Introduction to Theory of Computability

Nikolaj Popov and Tudor Jebelean

Research Institute for Symbolic Computation, Linz
\{popov, jebelean\}@risc.uni-linz.ac.at

Outline

Introduction
Mathematical Preliminaries

Computability

Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Outline

Introduction
Mathematical Preliminaries

Computability

Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Introduction

Various notions of computation developed by Gödel, Church, Turing and Kleene

[^0]
Introduction

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any reasonable programming language),

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambc a calculus.

Introduction

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any reasonable programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

Introduction

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any reasonable programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

Introduction

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any reasonable programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

A function is computable, in the intuitive sense, if and only if it is Turing-computable.

Mathematical Preliminaries

Natural Numbers
$\mathbb{N}=\{0,1, \ldots\}$
Sets
the order of the elements is irrelevant

Mathematical Preliminaries

Natural Numbers

$\mathbb{N}=\{0,1, \ldots\}$
Sets
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ the order of the elements is irrelevant

Mathematical Preliminaries

Natural Numbers

$\mathbb{N}=\{0,1, \ldots\}$
Sets
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ the order of the elements is irrelevant
n-tuples
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
iff
$a_{1}=b_{1}, \ldots, a_{n}=b_{n}$
Operations on Sets

Mathematical Preliminaries

Natural Numbers

$\mathbb{N}=\{0,1, \ldots\}$
Sets
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ the order of the elements is irrelevant
n-tuples
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
iff
$a_{1}=b_{1}, \ldots, a_{n}=b_{n}$
Operations on Sets
$A \cup B=\{\bar{a} \mid \bar{a} \in A$ or $\bar{a} \in B\}$
$A \cap B=\{\bar{a} \mid \bar{a} \in A$ and $\bar{a} \in B\}$
$A \backslash B=\{\bar{a} \mid \bar{a} \in A$ and $\bar{a} \notin B\}$
$\bar{A}=\mathbb{N}^{n} \backslash A$

Mathematical Preliminaries

Domain of a function
$\operatorname{Dom}[f]=\{\bar{x} \mid f[\bar{x}]$ is defined $\}$

Range of a function
$\operatorname{Ran}[f]=\{y \mid \exists \bar{x} \in \operatorname{Dom}[f \wedge f[x]=y\}$

Graph of a function
Graph $[f]=\{(\bar{x}, y) \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[x]=y\}$

Mathematical Preliminaries

Domain of a function
$\operatorname{Dom}[f]=\{\bar{x} \mid f[\bar{x}]$ is defined $\}$

Range of a function
$\operatorname{Ran}[f]=\{y \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[\bar{x}]=y\}$

Graph of a function
Graph $[f]=\{(\bar{x}, y) \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[x]=y\}$

Partial equality
$f[\bar{x}] \simeq y \Leftrightarrow(\bar{x}, y) \in \operatorname{Graph}[f]$

Mathematical Preliminaries

Domain of a function
$\operatorname{Dom}[f]=\{\bar{x} \mid f[\bar{x}]$ is defined $\}$

Range of a function
$\operatorname{Ran}[f]=\{y \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[\bar{x}]=y\}$

Graph of a function
$\operatorname{Graph}[f]=\{(\bar{x}, y) \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[\bar{x}]=y\}$

Partial equality
$f[\bar{x}] \simeq y \Leftrightarrow(\bar{x}, y) \in \operatorname{Graph}[f]$

Mathematical Preliminaries

Domain of a function
$\operatorname{Dom}[f]=\{\bar{x} \mid f[\bar{x}]$ is defined $\}$

Range of a function
$\operatorname{Ran}[f]=\{y \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[\bar{x}]=y\}$

Graph of a function
$\operatorname{Graph}[f]=\{(\bar{x}, y) \mid \exists \bar{x} \in \operatorname{Dom}[f] \wedge f[\bar{x}]=y\}$

Partial equality
$f[\bar{x}] \simeq y \Leftrightarrow(\bar{x}, y) \in \operatorname{Graph}[f]$

Mathematical Preliminaries

f is defined
$f[\bar{x}] \downarrow \Leftrightarrow(\bar{x}, y) \in \operatorname{Graph}[f]$

f is computable
f is comnutahle function iff
there exists a program P which computes it

Mathematical Preliminaries

f is defined
$f[\bar{x}] \downarrow \Leftrightarrow(\bar{x}, y) \in \operatorname{Graph}[f]$

Partial equality \simeq
$f[\bar{x}] \simeq g[\bar{x}]$
iff
$f[\bar{x}] \downarrow \Leftrightarrow g[\bar{x}] \downarrow$
$f[\bar{x}] \downarrow \Rightarrow f[\bar{x}]=g[\bar{x}]$
f is computable
f is computable funct ion iff
there exists a program P which computes it

Mathematical Preliminaries

f is defined
$f[\bar{x}] \downarrow \Leftrightarrow(\bar{x}, y) \in \operatorname{Graph}[f]$

Partial equality \simeq
$f[\bar{x}] \simeq g[\bar{x}]$
iff
$f[\bar{x}] \downarrow \Leftrightarrow g[\bar{x}] \downarrow$
$f[\bar{x}] \downarrow \Rightarrow f[\bar{x}]=g[\bar{x}]$
f is computable
f is computable function iff there exists a program P which computes it

Outline

Introduction
 Mathematical Preliminaries

Computability

Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Superposition

h is a superposition of f, g_{1}, \ldots, g_{k}
$h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$

Theorem
 Given the computable functions $f, g_{1} \ldots \ldots g_{k}$, then $h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$ is computable function.

Superposition preserves computability.

Superposition

h is a superposition of f, g_{1}, \ldots, g_{k}
$h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$

Theorem
Given the computable functions f, g_{1}, \ldots, g_{k}, then $h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$ is computable function.

Superposition

h is a superposition of f, g_{1}, \ldots, g_{k}
$h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$

Theorem
Given the computable functions f, g_{1}, \ldots, g_{k}, then $h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$ is computable function.

Superposition preserves computability.

Primitive Recursion

h is obtained by weak primitive recursion from g and a

$$
h[x] \simeq \begin{cases}a & \Leftarrow x=0 \\ g[x-1, h[x-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

Primitive Recursion

h is obtained by weak primitive recursion from g and a

$$
h[x] \simeq \begin{cases}a & \Leftarrow x=0 \\ g[x-1, h[x-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

h is obtained by primitive recursion from f and g

$$
h[\bar{x}, y] \simeq \begin{cases}f[\bar{x}] & \Leftarrow y=0 \\ g[\bar{x}, y-1, h[\bar{x}, y-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

Primitive recursion preserves computability.

Primitive Recursion

h is obtained by weak primitive recursion from g and a

$$
h[x] \simeq \begin{cases}a & \Leftarrow x=0 \\ g[x-1, h[x-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

h is obtained by primitive recursion from f and g

$$
h[\bar{x}, y] \simeq \begin{cases}f[\bar{x}] & \Leftarrow y=0 \\ g[\bar{x}, y-1, h[\bar{x}, y-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

Primitive recursion preserves computability.

Primitive Recursive Functions

The basic functions are primitive recursive
$O[x] \simeq 0$
$S[x] \simeq x+1$
$l_{i}^{n}[\bar{x}] \simeq x_{i}$

The superposition is primitive recursive If f, q_{1}, \ldots, q_{k} are primitive recursive, then $h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$ is primitive recursive.

The primitive recursion is primitive recursive If f and g are primitive recursive, then

Primitive Recursive Functions

The basic functions are primitive recursive

$$
\begin{aligned}
& O[x] \simeq 0 \\
& S[x] \simeq x+1 \\
& l_{i}^{n}[\bar{x}] \simeq x_{i}
\end{aligned}
$$

The superposition is primitive recursive If f, g_{1}, \ldots, g_{k} are primitive recursive, then $h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$
is primitive recursive.

Primitive Recursive Functions

The basic functions are primitive recursive
$O[x] \simeq 0$
$S[x] \simeq x+1$
$l_{i}^{n}[\bar{x}] \simeq x_{i}$

The superposition is primitive recursive
If f, g_{1}, \ldots, g_{k} are primitive recursive, then
$h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$
is primitive recursive.

The primitive recursion is primitive recursive If f and g are primitive recursive, then

$$
h[\bar{x}, y] \simeq \begin{cases}f[\bar{x}] & \Leftarrow y=0 \\ g[\bar{x}, y-1, h[\bar{x}, y-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

is primitive recursive.

Primitive Recursion

Theorem
All the primitive recursive functions are computable.

Theorem
All the primitive recursive functions are total.

Primitive Recursion

Theorem
All the primitive recursive functions are computable.

Theorem
All the primitive recursive functions are total.

Examples

Addition is primitive recursive
$f_{1}[x, y] \simeq x+y$

Multiplication is primitive recursive

$f_{\rho}\lceil x . v\rceil \simeq x . v$

Examples

Addition is primitive recursive

$f_{1}[x, y] \simeq x+y$

$$
f_{1}[x, y] \simeq \begin{cases}x & \Leftarrow y=0 \\ S\left[f_{1}[x, y-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Addition is primitive recursive
$f_{1}[x, y] \simeq x+y$

$$
f_{1}[x, y] \simeq \begin{cases}x & \Leftarrow y=0 \\ S\left[f_{1}[x, y-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Multiplication is primitive recursive $f_{2}[x, y] \simeq x . y$

Examples

Addition is primitive recursive
$f_{1}[x, y] \simeq x+y$

$$
f_{1}[x, y] \simeq \begin{cases}x & \Leftarrow y=0 \\ S\left[f_{1}[x, y-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Multiplication is primitive recursive $f_{2}[x, y] \simeq x . y$

$$
f_{2}[x, y] \simeq \begin{cases}0 & \Leftarrow y=0 \\ x+f_{2}[x, y-1] & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Power is primitive recursive $f_{3}[x, y] \simeq x^{y}$

Subtraction-dot-one is primitive recursive

Examples

Power is primitive recursive $f_{3}[x, y] \simeq x^{y}$

$$
f_{3}[x, y] \simeq \begin{cases}1 & \Leftarrow y=0 \\ \left.x . f_{3}[x, y-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Subtraction-dot-one is primitive recursive

Examples

Power is primitive recursive $f_{3}[x, y] \simeq x^{y}$

$$
f_{3}[x, y] \simeq \begin{cases}1 & \Leftarrow y=0 \\ \left.x . f_{3}[x, y-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Subtraction-dot-one is primitive recursive

$$
f_{4}[x] \simeq x-1 \simeq \begin{cases}0 & \Leftarrow x=0 \\ x-1 & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Power is primitive recursive $f_{3}[x, y] \simeq x^{y}$

$$
f_{3}[x, y] \simeq \begin{cases}1 & \Leftarrow y=0 \\ \left.x . f_{3}[x, y-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Subtraction-dot-one is primitive recursive

$$
f_{4}[x] \simeq x-1 \simeq \begin{cases}0 & \Leftarrow x=0 \\ x-1 & \Leftarrow \text { o.w. }\end{cases}
$$

$$
f_{4}[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\ l_{1}^{2}\left[x-1, f_{4}[x-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Subtraction-dot is primitive recursive

$$
f_{5}[x, y] \simeq x \dot{-} y \simeq \begin{cases}0 & \Leftarrow x<y \\ x-y & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Subtraction-dot is primitive recursive

$$
\begin{aligned}
& f_{5}[x, y] \simeq x-y \simeq \begin{cases}0 & \Leftarrow x<y \\
x-y & \Leftarrow \text { o.w. }\end{cases} \\
& f_{5}[x, y] \simeq \begin{cases}x & \Leftarrow y=0 \\
f_{5}[x, y-1]-1 & \Leftarrow \text { o.w. }\end{cases}
\end{aligned}
$$

Factorial is primitive recursive

Examples

Subtraction-dot is primitive recursive

$$
\begin{aligned}
& f_{5}[x, y] \simeq x-y \simeq \begin{cases}0 & \Leftarrow x<y \\
x-y & \Leftarrow \text { o.w. }\end{cases} \\
& f_{5}[x, y] \simeq \begin{cases}x & \Leftarrow y=0 \\
f_{5}[x, y-1]-1 & \Leftarrow \text { o.w. }\end{cases}
\end{aligned}
$$

Factorial is primitive recursive $f_{6}[x] \simeq x!$

Examples

Subtraction-dot is primitive recursive

$$
\begin{aligned}
& f_{5}[x, y] \simeq x-y \simeq \begin{cases}0 & \Leftarrow x<y \\
x-y & \Leftarrow \text { o.w. }\end{cases} \\
& f_{5}[x, y] \simeq \begin{cases}x & \Leftarrow y=0 \\
f_{5}[x, y-1]-1 & \Leftarrow \text { o.w. }\end{cases}
\end{aligned}
$$

Factorial is primitive recursive
$f_{6}[x] \simeq x!$

$$
f_{6}[x] \simeq \begin{cases}1 & \Leftarrow x=0 \\ \left.x . f_{6}[x-1]\right] & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Sign is primitive recursive

$$
s g[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\ 1 & \Leftarrow \text { o.w. }\end{cases}
$$

Opposite-sign is primitive recursive

Examples

Sign is primitive recursive

$$
\begin{gathered}
s g[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\
1 & \Leftarrow \text { o.w. }\end{cases} \\
\operatorname{sg}[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\
O[\operatorname{sg}[x-1]]+1 & \Leftarrow \text { o.w. }\end{cases}
\end{gathered}
$$

Examples

Sign is primitive recursive

$$
\begin{gathered}
\operatorname{sg}[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\
1 & \Leftarrow \text { o.w. }\end{cases} \\
\operatorname{sg}[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\
O[\operatorname{sg}[x-1]]+1 & \Leftarrow \text { o.w. }\end{cases}
\end{gathered}
$$

Opposite-sign is primitive recursive

$$
\overline{s g}[x] \simeq \begin{cases}1 & \Leftarrow x=0 \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Sign is primitive recursive

$$
\begin{gathered}
s g[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\
1 & \Leftarrow \text { o.w. }\end{cases} \\
\operatorname{sg}[x] \simeq \begin{cases}0 & \Leftarrow x=0 \\
O[\operatorname{sg}[x-1]]+1 & \Leftarrow \text { o.w. }\end{cases}
\end{gathered}
$$

Opposite-sign is primitive recursive

$$
\overline{s g}[x] \simeq \begin{cases}1 & \Leftarrow x=0 \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

$$
\overline{s g}[x] \simeq \begin{cases}1 & \Leftarrow x=0 \\ O[\overline{s g}[x-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

Examples

Absolute value is primitive recursive $\bmod [x, y] \simeq|x-y|$

$\bmod [x, y] \simeq(x-y)+(y-x)$Minimum is primitive recursive $\min [x, y]$

Examples

Absolute value is primitive recursive $\bmod [x, y] \simeq|x-y|$
$\bmod [x, y] \simeq(x \dot{-} y)+(y \dot{-} x)$

Minimum is primitive recursive
$\min [x, y]$

Examples

Absolute value is primitive recursive $\bmod [x, y] \simeq|x-y|$
$\bmod [x, y] \simeq(x \dot{-} y)+(y \dot{-} x)$

Minimum is primitive recursive $\min [x, y]$
$\min [x, y] \simeq x \dot{-}(x \dot{-} y)$

Maximum is primitive recursive $\max [x, y]$

Examples

Absolute value is primitive recursive $\bmod [x, y] \simeq|x-y|$
$\bmod [x, y] \simeq(x \dot{-} y)+(y \dot{-} x)$

Minimum is primitive recursive $\min [x, y]$
$\min [x, y] \simeq x \dot{-}(x \dot{-} y)$

Maximum is primitive recursive $\max [x, y]$

Examples

Absolute value is primitive recursive $\bmod [x, y] \simeq|x-y|$
$\bmod [x, y] \simeq(x-y)+(y \dot{-} x)$

Minimum is primitive recursive $\min [x, y]$
$\min [x, y] \simeq x \dot{-}(x \dot{-} y)$

Maximum is primitive recursive $\max [x, y]$
$\max [x, y] \simeq x+(y \dot{-} x)$

Examples

Absolute value is primitive recursive $\bmod [x, y] \simeq|x-y|$
$\bmod [x, y] \simeq(x-y)+(y \dot{-} x)$

Minimum is primitive recursive $\min [x, y]$
$\min [x, y] \simeq x \dot{-}(x \dot{-} y)$

Maximum is primitive recursive $\max [x, y]$
$\max [x, y] \simeq x+(y \dot{-} x)$

Primitive recursion. Properties

Theorem If then else
Let f_{0}, f_{1}, g be primitive recursive.
Then

$$
h[\bar{x}] \simeq\left\{\begin{aligned}
f_{0}[\bar{x}] & \Leftarrow g[\bar{x}]=0 \\
f_{1}[\bar{x}] & \Leftarrow \text { o.w. }
\end{aligned}\right.
$$

is primitive recursive.
$h[\bar{x}] \simeq \overline{s g}[g[\bar{x}]] . f_{0}[x]+s g[g[\bar{x}]] . f_{1}[x]$

Primitive recursion. Properties

Theorem If then else
Let f_{0}, f_{1}, g be primitive recursive.
Then

$$
h[\bar{x}] \simeq\left\{\begin{aligned}
f_{0}[\bar{x}] & \Leftarrow g[\bar{x}]=0 \\
f_{1}[\bar{x}] & \Leftarrow \text { o.w. }
\end{aligned}\right.
$$

is primitive recursive.
proof:
$h[\bar{x}] \simeq \overline{s g}[g[\bar{x}]] \cdot f_{0}[x]+s g[g[\bar{x}]] . f_{1}[x]$

Primitive recursion. Properties

Theorem If then $n_{1} \ldots$ then $_{k}$ else
Let $f_{0}, \ldots, f_{k}, g_{0}, \ldots, g_{k-1}$ be primitive recursive.
Then

$$
h[\bar{x}] \simeq \begin{cases}f_{0}[\bar{x}] & \Leftarrow g_{0}[\bar{x}]=0 \\ f_{1}[\bar{x}] & \Leftarrow g_{0}[\bar{x}] \neq 0 \wedge g_{1}[\bar{x}]=0 \\ \cdots & \\ \cdots & \\ f_{k}[\bar{x}] & \Leftarrow \text { o.w. }\end{cases}
$$

is primitive recursive.

Partial Functions

While loop

input[x]
$y:=0$
while $f[x, y]>0$ do $y:=y+1$ return[y]

g is obtained by minimization from f

g is obtained by minimization from f
$a[\bar{x}] \simeq u v[f[\bar{x}, v]=0]$

Partial Functions

```
While loop
input \([x]\)
\(y:=0\)
while \(f[x, y]>0\) do \(y:=y+1\)
return[ \(y\) ]
```

g is obtained by minimization from f $g[\bar{x}] \simeq y$
iff
$\forall z<y(f[\bar{x}, z] \downarrow \wedge f[\bar{x}, z]>0)$
$f[\bar{x}, y] \simeq 0$
g is obtained by minimization from f
$a[\bar{x}] \simeq u v[f[\bar{x}, v]=0]$

Partial Functions

While loop
input $[x]$
$y:=0$
while $f[x, y]>0$ do $y:=y+1$
return[y]
g is obtained by minimization from f $g[\bar{x}] \simeq y$
iff
$\forall z<y(f[\bar{x}, z] \downarrow \wedge f[\bar{x}, z]>0)$
$f[\bar{x}, y] \simeq 0$
g is obtained by minimization from f $g[\bar{x}] \simeq \mu y[f[\bar{x}, y]=0]$

Partial Functions

The basic functions are partial
$O[x] \simeq 0$
$S[x] \simeq x+1$
$l_{i}^{n}[\bar{x}] \simeq x_{i}$

The superposition is partial
If f, g_{1}, \ldots, g_{k} are partial, then
$h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$
is partial.

Partial Functions

The basic functions are partial
$O[x] \simeq 0$
$S[x] \simeq x+1$
$l_{i}^{n}[\bar{x}] \simeq x_{i}$

The superposition is partial
If f, g_{1}, \ldots, g_{k} are partial, then
$h[\bar{x}] \simeq f\left[g_{1}[\bar{x}], \ldots, g_{k}[\bar{x}]\right]$
is partial.

Partial Functions

The primitive recursion is partial
If f and g are partial, then

$$
h[\bar{x}, y] \simeq \begin{cases}f[\bar{x}] & \Leftarrow y=0 \\ g[\bar{x}, y, h[\bar{x}, y-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

is partial.
The minimization is partial
If f is partial, then
$g[\bar{x}] \simeq \mu y[f[\bar{x}, y]=0]$
is partial.

Partial Functions

The primitive recursion is partial
If f and g are partial, then

$$
h[\bar{x}, y] \simeq \begin{cases}f[\bar{x}] & \Leftarrow y=0 \\ g[\bar{x}, y, h[\bar{x}, y-1]] & \Leftarrow \text { o.w. }\end{cases}
$$

is partial.
The minimization is partial
If f is partial, then
$g[\bar{x}] \simeq \mu y[f[\bar{x}, y]=0]$
is partial.

Partial Functions

Theorem
All the partial functions are computable.

Alternative Definition
 Partial functions $=$ Compu able functions.

Partial Functions

Theorem
All the partial functions are computable.

Alternative Definition

Partial functions = Computable functions.

Examples

Subtraction is partial

$$
f[x, y] \simeq \begin{cases}x-y & \Leftarrow x \geq y \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

$f[x, y] \simeq \mu z[x+y=z]$
nivision is nartial

Examples

Subtraction is partial

$$
f[x, y] \simeq \begin{cases}x-y & \Leftarrow x \geq y \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

$f[x, y] \simeq \mu z[x+y=z]$

Examples

Subtraction is partial

$$
f[x, y] \simeq \begin{cases}x-y & \Leftarrow x \geq y \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

$f[x, y] \simeq \mu z[x+y=z]$
Division is partial

$$
g[x, y] \simeq \begin{cases}x / y & \Leftarrow \exists k(y . k=x) \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

$g[x, y] \simeq \mu k[k \cdot y=x]$

Examples

Subtraction is partial

$$
f[x, y] \simeq \begin{cases}x-y & \Leftarrow x \geq y \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

$f[x, y] \simeq \mu z[x+y=z]$
Division is partial

$$
g[x, y] \simeq \begin{cases}x / y & \Leftarrow \exists k(y . k=x) \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

$g[x, y] \simeq \mu k[k \cdot y=x]$

Enumeration of the computable functions

Enumeration $=$ Encoding $=$ Effective codding

- Uniqueness: each object has a unique code

Enumeration of the computable functions

Enumeration $=$ Encoding $=$ Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an ob ect

Enumeration of the computable functions

Enumeration $=$ Encoding $=$ Effective codding

- Uniqueness: each object has a unique code

Totality: each natural number is a code of an object

- Effectiveness: For each object one can find algorithmically its
code and for each code (number) one can find its object.

Enumeration of the computable functions

Enumeration $=$ Encoding $=$ Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.

Enumeration of the computable functions

Enumeration $=$ Encoding $=$ Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.

Enumeration of the computable functions

- Let $P_{0}, P_{1}, \ldots, P_{n}, \ldots$
be a list of all the programs (on one variable), and $0,1, \ldots, n, \ldots$ be an effective codding of these programs.
- Each program corresponds to a computable function φ be a list of all the computable functions (on one variable), and $0,1, \ldots, n, \ldots$ be an effective codding of these functions.

Enumeration of the computable functions

- Let $P_{0}, P_{1}, \ldots, P_{n}, \ldots$
be a list of all the programs (on one variable), and $0,1, \ldots, n, \ldots$ be an effective codding of these programs.
- Each program corresponds to a computable function φ

Enumeration of the computable functions

- Let $P_{0}, P_{1}, \ldots, P_{n}, \ldots$
be a list of all the programs (on one variable), and $0,1, \ldots, n, \ldots$ be an effective codding of these programs.
- Each program corresponds to a computable function φ
- Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}, \ldots$
be a list of all the computable functions (on one variable), and $0,1, \ldots, n, \ldots$ be an effective codding of these functions.

Example

Total function which is not computable

$$
f[x] \simeq \begin{cases}\varphi_{x}[x]+1 & \Leftarrow \varphi_{x}[x] \downarrow \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

Example

Total function which is not computable

$$
f[x] \simeq \begin{cases}\varphi_{x}[x]+1 & \Leftarrow \varphi_{x}[x] \downarrow \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

Assume f is computable. Then $f=\varphi_{a}$ for some a. If $a \in \operatorname{Dom}\left[\varphi_{a}\right]$ then $\varphi_{a}[a] \downarrow$. Hence, $f[a]=\varphi_{a}[a]=\varphi_{a}[a]+1$ If $a \notin \operatorname{Dom}\left[\varphi_{\mathrm{a}}\right]$ then $\varphi_{\mathrm{a}}[a] \uparrow$. Hence, $f[a]=\varphi_{\mathrm{a}}[a]=0$, but $\varphi_{\mathrm{a}}[a] \uparrow$

Kleene's S-m-n Theorem

S-m-n Theorem

For any n, m exists a primitive recursive function S_{n}^{m}, such that for any a, \bar{x}, \bar{y}
$\varphi_{a}^{(m+n)}[\bar{x}, \bar{y}] \simeq \varphi_{S_{n}^{m}[a, \bar{x}]}^{(n)}[\bar{y}]$

Let F be a computable function. Then there exists a number e, such that,

Property
There exists a number e, such that,

Kleene's S-m-n Theorem

S-m-n Theorem

For any n, m exists a primitive recursive function S_{n}^{m}, such that for any a, \bar{x}, \bar{y}
$\varphi_{a}^{(m+n)}[\bar{x}, \bar{y}] \simeq \varphi_{S_{n}^{m}[a, \bar{x}]}^{(n)}[\bar{y}]$

Property

Let F be a computable function. Then there exists a number e, such that,
$F[e, \bar{x}] \simeq \varphi_{e}[\bar{x}]$
Property
There exists : number e, such that.

Kleene's S-m-n Theorem

S-m-n Theorem

For any n, m exists a primitive recursive function S_{n}^{m}, such that for any a, \bar{x}, \bar{y}
$\varphi_{a}^{(m+n)}[\bar{x}, \bar{y}] \simeq \varphi_{S_{n}^{m}[a, \bar{x}]}^{(n)}[\bar{y}]$

Property

Let F be a computable function. Then there exists a number e, such that,
$F[e, \bar{x}] \simeq \varphi_{e}[\bar{x}]$

Property

There exists a number e, such that,
$e \simeq \varphi_{e}[\bar{x}]$

Universal Function

Universal Function Theorem
The universal function
क $\lceil a, \bar{v}] \sim \mu^{(n)}\lceil\bar{v}\rceil$
is computable.

Property

The class of all the total functions on n-variables does not have a computable universal function.

Universal Function

Universal Function Theorem
The universal function
$\Phi_{n}[a, \bar{x}] \simeq \varphi_{a}^{(n)}[\bar{x}]$
is computable.
Property
The class of all the total functions on n-variables does not have a computable universal function.
proof
Assume $\Phi[a, \bar{x}]$ is an universal function for the class of all the total
functions on one variable.
Let $\varphi[x] \simeq \Phi[x, x]+1$.
Since Φ is total, φ is also total and hence, there exists a, such that
$\varphi[x] \sim \Phi[a, x]$.

Universal Function

Universal Function Theorem
The universal function
$\Phi_{n}[a, \bar{x}] \simeq \varphi_{a}^{(n)}[\bar{x}]$
is computable.

Property

The class of all the total functions on n-variables does not have a computable universal function.
proof
Assume $\Phi[a, \bar{x}]$ is an universal function for the class of all the total functions on one variable.
\square
Since Φ is total, φ is also total and hence, there exists a, such that

Universal Function

Universal Function Theorem
The universal function
$\Phi_{n}[a, \bar{x}] \simeq \varphi_{a}^{(n)}[\bar{x}]$
is computable.

Property

The class of all the total functions on n-variables does not have a computable universal function.
proof
Assume $\Phi[a, \bar{x}]$ is an universal function for the class of all the total functions on one variable.
Let $\varphi[x] \simeq \Phi[x, x]+1$.
Since Φ is total, φ is also total and hence, there exists a, such that $\varphi[x] \simeq \Phi[a, x]$.
$\varphi[a] \simeq \Phi[a, a]$, and also $\varphi[a] \simeq \Phi[a, a]+1$.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Characteristic function of a set

Decidable Set

A set A is decidak le iff χ_{A} is computable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Characteristic function of a set χ_{A}

$$
\chi_{A}[\bar{x}] \simeq \begin{cases}1 & \Leftarrow \bar{x} \in A \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

Decidable Set
A set A is decidable iff χ_{A} is computable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Characteristic function of a set χ_{A}

$$
\chi_{A}[\bar{x}] \simeq \begin{cases}1 & \Leftarrow \bar{x} \in A \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

Decidable Set
A set A is decidable iff χ_{A} is computable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Semicharacteristic function of a set C_{A}

$$
C_{A}[\bar{x}] \simeq \begin{cases}1 & \Leftarrow \bar{x} \in A \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

Semidecidable Set
A set A is semidecidable iff C_{A} is computable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Semicharacteristic function of a set C_{A}

$$
C_{A}[\bar{x}] \simeq \begin{cases}1 & \Leftarrow \bar{x} \in A \\ \uparrow & \Leftarrow \text { o.w. }\end{cases}
$$

Semidecidable Set
A set A is semidecidable iff C_{A} is computable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

If A is decidable then it is also semidecidable.
Theorem
If A is decidable then \bar{A} is also decidable.
Theorem
If A and B are decidable then
$A \cup B, A \cap B$ and $A \backslash B$ are decidable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

If A is decidable then it is also semidecidable.
Theorem
If A is decidable then \bar{A} is also decidable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

If A is decidable then it is also semidecidable.
Theorem
If A is decidable then \bar{A} is also decidable.
Theorem
If A and B are decidable then
$A \cup B, A \cap B$ and $A \backslash B$ are decidable.
Theorem
"A A and B are semidecicable then
$A \cup B$ and $A \cap B$ are semidecidable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

If A is decidable then it is also semidecidable.
Theorem
If A is decidable then \bar{A} is also decidable.
Theorem
If A and B are decidable then
$A \cup B, A \cap B$ and $A \backslash B$ are decidable.
Theorem
If A and B are semidecidable then
$A \cup B$ and $A \cap B$ are semidecidable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

A set A is semidecidable iff there exists a computable function φ, such that,
$A=\operatorname{Dom}[\varphi]$
Post Theorem
A set A is decidable iff A and \bar{A} are semidecidable.
Klaome Sot TV^{2}
The set $\mathbb{K}=\left\{x \mid \varphi_{x}[x] \downarrow\right\}$ is called Kleene set.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

A set A is semidecidable iff there exists a computable function φ, such that,
$A=\operatorname{Dom}[\varphi]$

Post Theorem

A set A is decidable iff A and \bar{A} are semidecidable.
Kleene Set \mathbb{K}
The set $\mathbb{K}=\left\{x \mid \varphi_{x}[x] \downarrow\right\}$ is called Kleene set.
Theorem
\mathbb{K} is semide cidable but not decidable

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

A set A is semidecidable iff there exists a computable function φ, such that,
$A=\operatorname{Dom}[\varphi]$

Post Theorem

A set A is decidable iff A and \bar{A} are semidecidable.
Kleene Set \mathbb{K}
The set $\mathbb{K}=\left\{x \mid \varphi_{x}[x] \downarrow\right\}$ is called Kleene set.
Theorem
\mathbb{K} is semidecidable but not decidable.

Decidable and Semidecidable Sets $A \subseteq \mathbb{N}^{n}$

Theorem

A set A is semidecidable iff there exists a computable function φ, such that,
$A=\operatorname{Dom}[\varphi]$

Post Theorem

A set A is decidable iff A and \bar{A} are semidecidable.
Kleene Set \mathbb{K}
The set $\mathbb{K}=\left\{x \mid \varphi_{x}[x] \downarrow\right\}$ is called Kleene set.
Theorem
\mathbb{K} is semidecidable but not decidable.

Outline

Introduction
Mathematical Preliminaries
Computability
Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Conclusions and Discussion

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

Conclusions and Discussion

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$
P[Q, x] \simeq \begin{cases}1 & \Leftarrow Q[x] \downarrow \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

Conclusions and Discussion

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$
P[Q, x] \simeq\left\{\begin{aligned}
1 & \Leftarrow Q[x] \downarrow \\
0 & \Leftarrow \text { o.w. }
\end{aligned}\right.
$$

$$
P[a, x] \simeq\left\{\begin{aligned}
1 & \Leftarrow \varphi_{a}[x] \downarrow \\
0 & \Leftarrow \text { o.w. }
\end{aligned}\right.
$$

Conclusions and Discussion

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$
P[Q, x] \simeq \begin{cases}1 & \Leftarrow Q[x] \downarrow \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

$$
P[a, x] \simeq\left\{\begin{aligned}
1 & \Leftarrow \varphi_{a}[x] \downarrow \\
0 & \Leftarrow \text { o.w. }
\end{aligned}\right.
$$

$a \in \mathbb{K} \Leftrightarrow \varphi_{a}[a] \downarrow P[a, a]=1$
$a \in \overline{\mathbb{K}} \Leftrightarrow \varphi_{a}[a] \uparrow \Leftrightarrow P[a, a]=0$
Thus $\mathbb{\mathbb { K }}$ is decidable, which is a contradiction.

Conclusions and Discussion

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$
P[Q, x] \simeq \begin{cases}1 & \Leftarrow Q[x] \downarrow \\ 0 & \Leftarrow \text { o.w. }\end{cases}
$$

$$
P[a, x] \simeq\left\{\begin{aligned}
1 & \Leftarrow \varphi_{a}[x] \downarrow \\
0 & \Leftarrow \text { o.w. }
\end{aligned}\right.
$$

$a \in \mathbb{K} \Leftrightarrow \varphi_{a}[a] \downarrow P[a, a]=1$
$a \in \overline{\mathbb{K}} \Leftrightarrow \varphi_{a}[a] \uparrow \Leftrightarrow P[a, a]=0$
Thus $\overline{\mathbb{K}}$ is decidable, which is a contradiction.

[^0]: The three computational models (recursion, λ-calculus, and Turing machine) were shown to be equivalent (1934).

 Church-Turing thesis
 Any real-world computation can be translated into an equivalent
 computation involving a Turing machine (or a program in any reasonable programming language)

