y[r0, Wn−1

2
+n−3

2
, . . . , ~f ′y[r0, Wn−1

2
−n−1

2
, Y n

0 ] . . .] =

= ~f ′y[r0, Wn−1, ~f ′y[r0, Wn−2, . . . , ~f ′y[r0, W, Y n
0 ] . . .] ,

which can be expressed recursively in the following form

F ′[n, r0, W ] = ~fy[r0, Wn−1, F
′[n− 1, r0, W ]] (5.99)

F ′[1, r0, W ] = ~fy[r0, W, Y 0] . (5.100)

Note that (5.99)-(5.100) is also the description for the functioning of a
unidirectional array with delayed output and variable internal state register.
(See the similarity between (5.99)-(5.100) and (5.50)-(5.51). In the latter
case we assumed that the PE also has constant internal state registers).
This means that with a bidirectional array with sparse input and variable
internal state registers we do can solve the same problem as a corresponding
unidirectional array, the input of which is the input list of the array in the
case of the bidirectional array, shifted by (n− 1)/2 positions.

A bidirectional array with the same structure, having dense input, how-
ever, cannot solve two problems of the same type. For this purpose the PEs
would need an additional internal state register, the values of which are up-
dated alternately. A control sinal (initialised as 〈0, 1〉∞) can be used in order
to determine which one of the two internal state registers should be updated.
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Figure 5.24 depicts the structure and the computations of a PE which
can solve simultaneously two different problems (buy having the same list of
parameters Q0,n−1) of the form (5.50)-(5.51).

See Example 5.13. With an array composed of PEs of Fig 5.24 we can
perform simultaneously two multiplications: a ∗ b and a ∗ c.

� �
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r|1|i q|1|i
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yi+1

xi+1

Computations:

yi
t+1 =

{
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i
t, r|0|it, q|0|i, yi+1

t ], if si
t = 0

fy[x
i
t, r|1|it, q|1|i, yi+1

t ], if si
t = 1

r|k|it+1 =

{
fr[x

i
t, r|k|it, q|k|i, yi+1

t ], if si
t = k

r|k|it, if si
t = 1− k

xi+1
t+1 = xi

t

si
t+1 = 1− si

t

q|k|it+1 = q|k|it = q|k|i

k = 0, 1

Figure 5.24: Computations of a PE in a bidirectional array with constant
and variable internal state registers, which can compute two problems of the
form (5.50)-(5.51).

5.5.3 Bidirectional Array with Two Directional
”Pass–Through” Input

We consider here a bidirectional array with multiple input, where the input
data flow is also bidirectional. One can see the computations of a PE on
Fig. 5.25.

If X is the list of inputs to the array at the leftmost PE (that is PE0) and
Z is the input list introduced at PE n−1, then the first elements of the two
inputs will meet ”in the middle”, that is the first ”relevant” computation will
be performed at the time step (n+1)/2, if n is odd (respectively n/2+1, for
n even), when x0 meets z0 at PE(n−1)/2, (respectively x0 meets z1 at PEn/2

and x1 meets z0 at PEn/2−1). This would again lead to a list of results, that
can be divided into two independent parts.

We will however start with a simpler input scheme, namely we will as-
sume, that the two input lists are sparse and the elements of Z$ are preloaded
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Figure 5.25: Computation of a PE in a bidirectional array with two direc-
tional input ”pass-through”

into the array, thus the first relevant computation (computation which in-
volves the elements of the given input list) will take place at PE0 and we do
not have to handle two distinct cases. The initialisation of the array is the
one shown on Fig. 5.26.

Y 0
$ = 〈yinit, $〉∞ is the sparse list of initial values, which contribute to the

computation of the result.

� �
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. . .
� � �

- - -
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Zn−1
2

$

Y n
$

z0 $ $

X$

Y 0
$

$ x−1 x−n−1
2PE0 PE1 PEn−1

Figure 5.26: Bidirectional array with two directional sparse input. Initial
state (n is odd).

The first result (which involves the application of the transition function,
f , n times) will appear at PEn−1 after n time steps, and because of the sparse
input we will get a new result at every second time step:

Y n
n$ = ~f [X$, Z(n−1)$, ~f [X$, Z(n−2)$, ~f [. . . , ~f [X$, Z1$, ~f [X$, Z$, Y

0
$ ]] . . .] .

Or, if we consider the list of results, that is Y n
n = (Y n

n$){2}:

Y n
n = ~f [X, Zn−1, ~f [X, Zn−2, ~f [. . . , ~f [X, Z1, ~f [X, Z, (yinit)∞]] . . .] .
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Let F be the list function that computes Y n
n , then F can be defined in a

functional way as follows:

F [n, X, Z] = ~f [X, Zn−1, F [n− 1, X, Z]] (5.101)

F [1, X, Z] = ~f [X, Z, Y 0] , (5.102)

where ~f is an online transitive function.

”Mirrored” Array:

We can combine, as shown on Fig. 5.27, two arrays of the same type as the
array from Fig. 5.26.

� �
� �

- -
--

PE0 array 2array 1

X$

Y 10

Z$

Y 20

Figure 5.27: Mirrored array

Array1 has n processing elements: PE0, PE1, . . . , PEn−1, while array2
has m PEs, denoted by: PE0, PE−1, . . . , PE−(m−1). Such an array computes
simultaneously a problem of the form (5.101)-(5.102) and the symmetrical
problem (obtained by interchanging the inputs X and Z), thus it has two
lists of results.

Note that the composed array of Fig. 5.27 is not a regular systolic array
in the sense that the elements of the list of initial values Y 10

$ for array2
should remain unchanged while passing the PEs of array1, they will, however,
contribute to the computation of the results computed by array2. In the same
way, the elements of Y 20

$ arrive unchanged to PE0 after passing the PEs of
array2 and will cotribute to the computations only in the PEs of array1 (see
the channels denoted by the arrows with dashed line on Fig. 5.27).

Let us consider now a regular systolic array, which has the same inter-
connection pattern and initial state as the array shown on Fig. 5.27 and
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the computations for the two output values y1 and y2, performed in PEi

(∀i,−(m− 1) ≤ i ≤ n− 1) are:

y1i+1
t+1 = f1[xi

t, z
i+1
t , y1i

t, y2i+1
t ]

y2i
t+1 = f2[xi

t, z
i+1
t , y1i

t, y2i+1
t ] .

Fig. 5.28 presents the data-flow of the two input streams. In the initial
phase X$ is input to PE0 from left to right, while Z$ is input to PE0 from
right to left.

One can easily verify that at time step t = i+j+1 the input list to PEj−i

are Xi$ respectively Zj$:
Indeed, at time step 1 X0$ respectively Z0$ is input to PE0, hence T−k[X$]

respectively Tk[Z$] is the input list to PEj. Both input streams are advancing
with a velocity of one position pro time step, which means that at time step
t the two input lists to PEj will be Tt−1T−kX$ = Tt−1−kX$ respectively
Tt−1+kZ$. Now, with t = i + j + 1 and k = j − i we get
Ti+j+1−1−(j−i)X$ = T2iX$ = Xi$ respectively T2jZ$ = Zj$ as input lists.

We assume that the two functions, which compute the partial results
are the same, that is f1 = f2 = f . We denote by Ci,j the list of results
computed by PEj−i starting with time step t = i + j + 1 (and performing a
useful computation at each second time step), when Xi$ and Zj$ is input to
the PE, as already shown. That is Ci,j = Y 1j−i

i+j+1 = Y 2j−i
i+j+1.

The connection between the computations is represented on Fig. 5.29.
The list of partial results computed at PEj−i starting wit the time step
t = i + j + 1 can be expressed recursively in the following way:

Ci,j =


f [xi, zj, y1i, y2j]

�
^ TCi,j , if i + j = 0

~f [Xi, Zj, C
i,j−1, Ci−1,j] , if (−(m− 1) ≤ j − i ≤ n− 1)∧

(i + j + 1 ≥ 1)

$
�
^ TCi,j , othervise

where ~f is an online transitive function.
Note that TCi,j is the list of partial results computed a PEj−i starting

with time step i + j + 1 + 2, that is:

TCi,j = Ci+1,j+1 .

. . .

Example 5.14. See the problem of sequences comparison from Sect. 4.3.

. . .
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z0

z1

z1

z1

z2

z2

. . .

...
...

� - active PE

- PE, where at least one of the inputs is a blank value

� - inactive PE

Figure 5.28: Bidirectional array with bidirectional input and list of results.
Data-flow.
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� ��t = i + j:

t = i + j + 1: �� �

PEj−i PEj−i+1PEj−i−1

@
@

@
@@R

�
�

�
��	

@
@R

@
@R

�
�	

�
�	

xi zj

xi zjzj−1 xi−1

Ci,j−1 Ci−1,j

Ci,j

Figure 5.29: Data-flow. Fragment.

5.5.4 Transformations

We have studied in the previous sections arrays with bidirectional data-flow
where the data from the two streams advances with the same velocity, but in
opposite directions. We have seen that the elements of one of the data streams
will meet only each second element of the other one, thus the array computes
two independent problems (see the case of the arrays with one directional
”pass-through” input without internal state in Sect. 5.5.1, respectively with
constant internal state registers, Sect. 5.5.2).

We can use sparse input to ensure that a data will meet each of the
elements of the data-flow advancing in the opposite direction, however these
kind of arrays are working inefficiently, namely the PEs are idle in each second
time step.

A commonly used idea is to merge two PEs which are working alternately
(that is to map the computations of two different PEs which are working
alternately onto one single PE) in order to transform the array into a more
efficient one: if the array with sparse input had n PEs, then the same problem
can be solved using only n/2 PEs.

One possibility is to merge two neighbouring PEs (PEi and PEi+1) into
one single PE. This is possible because two neighbouring PEs are active
in alternating time steps, thus the merged PE will do the computations of
PEirespectively PEi+1 in the even respectively odd time steps. In the sequel
we present in detail a different solution based on the same idea. We assume
that the number of PEs, n, is even (otherwise an additional ”dummy” PE
should introduced before merging two PEs).
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”Folded” Array

Another interesting solution is to map the computations of PEn−1−i onto
PEi, for i = n

2
, . . . n − 1. We call the resulted array ”folded” array, because

the mapping process is like folding the inefficient array in the middle and
merging the functionality of the overlapping PEs as shown on Fig 5.30.

� �

- -
. . . . . .

� � �

- - -

? ?

merge

folding axis
x−(n−1) $ x−n

2
$ X−(n

2
−1) $

Y 0
$ $ y−1 $ y−n

2PE0 PE1 PEn
2
−1 PEn−1

qn−1 qn−2 q
n
2 q0

⇓

�

- -

�
. . .

� � �

- - -

Inp x−n
2

y−1

x−(n−1) y−(n
2
−1)y−n

2

qn−1 qn−2 q
n
2

q0 q1 q
n
2
−1

PE0 PE1 PEn
2
−1

where
Inp = I[Y 0, X−(n

2
−1)]

Figure 5.30: Bidirectional ”folded” array.

Now each PE has to perform different computations in the successive time
steps. The PEs are not aware of the time, but this problem can be solved with
either the introduction of a control signal with alternating values, 〈0, 1, 〉∞, or
with the help of an additional internal state register s. The si state register
of PEi, 0 ≤ i ≤ n

2
− 1 is initialised with the value si

0 such that:

si
0 =

{
0 , if i is even
1 , othervise .

The computations performed by a PE are shown on Fig. 5.31. The last
PE, that is PEn

2
−1 is slightly different from the other PEs of the array.

Let us consider again the function I which interleaves two lists:

I[a
�
^ A, b

�
^ B] = 〈a, b〉^I[A, B] .

The input list Inp can be defined as Inp = I[Y 0, X−(n
2
−1)]. The initial values

of the input channels are:

ak
0 = H−k[Inp], 0 ≤ k ≤ n

2

bk
0 = H−(n−k)[Inp], 0 ≤ k ≤ n

2
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� �
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bi

ai

bi+1

ai+1

�

-

�

-

b
n
2
−1

a
n
2
−1

b
n
2 = a

n
2

qi

si

qn−1−i

q
n
2
−1

s
n
2
−1

q
n
2

PEi PEn
2
−1

Computations:

si
t+1 = 1− si

t

case si
t = 0

ai+1
t+1 = f [ai

t, q
n−1−i, bi+1

t ]

bi
t+1 = bi+1

t

case si
t = 1

bi
t+1 = f [bi+1

t , qi, ai
t]

ai+1
t+1 = ai

t

b
n
2
−1

t+1 = a
n
2
t

b
n
2
−1

t+1 = f [b
n
2
t , q

n
2
−1, a

n
2
−1

t ]

(different computations
for i = n

2
− 1)

Figure 5.31: Computation of a PE in a bidirectional ”folded” array.
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Note that

Hi[I[A, B]] =

{
Hi[A$] = HTiA$ = HA i

2
, if i is even

Hi−1[B$] = HTi−1B$ = HB i−1
2

, if i is odd .

We consider, however, that the notation used on Fig. 5.32 is more ex-
pressive and it describes the functioning of a PE clearer. By convention we
denoted an x value by x, when it is input from right to left (see the upper
input channel on Fig. 5.32 a)) and by x, when it is input from left to right
(Fig. 5.32 b)). In the same way, we use the notation y and y for the y values.

The connection between the two notations can be expressed in the fol-
lowing way:

ai
t =

{
y i

t
, if t is even (si = 1)

xi
t , if t is odd (si = 0)

bi
t =

{
xi

t , if t is even (si = 1)

y
i

t , if t is odd (si = 0)

(5.103)

The first result appears after n time steps at PE0:

y
0

n = f [y
1

n−1, q
0, x0

n−1] = f [f [y
2

n−2, q
1, x1

n−2], q
0, x0

n−1] = . . .

= f [f [. . . f︸ ︷︷ ︸
n
2

times

[y
n
2
n
2
, q

n
2
−1, x

n
2
−1

n
2

], q
n
2
−2, x

n
2
−1

n
2

] . . .]q0, x0
n−1] =

= f [f [. . . f︸ ︷︷ ︸
n
2

times

[f [y
n
2
−1

n
2
−1, q

n−1−(n
2
−1), x

n
2
n
2
−1], q

n
2
−1, x

n
2
−1

n
2

] . . .]q0, x0
n−1] = . . .

= f [f [. . . f︸ ︷︷ ︸
n
2

times

[f [. . . f︸ ︷︷ ︸
n
2

times

[y0
0
, qn−1, x

1
0], q

n−2, x
2
1] . . .

. . .], q
n
2 , x

n
2
n
2
−1], q

n
2
−1, x

n
2
−1

n
2

], . . .], q0, x0
n−1]

(5.103)
=

= f [f [. . . f︸ ︷︷ ︸
n
2

times

[f [. . . f︸ ︷︷ ︸
n
2

times

[y0, qn−1, x−(n−1)], qn−2, x−(n−2)] . . .

. . .], qn
2
, x−n

2
], qn

2
−1, x−(n

2
−1)] . . .]q0, x0]

A new result appears after each second time step. The list of results is:

Y
0

n {2}= f [f [. . . f︸ ︷︷ ︸
n times

[Y 0, qn−1, X−(n−1)], qn−2, X−(n−2)] . . .], q1, X−1], q0, X] .

If we denote the reversed list of parameters 〈qn−1, qn−2, . . . , q1, q0〉 by
W0,n−1, Z = X−(n−1), and the function computed by the array by F ′[n, X]
then F ′ can be expressed in a functional way:
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x
i

y i

x
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y i+1

� �
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yi

xi

yi+1

xi+1

qi

si

qn−1−i

qi

si

qn−1−i

PEi PEi

Computations:

a) si = 0

y i+1
t+1

= f [y i
t
, qn−1−i, x

i+1
t ]

xi
t+1=

{
x

i+1
t , if 0 ≤ i ≤ n

2
− 2

xi+1
t , if i = n

2
− 1

b) si = 1

y
i

t+1=

{
f [y

i+1

t , qi, xi
t], if 0 ≤ i ≤ n

2
− 2

f [y i+1
t

, qi, xi
t], if i = n

2
− 1

xi+1
t+1 = xi

t

common computations:

si
t+1 = 1− si

t

qi
t+1 = qi

t = qi = qi

qn−1−i
t+1 = qn−1−i

t = qn−1−i = qn−1−i

Figure 5.32: Computation of a PE in a bidirectional ”folded” array. A dif-
ferent view.
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F ′
W0,n−1

[n, Z] = ~f [wn−1, Zn−1, F
′
W0,n−2

[n− 1, Z]] (5.104)

F ′
w0

[1, Z] = ~f [w0, Z, Y 0] , (5.105)

where ~fw[〈Z, Y 〉] has property (5.16).
Thus we have shown that the ”folded” array with constant internal state

registers defined in this section computes the same list of results as a cor-
responding bidirectional array with sparse input and constant internal state
registers.

Note that we had to rename (more exactly to shift) the input list in order
to obtain the same result, which is obvious because in the case of the array
on Fig. 5.30 we have chosen for the sake of convenience x−(n−1) to be the first
input from right to left to PE0. Thus the initial state of the array corresponds
to that of the inefficient array with global input T−1X−(n

2
−1) $.

There is no speed-up in the computation of the results but the number
of the PEs used for the computation of the same result was reduced to the
half which increases the efficiency of the array. The PEs of the folded array
are active at each time step.
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5.6 Online Systolic Arrays

Online arrays are in fact a class of bidirectional arrays, but we will study them
in a distinct section because of their importance. They are characterised by
the fact that they begin to provide the first result after a constant number of
time steps. Thus the efficiency of such arrays does not depend on the number
of processing elements. This feature make them very useful for solving real
time problems, where the response time is a critical factor.

Informally, we can see an online systolic array as a device consisting of
one head-processor connected to a tail-array, which is an identical systolic
array (Fig. 5.33).

Note that this is actually a simplified version of Fig. 5.1, namely in this
case we are not interested in the number of PEs, because the computations
do not depend on it. The only aspect related to the number of PEs that is
important is to have a ”sufficient” number of PEs to be able to perform the
computations. Otherwise the problem of partitioning should be taken into
account, which is not tackled in the thesis.

X X’

. ...Q

Y Y’

Figure 5.33: Informal view of an online systolic array

The array receives as input a list X = 〈x0, x1, . . .〉 and outputs a list
Y = 〈y0, y1, . . .〉, while the list of the values of the internal state of the
head-processor is Q = 〈q0, q1, . . .〉. The communication with the tail-array is
substantiated in the lists X ′ = 〈x′0, x′1, . . .〉 and Y ′ = 〈y′0, y′1, . . .〉. X and X ′,
as well as Y and Y ′ are built upon the same scalar types.

At each discrete time step t (starting at 0), the array receives a value xt

and outputs a value yt through the head-processor. Additionally the head
processor outputs the value x′t and receives the value y′t (which are the input
and the output, respectively, of the tail array), and updates its internal state
qt into qt+1. The update is performed by the scalar function f (the transition
function), and uses the currently received values xt and y′t, as well as the
current value of qt. The outputs yt and x′t are parts of the same current value
qt, obtained by the projection functions px and py. More exactly:

qt+1 = f [xt, qt, y
′
t], (5.106)
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yt = py[qt], x′t = px[qt].

In more practical terms, the internal state is composed by a certain num-
ber of internal variables. We further convene that some of these variables
represent the input X, some represent the output Y , and some represent the
output X ′ towards the tail-array. The transition function f will be repre-
sented as a parallel assignment for all variables except the ones corresponding
to X. Note that the array is completely specified by the list of these variables,
their association to X, Y, X ′, and the assignment describing f .

The initial configuration of the array consists in blanks (as values of the
internal states of all the processors), and we convene that f must have the
property f [$, $, $] = $. Therefore q0 = y0 = x′0 = $, thus only T [Y ] and
T [Q] contain “interesting” values. We will say that the array computes the
function F [X] = T [Y ]. Usually, the infinite lists representing the input and
the output will have “interesting” values only for a finite number of elements
at the beginning, and the rest will be blanks.

The synthesis problem consists in finding f when F is known. When
F is given as a recursive functional program, we will show in the sequel that
f can be obtained by syntactic transformations of this program.

5.6.1 Online ”Pass-Through” Arrays without Internal
State

We study in this section online arrays with:

- uniform initialization,

- no internal state,

- inputs ”pass-through”

- -

� �

X

Q

X ′

Q′
xt, qt

f→ qt+1

xt → x′t+1

Figure 5.34: Computations of a PE
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Figure 5.34 presents the computations that take place in a PE of such an
array. We denote by qn

t the output of the nth PE at time step t, respectively
with xn

t the input of the nth PE at time step t. Figure 5.35 presents the initial
state of the array. The inputs pass through the array, that means xn

t = xn−1
t−1 .

The array is uniformly initialised, so let us denote with x0 the initial input
values x′0, x

′′
0, . . . of PEj, j ≥ 1, and with q0 the initial value for the outputs

q0, q
′
0, q

′′
0 , . . . of all PEs.

. . .
- - -

� � �

x0 x′0 x′′0

q0 q′0 q′′0

Figure 5.35: Initialization of the array

The output q of the first PE at time step t + 1 depends on the input x
and the output q′ of the next PE at time step t. That is:

qt+1 = f [xt, q
′
t]

Let us compute a few of the first elements of the result:

q0 = q0

q1 = f [x0, q
′
0] = f [x0, q

0]
q2 = f [x1, q

′
1] = f [x1, f [x′0, q

′′
0 ]] = f [x1, q

0]
q3 = f [x2, q

′
2] = f [x2, f [x′1, q

′′
1 ]] = f [x2, f [x0, f [x′′0, q

′′′
0 ]]] =

= f [x2, f [x0, q
0]] = f [x2, q1]

q4 = f [x3, q
′
3] = . . . = f [x3, q2]

. . .

Note that we assumed that f [x0, q0] = q0 holds, which is a natural re-
quirement. In other words we suppose that the function f computed by a
PE will change the initialization values only for the relevant input values
(starting with x0).

One can conclude that in general

qk = f [xk−1, qk−2], k ≥ 2 (5.107)
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Equation (5.107) can be easily verified by mathematical induction. This
means actually that the computation performed by such an array can be
computed by a single PE having two registers, such that the result computed
two time steps before can be stored. Thus, such an array can be reduced to
a single processor.

The functioning of such a PE is presented in Fig. 5.36

-

�
6

X

Q ·

·

r1

r2

Computations:

xt, r2t
f→ qt+1

r1t → r2t+1

qt+1 → r1t+1

Initialization:

r1 = r2 = q0

Figure 5.36: PE which performs the same computation as the array of Fig.
5.35

Also note that both, the systolic array, respectively the processor of
Fig. 5.36 are computing two independent results on even/odd order elements
of X:

qt+1 = f [xt, f [xt−2, f [xt−4, f [xt−6, . . .] . . .]
qt+2 = f [xt+1, f [xt−1, f [xt−3, f [xt−5, . . .] . . .]

5.6.2 Arrays with Delayed Input ”Pass-Through”

We study in this section a simplified version of online arrays, in which the
output from the head processor towards the tail array consists in a copy of
the main input, except for the first 2 elements: thus the tail array receives the
second tail of the input. The synthesis method is based on two main prop-
erties, which are detected by equational reasoning based on the functional
view of the array and of the computed functions [JS05]:

• The list function computed by the array has the property that the 4-th
tail of the result can be expressed recursively using the same function
applied to the 2-nd tail of the input (and some other head and tail
components which are easy to synthesise).

• The scalar expressions (involving individual numeric variables and func-
tions upon them) describing the transition function of the head proces-
sor generate the list expressions (involving also list variables and list
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functions) describing the function realised by the array according to
certain simple rewrite rules, which are also “reversible”.

These two facts lead to the following synthesis method:

• Unfold the list expression of the target list function until it has the
required property stated above. Unfolding consists in extracting repet-
itively the scalar expression of the head and the list expression of the
tail, by using the functional definitions of the list functions and a few
simple unfolding rules.

• Project the final list expression into the scalar space, by using the
“reversed” rules mentioned above, and thus obtain the expression of
the transition function.

The input X ′ of the tail-array is Tk[X] for some fixed k, thus the compu-
tation of F [X] will use F [Tk[X]] computed by the tail-array. The data flow
is illustrated in Fig. 5.37 for the case k = 2.

This behaviour can be realised by including into the internal state a “state
variable” s with values from {0 = $, 1, 2, . . . , k+2}, and the following
assignments for s and x′:

s :=

{
s, if x = $ or s = k + 2
s + 1, if x 6= $ and s < k + 2

x′ :=

{
$, if s < k
x, if s ≥ k

When s is k + 2, then the first “interesting” value computed by the tail
array becomes available.

Characterization of the Array

We will derive now the general recursive equation for the function F com-
puted by such an array. Let us denote by G the list function which gives
T [Q] from X: GX = TQ. (In the sequel we will sometimes omit the brack-
ets denoting function application, when this does not lead to ambiguities.)
Furthermore let us consider the list extensions of the scalar functions char-
acterising the array:

~f [u
�
^ U, v

�
^ V,w

�
^ W ] = f [u, v, w]

�
^ ~f [U, V,W ],

Px[u
�
^ U ] = px[u]

�
^ Px[U ],

Py[u
�
^ U ] = py[u]

�
^ Py[U ].
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s

x’ = x23

Figure 5.37: Data flow in an array with input pass-through delayed by 2.
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Note that they all commute with T :

~f [TU, TV, TW ] = T ~f [U, V,W ],

Px[TU ] = TPx[U ], Py[TU ] = TPy[U ],

and also that (5.106) extends to the list equations:

TQ = ~f [X, Q, Y ′] = ~f [X, Q, PyQ
′],

where Q′ denotes the list of internal states of the first processor of the tail
array.

In order to simplify the presentation, we will develop the expressions for
the case k = 2 (but the generalisation is straightforward).

Clearly we need to express the function G, and then F = PyG. We know
that GX = TQ, whose first 4 values are: qi = f [xi−1, qi−1, $], i = 1, 4, thus
they do not use any result from the tail array. The behaviour after this
moment allows the derivation of a recursive expression for T4G:

T4GX = T5Q = ~f [T4X, T4Q, T4PyQ
′].

On the right-hand side, T4Q = T3GX, because TQ = GX. Also: T4PyQ
′ =

PyT4Q
′ (commutativity of Py with T ), and T4Q

′ = GT3X
′ (the tail–array

computes the same function G), and T3X
′ = T2X (input pass–through).

Thus one obtains the characteristic equation for G:

T4GX = ~f [T4X, T3GX, PyGT2X].

Additionally one may use F = PyG in order to transform this into:

T4FX = Py
~f [T4X, T3GX, FT2X], (5.108)

which shows that a function F that can be unfolded until the expression
of T4F contains FT2 is a good candidate for implementation on an online
systolic array.

Expressions vs. Functions

If E is a scalar expression with variables from the internal state, then the list
of values of E depends on X. We will say that E realises the function FE,
and also that it realises the list FE[X]. For instance, the expression s realises
the list Fs[X] = 〈0, 1, . . . , k + 1, k + 2, k + 2, k + 2, . . .〉, and also Fx[X] = X.

Let f be a scalar function in two variables and the list function ~f defined

as ~f [u
�
^ U, v

�
^ V ] = f [u, v]

�
^ ~f [U, V ]. Then the expression f [E1, E2]
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realises the function ~f [FE1, FE2]. This relation allows us to transform a scalar
expression into its list function and also the other way around, by recursive
projection of the list expressions into the scalar space.

Of particular interest are the head and tail functions Hi and Ti men-
tioned in the previous section. They can be realised by adding some suitable
variables to the internal state.

The list having (almost) all elements equal to Hi is realised by a “static”
variable hi having the assignment:

hi :=

{
x, if s = i
hi, if s 6= i

.

Let us also consider the “transition” variables z0, z1, z2, z3 having the as-
signments:

z0 = z1, z1 = z2, z2 = z3, z3 = x.

In the expression of T4FX, the subexpression T4X will be realised by the
expression x, and each TiX will be realised by the expression zi (for 0 ≤ i ≤
3).

5.6.3 Synthesis Method for Arrays with Delayed Input
”Pass-Through”

The considerations presented allow us to construct the systolic array in a
systematic manner by transformations and projections of the target function
F .

First one unfolds the recursive expression of F until one obtains an ex-
pression E for T4FX which contains FT2X. (The unfolding principles are
common knowledge in the program transformation theory and are illustrated
in the next section.) By unfolding one also obtains the scalar expressions for
the first 4 values of FX, which can be directly used in the expression of the
transition function f .

Second one adds the necessary static and transition variables to the
internal state, according to the occurrences of Hi and Ti in the expression E .

Third one projects the expression E into the scalar space, in order to
obtain the assignment for y:

• The subexpression FT2X is projected into y′, because it corresponds
to the output of the tail-array.

• T4X is projected to x, because it is the current input of the array.

• Hi and Ti are projected to the corresponding static and transit vari-
ables.
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• Recursively, each subexpression of the form ~f [E1, E2] is projected into
the corresponding f [E1, E2].

The expressions corresponding to the first 4 values of the output contain
only scalar functions and subexpressions of the form Hi[X], which are pro-
jected into the variables hi, with the exception that if Hi[X] occurs in the
expression of Hi[F [X]], then it is projected into x.

All these transformations are readily specified as rewrite rules and are
used in order to generate the online array in a completely automatic manner,
as illustrated in the examples below.

Of course the automatic generation succeeds only if the unfolded version
of F has the appropriate shape and contains only functions which are also
“projectable”, but this is absolutely natural, since we cannot expect that
every recursive function is realizable by an online array.

5.6.4 Functional-Based Synthesis of Systolic
Online Multipliers - Two Case Studies

Polynomial Multiplication

We demonstrate now the method by synthesising the online multiplier of
univariate polynomials.

An univariate polynomial (like e. g. a0 + a1x + a2x
2 + . . .) is represented

by the list of its coefficients (lowest degree first): A = 〈ai〉∞i=0, with an infinite
number of redundant zeroes at the end. The type of the coefficients is not
important, we just assume it is some scalar type having ring properties.

We also assume as known the scalar operations “
� �
+ ” and “

� �∗ ” in the
ring of the coefficients, as well as the following functional definitions of the
operations on polynomials:

• addition of a scalar with a polynomial:

a
�
+ (b

�
^ B) = (a

� �
+ b)

�
^ B

• addition of polynomials:

(a
�
^ A) + (b

�
^ B) = (a

� �
+ b)

�
^ (A + B)

• multiplication of a scalar with a polynomial:

a
�∗ (b

�
^ B) = (a

� �∗ b)
�
^ (a

�∗ B)
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• multiplication of polynomials:

(a
�
^ A) ∗ (b

�
^ B) = (a

� �∗ b)
�
^ ((a

�∗ B) + (b
�∗ A) + (0

�
^ (A ∗B)))

Using these definitions and the unfolding rules presented previously, we
unfold the expression “A ∗ B”, extracting repetitively the scalar expression
representing the first element of the result, until the list expression repre-
senting the tail of the result contains T2[A] ∗ T2[B]. (For brevity we denote
Hi[A] by ai, Ti[A] by Ai, and similarly for B.)

A ∗B =

= (a0
�
^ A1) ∗ (b0

�
^ B1)

= 〈a0
� �∗ b0〉^ +


a0

�∗ B1

b0
�∗ A1

0
�
^ (A1 ∗B1)

= 〈a0
� �∗ b0〉^ +


a0

�∗ (b1
�
^ B2)

b0
�∗ (a1

�
^ A2)

0
�
^ A1 ∗B1

= 〈a0
� �∗ b0, a0

� �∗ b1

� �
+ b0

� �∗ a1〉^ +


a0

�∗ B2

b0
�∗ A2

A1 ∗B1

= . . .

= 〈 a0
� �∗ b0,

a0
� �∗ b1

� �
+ b0

� �∗ a1,

a2
� �∗ b0

� �
+ a1

� �∗ b1

� �
+ a0

� �∗ b2),

a3
� �∗ b0

� �
+ a2

� �∗ b1

� �
+ a1

� �∗ b2

� �
+ a0

� �∗ b3 〉^
^ ((a0

�∗ B4) + (b0
�∗ A4)+

+(a1
�∗ B3) + (b1

�∗ A3) + (A2 ∗B2))

Thus we obtain an expression of the form required by (5.108):

T4[A ∗B] = +



H0[A]
�∗ T4[B]

H0[B]
�∗ T4[A]

H1[A]
�∗ T3[B]

H1[B]
�∗ T3[A]

T2[A] ∗ T2[B]

as well as the first 4 values of the output.
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Let us denote the input by xa and xb and the corresponding static and
transition variables by hai, hbi, zai, zbi. According to the rules presented in
the previous section, the expression on the right–hand side is projected into:

(ha0
� �∗ xb)

� �
+ (hb0

� �∗ xa)
� �
+

� �
+ (ha1

� �∗ zb3)
� �
+ (hb1

� �∗ za3)
� �
+ y′

The first 4 elements are projected into:

〈 xa
� �∗ xb,

hb0
� �∗ xa

� �
+ ha0

� �∗ xb,

ha1
� �∗ hb1

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb,

hb1
� �∗ za3

� �
+ ha1

� �∗ zb3

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb 〉

Thus each processor of the array has the input variables xa, xb, and the
output variable y and communicates with the next processor through the
variables xa′, xb′, and y′. The internal variables are s, ha0, hb0, ha1, hb1,
za3, zb3, and y, from which y is the output variable. The transition function
is described by the assignments presented in the previous section for the
variables s, hai, hbi, za3, zb3, xa′, xb′, and by the following assignment for y:

$ , if s = $ = xa

xa
� �∗ xb , if s = $ 6= xa

hb0
� �∗ xa

� �
+ ha0

� �∗ xb , if s = 1

ha1
� �∗ hb1

� �
+

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb , if s = 2

hb1
� �∗ za3

� �
+ ha1

� �∗ zb3

� �
+

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb , if s = 3

hb1
� �∗ za3

� �
+ ha1

� �∗ zb3

� �
+

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb
� �
+ y′ , if s = 4

Integer Multiplication

The multiplication of two numbers is similar to the polynomial multiplication
problem, the only significant difference is the carry propagation.
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s
za0 . . . za3

zb0 . . . zb3

ha0 ha1

hb0 hb1

- -

- -

� �

. . .

xa xa′

xb xb′

y y′

Figure 5.38: Online systolic array for polynomial multiplication

Let β be the radix for integer representation (β > 1). We consider that
integer numbers are represented by the list of their digits, least significant
digits first:

〈a0, a1, a2, . . .〉 represents a0 + a1β + a2β
2 + . . .

We will use a scalar type for digits (positive integers less than β) and the
corresponding list type for arbitrary precision integers, but also a scalar type
for large integers – but not arbitrary large. The later is determined by the
fixed number of operations performed by the transition function, and for suf-
ficiently large β will be equivalent to three digits. Unless otherwise specified,
in the sequel we will use “scalar” for large integer.

On large integers we define the operation “d” of carry decomposition

d[a] = 〈a mod β, ba
β
c〉,

which generates a pair consisting in the least significant digit of a and the
“carry”. Note that the carry is not necessarily a digit.

We consider as known the scalar operations “
� �
+ ” and “

� �∗ ” acting on
large integers (thus also on digits).

The operation “
�
+ ” of addition between a scalar and a list is defined as:

a
�
+ (b

�
^ B) = Let{〈y, r〉 = d[a

� �
+ b]; y

�
^ (r

�
+ B)}

Here the construct “Let” contains a local assignment and a final expression
which is the result of the construct. This construct is necessary in order to
avoid repeated computations of the same expression, in particular when the
result occurs both in the head and in the tail of the resulting list (as above).
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The projection of this construct (when translating from list expressions into
scalar expressions) is performed by inserting (if necessary) local variables into
the internal state and by adding the respective assignment to the transition
function, at the time step corresponding to the stage of decomposition of the
main function (see the example below).

In order to treat carry propagation in a functional way, we use the oper-

ation “
�→” (prepend with carry addition):

a
�→A = Let{〈y, r〉 = d[a]; y

�
^ (r

�
+ A)}

Obviously

a
�
^ A = a

�→A

when a is a digit, and also:

a
�
+ (b

�
^ B) = (a

� �
+ b)

�→B

a
�
+ (b

�→B) = (a
� �
+ b)

�→B

The operations with lists are defined by:

(a
�
^ A) + (b

�
^ B) = (a

� �
+ b)

�→ (A + B)

a
�∗ (b

�
^ B) = (a

� �∗ b)
�→ (a

�∗ B)

(a
�
^ A) ∗ (b

�
^ B) =

= (a
� �∗ b)

�→ ((a
�∗ B) + (b

�∗ A) + (0
�
^ A ∗B))

and note that:

(a
�→A) + (b

�→B) = (a
� �
+ b)

�→ (A + B).

Similarly to what happened by polynomial multiplication, we unfold the
expression of the multiplication:

A ∗B =

= (a0
�
^ A1) ∗ (b0

�
^ B1)

= (a0
� �∗ b0)

�→ +


a0

�∗ B1

b0
�∗ A1

0
�
^ (A1 ∗B1)

= Let{〈y, r〉 = d[a0
� �∗ b0];

y
�
^ (r

�
+ +


a0

�∗ B1

b0
�∗ A1

0
�
^ (A1 ∗B1)

)},



CHAPTER 5. FUNCTIONAL-BASED SYSTOLIC ARRAY DESIGN 149

which gives the expression for the first value of the output as y, while the
tail of the output is further unfolded and transformed using the properties

of “
�→ ”:

T1[A ∗B] = r
�
+ +


a0

�∗ (b1
�
^ B2)

b0
�∗ (a1

�
^ A2)

0
�
^ A1 ∗B1

= r
�
+ +


(a0

� �∗ b1)
�→ (a0

�∗ B2)

(b0
� �∗ a1)

�→ (b0
�∗ A2)

0
�→A1 ∗B1

= r
�
+ ((a0

� �∗ b1

� �
+ b0

� �∗ a1

� �
+ 0)

�→ +


a0

�∗ B2

b0
�∗ A2

A1 ∗B1

)

= (r
� �
+ a0

� �∗ b1

� �
+ b0

� �∗ a1)
�→ +


a0

�∗ B2

b0
�∗ A2

A1 ∗B1

= Let{〈y, r〉 = d[r
� �
+ a0

� �∗ b1

� �
+ b0

� �∗ a1];

y
�
^ (r

�
+ +


a0

�∗ B2

b0
�∗ A2

A1 ∗B1

)},

which gives the expression of the second value of the input as y and the second
tail of the output. The later is further transformed in a similar manner into:

T2[A ∗B] =

Let{〈y, r〉 = d[r
� �
+ a2

� �∗ b0

� �
+ a1

� �∗ b1

� �
+ a0

� �∗ b2];

y
�
^ (r

�
+ +



a0
�∗ B3

b0
�∗ A3

a1
�∗ B2

b1
�∗ A2

0
�
^ (A2 ∗B2)

)},
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and finally:

T3[A ∗B] =
Let{〈y, r〉 =

d[r
� �
+ a3

� �∗ b0

� �
+ a2

� �∗ b1

� �
+ a1

� �∗ b2

� �
+ a0

� �∗ b3];

y
�
^ (r

�
+ +



a0
�∗ B4

b0
�∗ A4

a1
�∗ B3

b1
�∗ A3

A2 ∗B2

)}

gives the expression of the fourth value of the output and the list expression
for T4[A ∗B] becomes of the same form as in (5.108).

We need to use the same variables as in the case of polynomial multi-
plication, but also the additional variable r for the carry. The assignments
are again all the same, with the exception of the assignment for y, which is
replaced by a new assignment for 〈y, r〉:

〈$, $〉 , if s = $ = xa

d[xa
� �∗ xb] , if s = $ 6= xa

d[r
� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb] , if s = 1

d[r
� �
+ ha1

� �∗ hb1

� �
+

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb] , if s = 2

d[r
� �
+ hb1

� �∗ za3

� �
+ ha1

� �∗ zb3

� �
+

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb] , if s = 3

d[r
� �
+ hb1

� �∗ za3

� �
+ ha1

� �∗ zb3

� �
+

� �
+ hb0

� �∗ xa
� �
+ ha0

� �∗ xb
� �
+ y′] , if s = 4

The last expression (having 6 terms of 2 digits) indicates that 3 digits suffice
as the size of a large integer, if β > 6. Thus we have also determined this
scalar type.
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