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Introduction
Various notions of computation developed by Gödel, Church,
Turing and Kleene

The three computational models (recursion, λ-calculus, and Turing
machine) were shown to be equivalent (1934).

Church-Turing thesis
Any real-world computation can be translated into an equivalent
computation involving a Turing machine (or a program in any
reasonable programming language).

The intuitive notion of effective computability for functions and
algorithms is formally expressed by Turing machines or the lambda
calculus.

A function is computable, in the intuitive sense, if and only if it is
Turing-computable.
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Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A



Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A



Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A



Mathematical Preliminaries

Natural Numbers
N = {0,1, . . . }

Sets
{a1,a2, . . . ,an} the order of the elements is irrelevant

n-tuples
(a1,a2, . . . ,an) = (b1,b2, . . . ,bn)
iff
a1 = b1, . . . ,an = bn

Operations on Sets
A ∪ B = {a | a ∈ A or a ∈ B}
A ∩ B = {a | a ∈ A and a ∈ B}
A \ B = {a | a ∈ A and a 6∈ B}
A = Nn \ A



Mathematical Preliminaries
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Partial equality '
f [x ] ' g[x ]
iff
f [x ] ↓ ⇔ g[x ] ↓
f [x ] ↓ ⇒ f [x ] = g[x ]

f is computable
f is computable function iff
there exists a program P which computes it
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Superposition

h is a superposition of f ,g1, . . . ,gk

h[x ] ' f [g1[x ], . . . ,gk [x ]]

Theorem
Given the computable functions f ,g1, . . . ,gk , then
h[x ] ' f [g1[x ], . . . ,gk [x ]] is computable function.

Superposition preserves computability.
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Primitive Recursion

h is obtained by weak primitive recursion from g and a

h[x ] '
{

a ⇐ x = 0
g[x − 1,h[x − 1]] ⇐ o.w.

h is obtained by primitive recursion from f and g

h[x , y ] '
{

f [x ] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

Primitive recursion preserves computability.



Primitive Recursion

h is obtained by weak primitive recursion from g and a

h[x ] '
{

a ⇐ x = 0
g[x − 1,h[x − 1]] ⇐ o.w.

h is obtained by primitive recursion from f and g

h[x , y ] '
{

f [x ] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

Primitive recursion preserves computability.



Primitive Recursion

h is obtained by weak primitive recursion from g and a

h[x ] '
{

a ⇐ x = 0
g[x − 1,h[x − 1]] ⇐ o.w.

h is obtained by primitive recursion from f and g

h[x , y ] '
{

f [x ] ⇐ y = 0
g[x , y − 1,h[x , y − 1]] ⇐ o.w.

Primitive recursion preserves computability.



Primitive Recursive Functions

The basic functions are primitive recursive
O[x ] ' 0
S[x ] ' x + 1
In
i [x ] ' xi

The superposition is primitive recursive
If f ,g1, . . . ,gk are primitive recursive, then
h[x ] ' f [g1[x ], . . . ,gk [x ]]

is primitive recursive.

The primitive recursion is primitive recursive
If f and g are primitive recursive, then
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Examples

Addition is primitive recursive
f1[x , y ] ' x + y

f1[x , y ] '
{

x ⇐ y = 0
S[f1[x , y − 1]] ⇐ o.w.

Multiplication is primitive recursive
f2[x , y ] ' x .y

f2[x , y ] '
{

0 ⇐ y = 0
x + f2[x , y − 1] ⇐ o.w.
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max [x , y ] ' x + (y−̇x)
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Theorem If then else
Let f0, f1,g be primitive recursive.
Then

h[x ] '
{

f0[x ] ⇐ g[x ] = 0
f1[x ] ⇐ o.w.

is primitive recursive.

proof:
h[x ] ' sg[g[x ]].f0[x ] + sg[g[x ]].f1[x ]
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Theorem If then1 . . . thenk else
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
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While loop
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y := 0
while f [x , y ] > 0 do y := y + 1
return[y ]

g is obtained by minimization from f
g[x ] ' y
iff
∀z < y(f [x , z] ↓ ∧ f [x , z] > 0)

f [x , y ] ' 0

g is obtained by minimization from f
g[x ] ' µy [f [x , y ] = 0]
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code and for each code (number) one can find its object.
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Example

Total function which is not computable

f [x ] '
{
ϕx [x ] + 1 ⇐ ϕx [x ] ↓
0 ⇐ o.w.

Assume f is computable. Then f = ϕa for some a.
If a ∈ Dom[ϕa] then ϕa[a] ↓. Hence, f [a] = ϕa[a] = ϕa[a] + 1
If a 6∈ Dom[ϕa] then ϕa[a] ↑. Hence, f [a] = ϕa[a] = 0, but ϕa[a] ↑
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Kleene’s S-m-n Theorem

S-m-n Theorem

For any n,m exists a primitive recursive function Sm
n , such that

for any a, x , y

ϕ
(m+n)
a [x , y ] ' ϕ(n)

Sm
n [a,x ][y ]

Property

Let F be a computable function. Then there exists a number e, such
that,

F [e, x ] ' ϕe[x ]

Property

There exists a number e, such that,

e ' ϕe[x ]
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Universal Function
Universal Function Theorem

The universal function

Φn[a, x ] ' ϕ(n)
a [x ]

is computable.

Property

The class of all the total functions on n-variables does not have a
computable universal function.

proof
Assume Φ[a, x ] is an universal function for the class of all the total
functions on one variable.

Let ϕ[x ] ' Φ[x , x ] + 1.

Since Φ is total, ϕ is also total and hence, there exists a, such that

ϕ[x ] ' Φ[a, x ].

ϕ[a] ' Φ[a,a], and also ϕ[a] ' Φ[a,a] + 1.
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Decidable and Semidecidable Sets A ⊆ Nn

Characteristic function of a set χA

χA[x ] '
{

1 ⇐ x ∈ A
0 ⇐ o.w.

Decidable Set
A set A is decidable iff χA is computable.
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A set A is semidecidable iff there exists a computable function ϕ,
such that,
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Post Theorem
A set A is decidable iff A and A are semidecidable.

Kleene Set K
The set K = {x | ϕx [x ] ↓} is called Kleene set.
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Conclusions and Discussion

Halting Problem
There is no program P which may decide for an arbitrary program Q
executed on arbitrary input x , whether Q will terminate on x or not.

P[Q, x ] '
{

1 ⇐ Q[x ] ↓
0 ⇐ o.w.

P[a, x ] '
{

1 ⇐ ϕa[x ] ↓
0 ⇐ o.w.

a ∈ K ⇔ ϕa[a] ↓ ⇔ P[a,a] = 1

a ∈ K ⇔ ϕa[a] ↑ ⇔ P[a,a] = 0
Thus K is decidable, which is a contradiction.
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