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Syntax

The syntax of propositional logic consists in the definition of the set of
all propositional logic formulae, or the language of propositional logic
formulae, which will contain formulae like:
¬A
A ∧ B
A ∧ ¬B
(¬A ∧ B) ⇔ (A ⇒ B)
A ∧ ¬A

The language L

L is defined over a certain set Σ of symbols:
the parentheses, the logical connectives, the logical constants, and
an infinite set Θ of propositional variables.

Set of symbols: alphabet
Σ = {(, )} ∪ {¬,∧,∨,⇒,⇔} ∪ {T,F} ∪Θ
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Syntax

Set of propositional variables Θ

For instance this could be {A,B,C,P,Q, . . . ,A1,A2, . . . }.
This set Θ is infinite, but enumerable.

Generalized inductive definition of L

– The logical constants T,F are formulae, i.e., {T,F} ⊂ L.

– All the variables ϑ ∈ Θ are formulae, i.e.,
{ϑ1, ϑ2, . . . A,B,C,P,Q, . . . } ⊂ L.

– If ϕ and ψ are formulae, then
¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), (ϕ ⇔ ψ) are formulae.

– These are all the formulae.
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Semantics

Semantics provides the “meaning” of propositional logic formulae. It
is defined very precisely in a mathematical way.

The semantics allows us to identify correct inference rules, for
instance transformations of formulae which preserve the meaning.

Example:
Intuitively, the meaning of “A ∧ B” is that
“this is only true if both A and B are true”.

The precise semantics of the logical connectives
NOT ¬
AND ∧
OR ∨
IMPLIES ⇒
IFF ⇔
is defined by Truth Tables.
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Semantics

Truth table for negation

¬A A
F T
T F

Truth table for conjunction

A ∧ B A B
T T T
F T F
F F T
F F F
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Semantics

Example
Consider the formula (P ∨ ¬Q)⇒ R.

Construct its truth table.

Example
Consider the formula (P ∧ (Q ⇒ R))⇒ S.

Construct its truth table.
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Interpretation

Let Var(ϕ) be a set of boolean variables, e.g., {A,B,C}, and let I be
a function I : Var(ϕ)→ {T,F}.

The function I is called an “interpretation”. It assigns value to the
variables.
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Example
Consider the formula (A ∧ B) ∨ (C ∧ B).

Let I0 be an interpretation defined as follows:
I0[A] = T, I0[B] = F, and I0[C] = T.

Compute the evaluation of the formula under the interpretation I0.
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Interpretation

Example
Consider the formula (A ∧ B) ∨ (C ∧ B).

Let I1 be an interpretation defined as follows:
I1[A] = F, I1[B] = T, and I1[C] = F.

Compute the evaluation of the formula under the interpretation I1.



Model, validity, satisfiability

Let ϕ be a formula and I be an interpretation of its variables.
If ϕ evaluates to true under I, we write 〈ϕ〉I = T, and we say
“I satisfies ϕ” or “I is a model of ϕ”.

If for any interpretation I, 〈ϕ〉I = T, then we say “ϕ is valid”,
(otherwise it is “invalid”)

If for any interpretation I, 〈ϕ〉I = F, then we say “ϕ is unsatisfiable”,
(otherwise it is “satisfiable”)
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Model, validity, satisfiability

Valid
The formula (A ∧ (A⇒ B))⇒ B is valid.
Under all the interpretations it evaluates to true.

Unsatisfiable
The formula A ∧ ¬A is unsatisfiable.
There is no interpretation such that it evaluates to true.

Satisfiable
The formula (A ∧ B) ∨ (C ∧ B) is satisfiable.
There exists an interpretation such that it evaluates to true.

Invalid
The formula is (A ∧ B) ∨ (C ∧ B) is invalid.
There exists an interpretation such that it evaluates to false.
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Logical consequence

We say “the formula ψ is a logical consequence of the formula ϕ”
(also denoted as ϕ � ψ), if and only if:
for all the interpretations I, whenever 〈ϕ〉I = T, then also 〈ψ〉I = T.

We say “the formula ψ is a logical consequence of the set of formulae
ϕ1, . . . , ϕn”
(also denoted as ϕ1, . . . , ϕn � ψ), if and only if:
for all the interpretations I, whenever 〈ϕ1〉I = . . . = 〈ϕn〉I = T, then
also 〈ψ〉I = T.



Logical consequence

We say “the formula ψ is a logical consequence of the formula ϕ”
(also denoted as ϕ � ψ), if and only if:
for all the interpretations I, whenever 〈ϕ〉I = T, then also 〈ψ〉I = T.

We say “the formula ψ is a logical consequence of the set of formulae
ϕ1, . . . , ϕn”
(also denoted as ϕ1, . . . , ϕn � ψ), if and only if:
for all the interpretations I, whenever 〈ϕ1〉I = . . . = 〈ϕn〉I = T, then
also 〈ψ〉I = T.



Logical consequence

Example
Show that (P ⇒ Q) ∧ (Q ⇒ R) � (P ⇒ R).

Example
Show that � (A ∧ (A⇒ B))⇒ B.

Example
Show that C � C ∧ ((A ∧ (A⇒ B))⇒ B).



Logical consequence

Example
Show that (P ⇒ Q) ∧ (Q ⇒ R) � (P ⇒ R).

Example
Show that � (A ∧ (A⇒ B))⇒ B.

Example
Show that C � C ∧ ((A ∧ (A⇒ B))⇒ B).



Logical consequence

Example
Show that (P ⇒ Q) ∧ (Q ⇒ R) � (P ⇒ R).

Example
Show that � (A ∧ (A⇒ B))⇒ B.

Example
Show that C � C ∧ ((A ∧ (A⇒ B))⇒ B).



Logical consequence

The notion of logical consequence captures the essence of logical
thinking.
It is basis for characterizing “correct” operations in logic.

We “transport” the truth from some facts to other facts by logical
means.
If the original facts are true, than anything obtained by logical
methods from them will also be true.

An inference rule is correct if the result of transformation is a logical
consequence of the formulae which are transformed.

Using this principle we can construct syntactical methods (which can
also be implemented on computer) for the systematic transformation
of formulae in a correct way.
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