
Introduction to Theory of Computability

Nikolaj Popov and Tudor Jebelean

Research Institute for Symbolic Computation, Linz

{popov,jebelean}@risc.uni-linz.ac.at

Outline

Introduction
Mathematical Preliminaries

Computability
Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Outline

Introduction
Mathematical Preliminaries

Computability
Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Introduction
Various notions of computation developed by Gödel, Church,
Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing
machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any
reasonable programming language).

The intuitive notion of effective computability for functions and
algorithms is formally expressed by Turing machines or the lambda
calculus.

A function is computable, in the intuitive sense, if and only if it is
Turing-computable.

Introduction
Various notions of computation developed by Gödel, Church,
Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing
machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any
reasonable programming language).

The intuitive notion of effective computability for functions and
algorithms is formally expressed by Turing machines or the lambda
calculus.

A function is computable, in the intuitive sense, if and only if it is
Turing-computable.

Introduction
Various notions of computation developed by Gödel, Church,
Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing
machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any
reasonable programming language).

The intuitive notion of effective computability for functions and
algorithms is formally expressed by Turing machines or the lambda
calculus.

A function is computable, in the intuitive sense, if and only if it is
Turing-computable.

Introduction
Various notions of computation developed by Gödel, Church,
Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing
machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any
reasonable programming language).

The intuitive notion of effective computability for functions and
algorithms is formally expressed by Turing machines or the lambda
calculus.

A function is computable, in the intuitive sense, if and only if it is
Turing-computable.

Introduction
Various notions of computation developed by Gödel, Church,
Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing
machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any
reasonable programming language).

The intuitive notion of effective computability for functions and
algorithms is formally expressed by Turing machines or the lambda
calculus.

A function is computable, in the intuitive sense, if and only if it is
Turing-computable.

Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A

Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A

Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A

Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A

Mathematical Preliminaries

Domain of a function
Dom[f] = {x | f [x] is defined}

Range of a function
Ran[f] = {y | ∃x ∈ Dom[f] ∧ f [x] = y}

Graph of a function
Graph[f] = {(x , y) | ∃x ∈ Dom[f] ∧ f [x] = y}

Partial equality
f [x] ' y ⇔ (x , y) ∈ Graph[f]

Mathematical Preliminaries

Domain of a function
Dom[f] = {x | f [x] is defined}

Range of a function
Ran[f] = {y | ∃x ∈ Dom[f] ∧ f [x] = y}

Graph of a function
Graph[f] = {(x , y) | ∃x ∈ Dom[f] ∧ f [x] = y}

Partial equality
f [x] ' y ⇔ (x , y) ∈ Graph[f]

Mathematical Preliminaries

Domain of a function
Dom[f] = {x | f [x] is defined}

Range of a function
Ran[f] = {y | ∃x ∈ Dom[f] ∧ f [x] = y}

Graph of a function
Graph[f] = {(x , y) | ∃x ∈ Dom[f] ∧ f [x] = y}

Partial equality
f [x] ' y ⇔ (x , y) ∈ Graph[f]

Mathematical Preliminaries

Domain of a function
Dom[f] = {x | f [x] is defined}

Range of a function
Ran[f] = {y | ∃x ∈ Dom[f] ∧ f [x] = y}

Graph of a function
Graph[f] = {(x , y) | ∃x ∈ Dom[f] ∧ f [x] = y}

Partial equality
f [x] ' y ⇔ (x , y) ∈ Graph[f]

Mathematical Preliminaries

f is defined
f [x] ↓ ⇔ (x , y) ∈ Graph[f]

Partial equality '
f [x] ' g[x]
iff
f [x] ↓ ⇔ g[x] ↓
f [x] ↓ ⇒ f [x] = g[x]

f is computable
f is computable function iff
there exists a program P which computes it

Mathematical Preliminaries

f is defined
f [x] ↓ ⇔ (x , y) ∈ Graph[f]

Partial equality '
f [x] ' g[x]
iff
f [x] ↓ ⇔ g[x] ↓
f [x] ↓ ⇒ f [x] = g[x]

f is computable
f is computable function iff
there exists a program P which computes it

Mathematical Preliminaries

f is defined
f [x] ↓ ⇔ (x , y) ∈ Graph[f]

Partial equality '
f [x] ' g[x]
iff
f [x] ↓ ⇔ g[x] ↓
f [x] ↓ ⇒ f [x] = g[x]

f is computable
f is computable function iff
there exists a program P which computes it

Outline

Introduction
Mathematical Preliminaries

Computability
Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Superposition

h is a superposition of f ,g1, . . . ,gk

h[x] ' f [g1[x], . . . ,gk [x]]

Theorem
Given the computable functions f ,g1, . . . ,gk , then
h[x] ' f [g1[x], . . . ,gk [x]] is computable function.

Superposition preserves computability.

Superposition

h is a superposition of f ,g1, . . . ,gk

h[x] ' f [g1[x], . . . ,gk [x]]

Theorem
Given the computable functions f ,g1, . . . ,gk , then
h[x] ' f [g1[x], . . . ,gk [x]] is computable function.

Superposition preserves computability.

Superposition

h is a superposition of f ,g1, . . . ,gk

h[x] ' f [g1[x], . . . ,gk [x]]

Theorem
Given the computable functions f ,g1, . . . ,gk , then
h[x] ' f [g1[x], . . . ,gk [x]] is computable function.

Superposition preserves computability.

Primitive Recursion

h is obtained by weak primitive recursion from g and a

h[x] '
{

a ⇐ x = 0
g[x − 1,h[x − 1]] ⇐ o.w.

h is obtained by primitive recursion from f and g

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

Primitive recursion preserves computability.

Primitive Recursion

h is obtained by weak primitive recursion from g and a

h[x] '
{

a ⇐ x = 0
g[x − 1,h[x − 1]] ⇐ o.w.

h is obtained by primitive recursion from f and g

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

Primitive recursion preserves computability.

Primitive Recursion

h is obtained by weak primitive recursion from g and a

h[x] '
{

a ⇐ x = 0
g[x − 1,h[x − 1]] ⇐ o.w.

h is obtained by primitive recursion from f and g

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

Primitive recursion preserves computability.

Primitive Recursive Functions

The basic functions are primitive recursive
O[x] ' 0
S[x] ' x + 1
In
i [x] ' xi

The superposition is primitive recursive
If f ,g1, . . . ,gk are primitive recursive, then
h[x] ' f [g1[x], . . . ,gk [x]]

is primitive recursive.

The primitive recursion is primitive recursive
If f and g are primitive recursive, then

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

is primitive recursive.

Primitive Recursive Functions

The basic functions are primitive recursive
O[x] ' 0
S[x] ' x + 1
In
i [x] ' xi

The superposition is primitive recursive
If f ,g1, . . . ,gk are primitive recursive, then
h[x] ' f [g1[x], . . . ,gk [x]]

is primitive recursive.

The primitive recursion is primitive recursive
If f and g are primitive recursive, then

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

is primitive recursive.

Primitive Recursive Functions

The basic functions are primitive recursive
O[x] ' 0
S[x] ' x + 1
In
i [x] ' xi

The superposition is primitive recursive
If f ,g1, . . . ,gk are primitive recursive, then
h[x] ' f [g1[x], . . . ,gk [x]]

is primitive recursive.

The primitive recursion is primitive recursive
If f and g are primitive recursive, then

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

is primitive recursive.

Primitive Recursion

Theorem
All the primitive recursive functions are computable.

Theorem
All the primitive recursive functions are total.

Primitive Recursion

Theorem
All the primitive recursive functions are computable.

Theorem
All the primitive recursive functions are total.

Examples

Addition is primitive recursive
f1[x , y] ' x + y

f1[x , y] '
{

x ⇐ y = 0
S[f1[x , y − 1]] ⇐ o.w.

Multiplication is primitive recursive
f2[x , y] ' x .y

f2[x , y] '
{

0 ⇐ y = 0
x + f2[x , y − 1] ⇐ o.w.

Examples

Addition is primitive recursive
f1[x , y] ' x + y

f1[x , y] '
{

x ⇐ y = 0
S[f1[x , y − 1]] ⇐ o.w.

Multiplication is primitive recursive
f2[x , y] ' x .y

f2[x , y] '
{

0 ⇐ y = 0
x + f2[x , y − 1] ⇐ o.w.

Examples

Addition is primitive recursive
f1[x , y] ' x + y

f1[x , y] '
{

x ⇐ y = 0
S[f1[x , y − 1]] ⇐ o.w.

Multiplication is primitive recursive
f2[x , y] ' x .y

f2[x , y] '
{

0 ⇐ y = 0
x + f2[x , y − 1] ⇐ o.w.

Examples

Addition is primitive recursive
f1[x , y] ' x + y

f1[x , y] '
{

x ⇐ y = 0
S[f1[x , y − 1]] ⇐ o.w.

Multiplication is primitive recursive
f2[x , y] ' x .y

f2[x , y] '
{

0 ⇐ y = 0
x + f2[x , y − 1] ⇐ o.w.

Examples
Power is primitive recursive
f3[x , y] ' xy

f3[x , y] '
{

1 ⇐ y = 0
x .f3[x , y − 1]] ⇐ o.w.

Subtraction-dot-one is primitive recursive

f4[x] ' x−̇1 '
{

0 ⇐ x = 0
x − 1 ⇐ o.w.

f4[x] '
{

0 ⇐ x = 0
I2
1 [x − 1, f4[x − 1]] ⇐ o.w.

Examples
Power is primitive recursive
f3[x , y] ' xy

f3[x , y] '
{

1 ⇐ y = 0
x .f3[x , y − 1]] ⇐ o.w.

Subtraction-dot-one is primitive recursive

f4[x] ' x−̇1 '
{

0 ⇐ x = 0
x − 1 ⇐ o.w.

f4[x] '
{

0 ⇐ x = 0
I2
1 [x − 1, f4[x − 1]] ⇐ o.w.

Examples
Power is primitive recursive
f3[x , y] ' xy

f3[x , y] '
{

1 ⇐ y = 0
x .f3[x , y − 1]] ⇐ o.w.

Subtraction-dot-one is primitive recursive

f4[x] ' x−̇1 '
{

0 ⇐ x = 0
x − 1 ⇐ o.w.

f4[x] '
{

0 ⇐ x = 0
I2
1 [x − 1, f4[x − 1]] ⇐ o.w.

Examples
Power is primitive recursive
f3[x , y] ' xy

f3[x , y] '
{

1 ⇐ y = 0
x .f3[x , y − 1]] ⇐ o.w.

Subtraction-dot-one is primitive recursive

f4[x] ' x−̇1 '
{

0 ⇐ x = 0
x − 1 ⇐ o.w.

f4[x] '
{

0 ⇐ x = 0
I2
1 [x − 1, f4[x − 1]] ⇐ o.w.

Examples
Subtraction-dot is primitive recursive

f5[x , y] ' x−̇y '
{

0 ⇐ x < y
x − y ⇐ o.w.

f5[x , y] '
{

x ⇐ y = 0
f5[x , y − 1]−̇1 ⇐ o.w.

Factorial is primitive recursive
f6[x] ' x!

f6[x] '
{

1 ⇐ x = 0
x .f6[x − 1]] ⇐ o.w.

Examples
Subtraction-dot is primitive recursive

f5[x , y] ' x−̇y '
{

0 ⇐ x < y
x − y ⇐ o.w.

f5[x , y] '
{

x ⇐ y = 0
f5[x , y − 1]−̇1 ⇐ o.w.

Factorial is primitive recursive
f6[x] ' x!

f6[x] '
{

1 ⇐ x = 0
x .f6[x − 1]] ⇐ o.w.

Examples
Subtraction-dot is primitive recursive

f5[x , y] ' x−̇y '
{

0 ⇐ x < y
x − y ⇐ o.w.

f5[x , y] '
{

x ⇐ y = 0
f5[x , y − 1]−̇1 ⇐ o.w.

Factorial is primitive recursive
f6[x] ' x!

f6[x] '
{

1 ⇐ x = 0
x .f6[x − 1]] ⇐ o.w.

Examples
Subtraction-dot is primitive recursive

f5[x , y] ' x−̇y '
{

0 ⇐ x < y
x − y ⇐ o.w.

f5[x , y] '
{

x ⇐ y = 0
f5[x , y − 1]−̇1 ⇐ o.w.

Factorial is primitive recursive
f6[x] ' x!

f6[x] '
{

1 ⇐ x = 0
x .f6[x − 1]] ⇐ o.w.

Examples
Sign is primitive recursive

sg[x] '
{

0 ⇐ x = 0
1 ⇐ o.w.

sg[x] '
{

0 ⇐ x = 0
O[sg[x − 1]] + 1 ⇐ o.w.

Opposite-sign is primitive recursive

sg[x] '
{

1 ⇐ x = 0
0 ⇐ o.w.

sg[x] '
{

1 ⇐ x = 0
O[sg[x − 1]] ⇐ o.w.

Examples
Sign is primitive recursive

sg[x] '
{

0 ⇐ x = 0
1 ⇐ o.w.

sg[x] '
{

0 ⇐ x = 0
O[sg[x − 1]] + 1 ⇐ o.w.

Opposite-sign is primitive recursive

sg[x] '
{

1 ⇐ x = 0
0 ⇐ o.w.

sg[x] '
{

1 ⇐ x = 0
O[sg[x − 1]] ⇐ o.w.

Examples
Sign is primitive recursive

sg[x] '
{

0 ⇐ x = 0
1 ⇐ o.w.

sg[x] '
{

0 ⇐ x = 0
O[sg[x − 1]] + 1 ⇐ o.w.

Opposite-sign is primitive recursive

sg[x] '
{

1 ⇐ x = 0
0 ⇐ o.w.

sg[x] '
{

1 ⇐ x = 0
O[sg[x − 1]] ⇐ o.w.

Examples
Sign is primitive recursive

sg[x] '
{

0 ⇐ x = 0
1 ⇐ o.w.

sg[x] '
{

0 ⇐ x = 0
O[sg[x − 1]] + 1 ⇐ o.w.

Opposite-sign is primitive recursive

sg[x] '
{

1 ⇐ x = 0
0 ⇐ o.w.

sg[x] '
{

1 ⇐ x = 0
O[sg[x − 1]] ⇐ o.w.

Examples

Absolute value is primitive recursive
mod [x , y] ' |x − y |

mod [x , y] ' (x−̇y) + (y−̇x)

Minimum is primitive recursive
min[x , y]

min[x , y] ' x−̇(x−̇y)

Maximum is primitive recursive
max [x , y]

max [x , y] ' x + (y−̇x)

Examples

Absolute value is primitive recursive
mod [x , y] ' |x − y |

mod [x , y] ' (x−̇y) + (y−̇x)

Minimum is primitive recursive
min[x , y]

min[x , y] ' x−̇(x−̇y)

Maximum is primitive recursive
max [x , y]

max [x , y] ' x + (y−̇x)

Examples

Absolute value is primitive recursive
mod [x , y] ' |x − y |

mod [x , y] ' (x−̇y) + (y−̇x)

Minimum is primitive recursive
min[x , y]

min[x , y] ' x−̇(x−̇y)

Maximum is primitive recursive
max [x , y]

max [x , y] ' x + (y−̇x)

Examples

Absolute value is primitive recursive
mod [x , y] ' |x − y |

mod [x , y] ' (x−̇y) + (y−̇x)

Minimum is primitive recursive
min[x , y]

min[x , y] ' x−̇(x−̇y)

Maximum is primitive recursive
max [x , y]

max [x , y] ' x + (y−̇x)

Examples

Absolute value is primitive recursive
mod [x , y] ' |x − y |

mod [x , y] ' (x−̇y) + (y−̇x)

Minimum is primitive recursive
min[x , y]

min[x , y] ' x−̇(x−̇y)

Maximum is primitive recursive
max [x , y]

max [x , y] ' x + (y−̇x)

Examples

Absolute value is primitive recursive
mod [x , y] ' |x − y |

mod [x , y] ' (x−̇y) + (y−̇x)

Minimum is primitive recursive
min[x , y]

min[x , y] ' x−̇(x−̇y)

Maximum is primitive recursive
max [x , y]

max [x , y] ' x + (y−̇x)

Primitive recursion. Properties

Theorem If then else
Let f0, f1,g be primitive recursive.
Then

h[x] '
{

f0[x] ⇐ g[x] = 0
f1[x] ⇐ o.w.

is primitive recursive.

proof:
h[x] ' sg[g[x]].f0[x] + sg[g[x]].f1[x]

Primitive recursion. Properties

Theorem If then else
Let f0, f1,g be primitive recursive.
Then

h[x] '
{

f0[x] ⇐ g[x] = 0
f1[x] ⇐ o.w.

is primitive recursive.

proof:
h[x] ' sg[g[x]].f0[x] + sg[g[x]].f1[x]

Primitive recursion. Properties

Theorem If then1 . . . thenk else
Let f0, . . . , fk ,g0, . . . ,gk−1 be primitive recursive.
Then

h[x] '


f0[x] ⇐ g0[x] = 0
f1[x] ⇐ g0[x] 6= 0 ∧ g1[x] = 0
. . .
. . .
fk [x] ⇐ o.w.

is primitive recursive.

Partial Functions

While loop
input [x]
y := 0
while f [x , y] > 0 do y := y + 1
return[y]

g is obtained by minimization from f
g[x] ' y
iff
∀z < y(f [x , z] ↓ ∧ f [x , z] > 0)

f [x , y] ' 0

g is obtained by minimization from f
g[x] ' µy [f [x , y] = 0]

Partial Functions

While loop
input [x]
y := 0
while f [x , y] > 0 do y := y + 1
return[y]

g is obtained by minimization from f
g[x] ' y
iff
∀z < y(f [x , z] ↓ ∧ f [x , z] > 0)

f [x , y] ' 0

g is obtained by minimization from f
g[x] ' µy [f [x , y] = 0]

Partial Functions

While loop
input [x]
y := 0
while f [x , y] > 0 do y := y + 1
return[y]

g is obtained by minimization from f
g[x] ' y
iff
∀z < y(f [x , z] ↓ ∧ f [x , z] > 0)

f [x , y] ' 0

g is obtained by minimization from f
g[x] ' µy [f [x , y] = 0]

Partial Functions

The basic functions are partial
O[x] ' 0
S[x] ' x + 1
In
i [x] ' xi

The superposition is partial
If f ,g1, . . . ,gk are partial, then
h[x] ' f [g1[x], . . . ,gk [x]]

is partial.

Partial Functions

The basic functions are partial
O[x] ' 0
S[x] ' x + 1
In
i [x] ' xi

The superposition is partial
If f ,g1, . . . ,gk are partial, then
h[x] ' f [g1[x], . . . ,gk [x]]

is partial.

Partial Functions

The primitive recursion is partial
If f and g are partial, then

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y ,h[x , y − 1]] ⇐ o.w.

is partial.

The minimization is partial
If f is partial, then
g[x] ' µy [f [x , y] = 0]

is partial.

Partial Functions

The primitive recursion is partial
If f and g are partial, then

h[x , y] '
{

f [x] ⇐ y = 0
g[x , y ,h[x , y − 1]] ⇐ o.w.

is partial.

The minimization is partial
If f is partial, then
g[x] ' µy [f [x , y] = 0]

is partial.

Partial Functions

Theorem
All the partial functions are computable.

Alternative Definition
Partial functions = Computable functions.

Partial Functions

Theorem
All the partial functions are computable.

Alternative Definition
Partial functions = Computable functions.

Examples

Subtraction is partial

f [x , y] '
{

x − y ⇐ x ≥ y
↑ ⇐ o.w.

f [x , y] ' µz[x + y = z]

Division is partial

g[x , y] '
{

x/y ⇐ ∃k(y .k = x)
↑ ⇐ o.w.

g[x , y] ' µk [k .y = x]

Examples

Subtraction is partial

f [x , y] '
{

x − y ⇐ x ≥ y
↑ ⇐ o.w.

f [x , y] ' µz[x + y = z]

Division is partial

g[x , y] '
{

x/y ⇐ ∃k(y .k = x)
↑ ⇐ o.w.

g[x , y] ' µk [k .y = x]

Examples

Subtraction is partial

f [x , y] '
{

x − y ⇐ x ≥ y
↑ ⇐ o.w.

f [x , y] ' µz[x + y = z]

Division is partial

g[x , y] '
{

x/y ⇐ ∃k(y .k = x)
↑ ⇐ o.w.

g[x , y] ' µk [k .y = x]

Examples

Subtraction is partial

f [x , y] '
{

x − y ⇐ x ≥ y
↑ ⇐ o.w.

f [x , y] ' µz[x + y = z]

Division is partial

g[x , y] '
{

x/y ⇐ ∃k(y .k = x)
↑ ⇐ o.w.

g[x , y] ' µk [k .y = x]

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

I Uniqueness: each object has a unique code
I Totality: each natural number is a code of an object
I Effectiveness: For each object one can find algorithmically its

code and for each code (number) one can find its object.

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

I Uniqueness: each object has a unique code
I Totality: each natural number is a code of an object
I Effectiveness: For each object one can find algorithmically its

code and for each code (number) one can find its object.

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

I Uniqueness: each object has a unique code
I Totality: each natural number is a code of an object
I Effectiveness: For each object one can find algorithmically its

code and for each code (number) one can find its object.

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

I Uniqueness: each object has a unique code
I Totality: each natural number is a code of an object
I Effectiveness: For each object one can find algorithmically its

code and for each code (number) one can find its object.

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

I Uniqueness: each object has a unique code
I Totality: each natural number is a code of an object
I Effectiveness: For each object one can find algorithmically its

code and for each code (number) one can find its object.

Enumeration of the computable functions

I Let P0,P1, . . . ,Pn, . . .
be a list of all the programs (on one variable), and
0,1, . . . ,n, . . . be an effective codding of these programs.

I Each program corresponds to a computable function ϕ

I Let ϕ0, ϕ1, . . . , ϕn, . . .
be a list of all the computable functions (on one variable), and
0,1, . . . ,n, . . . be an effective codding of these functions.

Enumeration of the computable functions

I Let P0,P1, . . . ,Pn, . . .
be a list of all the programs (on one variable), and
0,1, . . . ,n, . . . be an effective codding of these programs.

I Each program corresponds to a computable function ϕ

I Let ϕ0, ϕ1, . . . , ϕn, . . .
be a list of all the computable functions (on one variable), and
0,1, . . . ,n, . . . be an effective codding of these functions.

Enumeration of the computable functions

I Let P0,P1, . . . ,Pn, . . .
be a list of all the programs (on one variable), and
0,1, . . . ,n, . . . be an effective codding of these programs.

I Each program corresponds to a computable function ϕ

I Let ϕ0, ϕ1, . . . , ϕn, . . .
be a list of all the computable functions (on one variable), and
0,1, . . . ,n, . . . be an effective codding of these functions.

Example

Total function which is not computable

f [x] '
{
ϕx [x] + 1 ⇐ ϕx [x] ↓
0 ⇐ o.w.

Assume f is computable. Then f = ϕa for some a.
If a ∈ Dom[ϕa] then ϕa[a] ↓. Hence, f [a] = ϕa[a] = ϕa[a] + 1
If a 6∈ Dom[ϕa] then ϕa[a] ↑. Hence, f [a] = ϕa[a] = 0, but ϕa[a] ↑

Example

Total function which is not computable

f [x] '
{
ϕx [x] + 1 ⇐ ϕx [x] ↓
0 ⇐ o.w.

Assume f is computable. Then f = ϕa for some a.
If a ∈ Dom[ϕa] then ϕa[a] ↓. Hence, f [a] = ϕa[a] = ϕa[a] + 1
If a 6∈ Dom[ϕa] then ϕa[a] ↑. Hence, f [a] = ϕa[a] = 0, but ϕa[a] ↑

Kleene’s S-m-n Theorem

S-m-n Theorem

For any n,m exists a primitive recursive function Sm
n , such that

for any a, x , y

ϕ
(m+n)
a [x , y] ' ϕ(n)

Sm
n [a,x][y]

Property

Let F be a computable function. Then there exists a number e, such
that,

F [e, x] ' ϕe[x]

Property

There exists a number e, such that,

e ' ϕe[x]

Kleene’s S-m-n Theorem

S-m-n Theorem

For any n,m exists a primitive recursive function Sm
n , such that

for any a, x , y

ϕ
(m+n)
a [x , y] ' ϕ(n)

Sm
n [a,x][y]

Property

Let F be a computable function. Then there exists a number e, such
that,

F [e, x] ' ϕe[x]

Property

There exists a number e, such that,

e ' ϕe[x]

Kleene’s S-m-n Theorem

S-m-n Theorem

For any n,m exists a primitive recursive function Sm
n , such that

for any a, x , y

ϕ
(m+n)
a [x , y] ' ϕ(n)

Sm
n [a,x][y]

Property

Let F be a computable function. Then there exists a number e, such
that,

F [e, x] ' ϕe[x]

Property

There exists a number e, such that,

e ' ϕe[x]

Universal Function
Universal Function Theorem

The universal function

Φn[a, x] ' ϕ(n)
a [x]

is computable.

Property

The class of all the total functions on n-variables does not have a
computable universal function.

proof
Assume Φ[a, x] is an universal function for the class of all the total
functions on one variable.

Let ϕ[x] ' Φ[x , x] + 1.

Since Φ is total, ϕ is also total and hence, there exists a, such that

ϕ[x] ' Φ[a, x].

ϕ[a] ' Φ[a,a], and also ϕ[a] ' Φ[a,a] + 1.

Universal Function
Universal Function Theorem

The universal function

Φn[a, x] ' ϕ(n)
a [x]

is computable.

Property

The class of all the total functions on n-variables does not have a
computable universal function.

proof
Assume Φ[a, x] is an universal function for the class of all the total
functions on one variable.

Let ϕ[x] ' Φ[x , x] + 1.

Since Φ is total, ϕ is also total and hence, there exists a, such that

ϕ[x] ' Φ[a, x].

ϕ[a] ' Φ[a,a], and also ϕ[a] ' Φ[a,a] + 1.

Universal Function
Universal Function Theorem

The universal function

Φn[a, x] ' ϕ(n)
a [x]

is computable.

Property

The class of all the total functions on n-variables does not have a
computable universal function.

proof
Assume Φ[a, x] is an universal function for the class of all the total
functions on one variable.

Let ϕ[x] ' Φ[x , x] + 1.

Since Φ is total, ϕ is also total and hence, there exists a, such that

ϕ[x] ' Φ[a, x].

ϕ[a] ' Φ[a,a], and also ϕ[a] ' Φ[a,a] + 1.

Universal Function
Universal Function Theorem

The universal function

Φn[a, x] ' ϕ(n)
a [x]

is computable.

Property

The class of all the total functions on n-variables does not have a
computable universal function.

proof
Assume Φ[a, x] is an universal function for the class of all the total
functions on one variable.

Let ϕ[x] ' Φ[x , x] + 1.

Since Φ is total, ϕ is also total and hence, there exists a, such that

ϕ[x] ' Φ[a, x].

ϕ[a] ' Φ[a,a], and also ϕ[a] ' Φ[a,a] + 1.

Decidable and Semidecidable Sets A ⊆ Nn

Characteristic function of a set χA

χA[x] '
{

1 ⇐ x ∈ A
0 ⇐ o.w.

Decidable Set
A set A is decidable iff χA is computable.

Decidable and Semidecidable Sets A ⊆ Nn

Characteristic function of a set χA

χA[x] '
{

1 ⇐ x ∈ A
0 ⇐ o.w.

Decidable Set
A set A is decidable iff χA is computable.

Decidable and Semidecidable Sets A ⊆ Nn

Characteristic function of a set χA

χA[x] '
{

1 ⇐ x ∈ A
0 ⇐ o.w.

Decidable Set
A set A is decidable iff χA is computable.

Decidable and Semidecidable Sets A ⊆ Nn

Semicharacteristic function of a set CA

CA[x] '
{

1 ⇐ x ∈ A
↑ ⇐ o.w.

Semidecidable Set
A set A is semidecidable iff CA is computable.

Decidable and Semidecidable Sets A ⊆ Nn

Semicharacteristic function of a set CA

CA[x] '
{

1 ⇐ x ∈ A
↑ ⇐ o.w.

Semidecidable Set
A set A is semidecidable iff CA is computable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
If A is decidable then it is also semidecidable.

Theorem
If A is decidable then A is also decidable.

Theorem
If A and B are decidable then
A ∪ B, A ∩ B and A\B are decidable.

Theorem
If A and B are semidecidable then
A ∪ B and A ∩ B are semidecidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
If A is decidable then it is also semidecidable.

Theorem
If A is decidable then A is also decidable.

Theorem
If A and B are decidable then
A ∪ B, A ∩ B and A\B are decidable.

Theorem
If A and B are semidecidable then
A ∪ B and A ∩ B are semidecidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
If A is decidable then it is also semidecidable.

Theorem
If A is decidable then A is also decidable.

Theorem
If A and B are decidable then
A ∪ B, A ∩ B and A\B are decidable.

Theorem
If A and B are semidecidable then
A ∪ B and A ∩ B are semidecidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
If A is decidable then it is also semidecidable.

Theorem
If A is decidable then A is also decidable.

Theorem
If A and B are decidable then
A ∪ B, A ∩ B and A\B are decidable.

Theorem
If A and B are semidecidable then
A ∪ B and A ∩ B are semidecidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
A set A is semidecidable iff there exists a computable function ϕ,
such that,
A = Dom[ϕ]

Post Theorem
A set A is decidable iff A and A are semidecidable.

Kleene Set K
The set K = {x | ϕx [x] ↓} is called Kleene set.

Theorem
K is semidecidable but not decidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
A set A is semidecidable iff there exists a computable function ϕ,
such that,
A = Dom[ϕ]

Post Theorem
A set A is decidable iff A and A are semidecidable.

Kleene Set K
The set K = {x | ϕx [x] ↓} is called Kleene set.

Theorem
K is semidecidable but not decidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
A set A is semidecidable iff there exists a computable function ϕ,
such that,
A = Dom[ϕ]

Post Theorem
A set A is decidable iff A and A are semidecidable.

Kleene Set K
The set K = {x | ϕx [x] ↓} is called Kleene set.

Theorem
K is semidecidable but not decidable.

Decidable and Semidecidable Sets A ⊆ Nn

Theorem
A set A is semidecidable iff there exists a computable function ϕ,
such that,
A = Dom[ϕ]

Post Theorem
A set A is decidable iff A and A are semidecidable.

Kleene Set K
The set K = {x | ϕx [x] ↓} is called Kleene set.

Theorem
K is semidecidable but not decidable.

Outline

Introduction
Mathematical Preliminaries

Computability
Primitive Recursive Functions
Partial Functions
Enumeration of the Computable Functions
Decidable and Semidecidable Sets

Conclusion and Discussions

Conclusions and Discussion

Halting Problem
There is no program P which may decide for an arbitrary program Q
executed on arbitrary input x , whether Q will terminate on x or not.

P[Q, x] '
{

1 ⇐ Q[x] ↓
0 ⇐ o.w.

P[a, x] '
{

1 ⇐ ϕa[x] ↓
0 ⇐ o.w.

a ∈ K ⇔ ϕa[a] ↓ ⇔ P[a,a] = 1

a ∈ K ⇔ ϕa[a] ↑ ⇔ P[a,a] = 0
Thus K is decidable, which is a contradiction.

Conclusions and Discussion

Halting Problem
There is no program P which may decide for an arbitrary program Q
executed on arbitrary input x , whether Q will terminate on x or not.

P[Q, x] '
{

1 ⇐ Q[x] ↓
0 ⇐ o.w.

P[a, x] '
{

1 ⇐ ϕa[x] ↓
0 ⇐ o.w.

a ∈ K ⇔ ϕa[a] ↓ ⇔ P[a,a] = 1

a ∈ K ⇔ ϕa[a] ↑ ⇔ P[a,a] = 0
Thus K is decidable, which is a contradiction.

Conclusions and Discussion

Halting Problem
There is no program P which may decide for an arbitrary program Q
executed on arbitrary input x , whether Q will terminate on x or not.

P[Q, x] '
{

1 ⇐ Q[x] ↓
0 ⇐ o.w.

P[a, x] '
{

1 ⇐ ϕa[x] ↓
0 ⇐ o.w.

a ∈ K ⇔ ϕa[a] ↓ ⇔ P[a,a] = 1

a ∈ K ⇔ ϕa[a] ↑ ⇔ P[a,a] = 0
Thus K is decidable, which is a contradiction.

Conclusions and Discussion

Halting Problem
There is no program P which may decide for an arbitrary program Q
executed on arbitrary input x , whether Q will terminate on x or not.

P[Q, x] '
{

1 ⇐ Q[x] ↓
0 ⇐ o.w.

P[a, x] '
{

1 ⇐ ϕa[x] ↓
0 ⇐ o.w.

a ∈ K ⇔ ϕa[a] ↓ ⇔ P[a,a] = 1

a ∈ K ⇔ ϕa[a] ↑ ⇔ P[a,a] = 0
Thus K is decidable, which is a contradiction.

Conclusions and Discussion

Halting Problem
There is no program P which may decide for an arbitrary program Q
executed on arbitrary input x , whether Q will terminate on x or not.

P[Q, x] '
{

1 ⇐ Q[x] ↓
0 ⇐ o.w.

P[a, x] '
{

1 ⇐ ϕa[x] ↓
0 ⇐ o.w.

a ∈ K ⇔ ϕa[a] ↓ ⇔ P[a,a] = 1

a ∈ K ⇔ ϕa[a] ↑ ⇔ P[a,a] = 0
Thus K is decidable, which is a contradiction.

	Main Part
	Introduction
	Mathematical Preliminaries

	Computability
	Primitive Recursive Functions
	Partial Functions
	Enumeration of the Computable Functions
	Decidable and Semidecidable Sets

	Conclusion and Discussions

