Introduction to Theory of Computability

Nikolaj Popov and Tudor Jebelean

Research Institute for Symbolic Computation, Linz

{popov,jebelean}@risc.uni-linz.ac.at

Outline

Introduction

Mathematical Preliminaries

Computability

Primitive Recursive Functions Partial Functions Enumeration of the Computable Functions Decidable and Semidecidable Sets

Conclusion and Discussions

Outline

Introduction Mathematical Preliminaries

Computability

Primitive Recursive Functions Partial Functions Enumeration of the Computable Functions Decidable and Semidecidable Sets

Conclusion and Discussions

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ -calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any *reasonable* programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

A function is computable, in the intuitive sense, if and only if it is Turing-computable.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖▶ ■

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ -calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any *reasonable* programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

A function is computable, in the intuitive sense, if and only if it is Turing-computable.

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ -calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any *reasonable* programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

A function is computable, in the intuitive sense, if and only if it is Turing-computable.

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ -calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any *reasonable* programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

A function is computable, in the intuitive sense, if and only if it is Turing-computable.

Various notions of computation developed by Gödel, Church, Turing and Kleene

The three computational models (recursion, λ -calculus, and Turing machine) were shown to be equivalent (1934).

Church-Turing thesis

Any real-world computation can be translated into an equivalent computation involving a Turing machine (or a program in any *reasonable* programming language).

The intuitive notion of effective computability for functions and algorithms is formally expressed by Turing machines or the lambda calculus.

A function is computable, in the intuitive sense, if and only if it is Turing-computable.

Natural Numbers $\mathbb{N} = \{0, 1, \dots\}$

Sets

 $\{a_1, a_2, \dots, a_n\}$ the order of the elements is irrelevant

n-tuples $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ iff $a_1 = b_1, ..., a_n = b_n$

Operations on Sets

 $A \cup B = \{\overline{a} \mid \overline{a} \in A \text{ or } \overline{a} \in B\}$ $A \cap B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \in B\}$ $A \setminus B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \notin B\}$ $\overline{A} = \mathbb{N}^n \setminus A$

Natural Numbers $\mathbb{N} = \{0, 1, \dots\}$

Sets

 $\{a_1, a_2, \ldots, a_n\}$ the order of the elements is irrelevant

n-tuples $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ iff $a_1 = b_1, ..., a_n = b_n$

Operations on Sets

 $A \cup B = \{\overline{a} \mid \overline{a} \in A \text{ or } \overline{a} \in B\}$ $A \cap B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \in B\}$ $A \setminus B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \notin B\}$ $\overline{A} = \mathbb{N}^n \setminus A$

Natural Numbers $\mathbb{N} = \{0, 1, \dots\}$

Sets

 $\{a_1, a_2, \ldots, a_n\}$ the order of the elements is irrelevant

(日)、(間)、(目)、(日)、(日)

n-tuples $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ iff $a_1 = b_1, ..., a_n = b_n$

Operations on Sets

 $A \cup B = \{\overline{a} \mid \overline{a} \in A \text{ or } \overline{a} \in B\}$ $A \cap B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \in B\}$ $A \setminus B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \notin B\}$ $\overline{A} = \mathbb{N}^n \setminus A$

Natural Numbers $\mathbb{N} = \{0, 1, \dots\}$

Sets

 $\{a_1, a_2, \ldots, a_n\}$ the order of the elements is irrelevant

n-tuples

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$$

iff
 $a_1 = b_1, \dots, a_n = b_n$

Operations on Sets

$$A \cup B = \{\overline{a} \mid \overline{a} \in A \text{ or } \overline{a} \in B\}$$

$$A \cap B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \in B\}$$

$$A \setminus B = \{\overline{a} \mid \overline{a} \in A \text{ and } \overline{a} \notin B\}$$

$$\overline{A} = \mathbb{N}^n \setminus A$$

Domain of a function $Dom[f] = \{\overline{x} \mid f[\overline{x}] \text{ is defined}\}$

Range of a function $Ran[f] = \{y \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Graph of a function $Graph[f] = \{(\overline{x}, y) \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Partial equality $f[\overline{x}] \simeq y \iff (\overline{x}, y) \in Graph[f]$

Domain of a function $Dom[f] = \{\overline{x} \mid f[\overline{x}] \text{ is defined}\}$

Range of a function $Ran[f] = \{y \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Graph of a function *Graph*[f] = {(\overline{x} , y) | $\exists \overline{x} \in Dom[f] \land f[\overline{x}] = y$ }

Partial equality $f[\overline{x}] \simeq y \iff (\overline{x}, y) \in Graph[f]$

Domain of a function $Dom[f] = \{\overline{x} \mid f[\overline{x}] \text{ is defined}\}$

Range of a function $Ran[f] = \{y \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Graph of a function $Graph[f] = \{(\overline{x}, y) \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Partial equality $f[\overline{x}] \simeq y \iff (\overline{x}, y) \in Graph[f]$

Domain of a function $Dom[f] = \{\overline{x} \mid f[\overline{x}] \text{ is defined}\}$

Range of a function $Ran[f] = \{y \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Graph of a function $Graph[f] = \{(\overline{x}, y) \mid \exists \overline{x} \in Dom[f] \land f[\overline{x}] = y\}$

Partial equality $f[\overline{x}] \simeq y \iff (\overline{x}, y) \in Graph[f]$

f is defined $f[\overline{x}] \downarrow \Leftrightarrow (\overline{x}, y) \in Graph[f]$

 $\begin{array}{l} \textbf{Partial equality} \simeq \\ f[\overline{x}] \simeq g[\overline{x}] \\ \texttt{iff} \\ f[\overline{x}] \downarrow \Leftrightarrow \quad g[\overline{x}] \downarrow \\ f[\overline{x}] \downarrow \Rightarrow \quad f[\overline{x}] = g[\overline{x}] \end{array}$

f is computable

f is computable function iff there exists a program *P* which computes it

f is defined $f[\overline{x}] \downarrow \Leftrightarrow (\overline{x}, y) \in Graph[f]$

$\begin{array}{l} \mbox{Partial equality} \simeq \\ f[\overline{x}] \simeq g[\overline{x}] \\ \mbox{iff} \\ f[\overline{x}] \downarrow \Leftrightarrow g[\overline{x}] \downarrow \\ f[\overline{x}] \downarrow \Rightarrow f[\overline{x}] = g[\overline{x}] \end{array}$

f is computable

f is computable function iff there exists a program *P* which computes it

f is defined $f[\overline{x}] \downarrow \Leftrightarrow (\overline{x}, y) \in Graph[f]$

Partial equality \simeq $f[\overline{x}] \simeq g[\overline{x}]$

$$f[\overline{x}] \downarrow \Leftrightarrow g[\overline{x}] \downarrow \\ f[\overline{x}] \downarrow \Rightarrow f[\overline{x}] = g[\overline{x}]$$

f is computable

f is computable function iff there exists a program *P* which computes it

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction Mathematical Preliminaries

Computability

Primitive Recursive Functions Partial Functions Enumeration of the Computable Functions Decidable and Semidecidable Sets

Conclusion and Discussions

Superposition

```
h is a superposition of f, g_1, \ldots, g_k
h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]
```

Theorem Given the computable functions f, g_1, \ldots, g_k , then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is computable function.

Superposition preserves computability.

Superposition

```
h is a superposition of f, g_1, \ldots, g_k
h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]
```

Theorem Given the computable functions f, g_1, \ldots, g_k , then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is computable function.

Superposition preserves computability.

Superposition

```
h is a superposition of f, g_1, \ldots, g_k
h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]
```

Theorem Given the computable functions f, g_1, \ldots, g_k , then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is computable function.

Superposition preserves computability.

h is obtained by *weak* primitive recursion from *g* and *a*

$$h[x] \simeq \begin{cases} a & \Leftarrow x = 0\\ g[x-1, h[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

h is obtained by primitive recursion from f and g

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow y = 0\\ g[\overline{x}, y - 1, h[\overline{x}, y - 1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Primitive recursion preserves computability.

h is obtained by *weak* primitive recursion from *g* and *a*

$$h[x] \simeq \left\{ egin{array}{ll} a & \Leftarrow x = 0 \\ g[x-1, h[x-1]] & \Leftarrow \text{ o.w.} \end{array}
ight.$$

h is obtained by primitive recursion from f and g

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow y = 0\\ g[\overline{x}, y - 1, h[\overline{x}, y - 1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Primitive recursion preserves computability.

h is obtained by *weak* primitive recursion from *g* and *a*

$$h[x] \simeq \left\{ egin{array}{ll} a & \Leftarrow x = 0 \\ g[x-1, h[x-1]] & \Leftarrow \text{ o.w.} \end{array}
ight.$$

h is obtained by primitive recursion from *f* and *g*

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow y = 0\\ g[\overline{x}, y - 1, h[\overline{x}, y - 1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Primitive recursion preserves computability.

Primitive Recursive Functions

The basic functions are primitive recursive $O[x] \simeq 0$ $S[x] \simeq x + 1$ $l_i^n[\overline{x}] \simeq x_i$

The superposition is primitive recursive If f, g_1, \ldots, g_k are primitive recursive, then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is primitive recursive.

The primitive recursion is primitive recursive

If f and g are primitive recursive, then

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow y = 0\\ g[\overline{x}, y - 1, h[\overline{x}, y - 1]] & \Leftarrow \text{ o.w.} \end{cases}$$

is primitive recursive.

Primitive Recursive Functions

The basic functions are primitive recursive $O[x] \simeq 0$ $S[x] \simeq x + 1$ $l_i^n[\overline{x}] \simeq x_i$

The superposition is primitive recursive

If f, g_1, \ldots, g_k are primitive recursive, then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is primitive recursive.

The primitive recursion is primitive recursive

If f and g are primitive recursive, then

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow \ y = 0\\ g[\overline{x}, y - 1, h[\overline{x}, y - 1]] & \Leftarrow \ \text{o.w.} \end{cases}$$

is primitive recursive.

<□> <@> < => < => < => < = < の<()</p>

Primitive Recursive Functions

The basic functions are primitive recursive $O[x] \simeq 0$ $S[x] \simeq x + 1$ $l_i^n[\overline{x}] \simeq x_i$

The superposition is primitive recursive

If f, g_1, \ldots, g_k are primitive recursive, then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is primitive recursive.

The primitive recursion is primitive recursive

If f and g are primitive recursive, then

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow y = 0\\ g[\overline{x}, y - 1, h[\overline{x}, y - 1]] & \Leftarrow \text{ o.w.} \end{cases}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

is primitive recursive.

Theorem All the primitive recursive functions are computable.

Theorem All the primitive recursive functions are total.

Theorem

All the primitive recursive functions are computable.

Theorem

All the primitive recursive functions are total.

Addition is primitive recursive $f_1[x, y] \simeq x + y$

$$f_1[x,y] \simeq \begin{cases} x & \Leftarrow y = 0\\ S[f_1[x,y-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Multiplication is primitive recursive $f_2[x, y] \simeq x.y$

$$f_2[x,y] \simeq \begin{cases} 0 & \Leftarrow y = 0\\ x + f_2[x,y-1] & \Leftarrow \text{ o.w.} \end{cases}$$

Addition is primitive recursive $f_1[x, y] \simeq x + y$

$$f_1[x,y] \simeq \begin{cases} x & \Leftarrow y = 0\\ S[f_1[x,y-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Multiplication is primitive recursive $f_2[x, y] \simeq x.y$

$$f_2[x,y] \simeq \begin{cases} 0 & \Leftarrow y = 0\\ x + f_2[x,y-1] & \Leftarrow o.w. \end{cases}$$

Addition is primitive recursive $f_1[x, y] \simeq x + y$

$$f_1[x, y] \simeq \left\{ egin{array}{ll} x & \Leftarrow y = 0 \ \mathcal{S}[f_1[x, y-1]] & \Leftarrow ext{ o.w.} \end{array}
ight.$$

Multiplication is primitive recursive $f_2[x, y] \simeq x.y$

$$f_2[x,y] \simeq \begin{cases} 0 & \Leftarrow y = 0\\ x + f_2[x,y-1] & \Leftarrow \text{ o.w.} \end{cases}$$

Addition is primitive recursive $f_1[x, y] \simeq x + y$

$$f_1[x, y] \simeq \left\{ egin{array}{ll} x & \Leftarrow y = 0 \ S[f_1[x, y-1]] & \Leftarrow o.w. \end{array}
ight.$$

Multiplication is primitive recursive $f_2[x, y] \simeq x.y$

$$f_2[x,y] \simeq \begin{cases} 0 & \Leftarrow y = 0 \\ x + f_2[x,y-1] & \Leftarrow \text{ o.w.} \end{cases}$$

Power is primitive recursive $f_3[x, y] \simeq x^y$

$$f_3[x,y] \simeq \begin{cases} 1 & \Leftarrow y = 0\\ x.f_3[x,y-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Subtraction-dot-one is primitive recursive

$$f_4[x] \simeq x \dot{-} 1 \simeq \begin{cases} 0 & \Leftarrow x = 0\\ x - 1 & \Leftarrow o.w. \end{cases}$$

$$f_4[x] \simeq \begin{cases} 0 & \Leftarrow x = 0\\ f_1^2[x - 1, f_4[x - 1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Power is primitive recursive $f_3[x, y] \simeq x^y$

$$f_3[x,y] \simeq \begin{cases} 1 & \Leftarrow y = 0\\ x.f_3[x,y-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Subtraction-dot-one is primitive recursive

$$f_4[x] \simeq \dot{x-1} \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ x-1 & \Leftarrow o.w. \end{cases}$$

$$f_4[x] \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ l_1^2[x-1, f_4[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

< □ > < @ > < \alpha > < \alpha > < \alpha > \alpha \alpha > \alpha \al

Power is primitive recursive $f_3[x, y] \simeq x^y$

$$f_3[x,y] \simeq \begin{cases} 1 & \Leftarrow y = 0\\ x.f_3[x,y-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Subtraction-dot-one is primitive recursive

$$f_4[x] \simeq \dot{x-1} \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ x-1 & \Leftarrow o.w. \end{cases}$$

$$f_4[x] \simeq \begin{cases} 0 & \Leftarrow x = 0\\ l_1^2[x-1, f_4[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Power is primitive recursive $f_3[x, y] \simeq x^y$

$$f_3[x,y] \simeq \begin{cases} 1 & \Leftarrow y = 0\\ x.f_3[x,y-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Subtraction-dot-one is primitive recursive

$$f_4[x] \simeq \dot{x-1} \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ x-1 & \Leftarrow o.w. \end{cases}$$

$$f_4[x] \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ l_1^2[x-1, f_4[x-1]] & \Leftarrow o.w. \end{cases}$$

Subtraction-dot is primitive recursive

$$f_5[x,y] \simeq \dot{x-y} \simeq \begin{cases} 0 & \Leftarrow x < y \\ x-y & \Leftarrow o.w. \end{cases}$$

$$f_5[x,y] \simeq \begin{cases} x & \Leftarrow y = 0\\ f_5[x,y-1] - 1 & \Leftarrow \text{ o.w.} \end{cases}$$

Factorial is primitive recursive $f_6[x] \simeq x!$

$$f_6[x] \simeq \begin{cases} 1 & \Leftarrow x = 0\\ x.f_6[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Subtraction-dot is primitive recursive

$$f_5[x,y] \simeq \dot{x-y} \simeq \begin{cases} 0 & \Leftarrow x < y \\ x-y & \Leftarrow o.w. \end{cases}$$

$$f_{5}[x,y] \simeq \begin{cases} x & \Leftarrow y = 0\\ f_{5}[x,y-1] - 1 & \Leftarrow \text{ o.w.} \end{cases}$$

Factorial is primitive recursive $f_6[x] \simeq x!$

$$f_6[x] \simeq \begin{cases} 1 & \Leftarrow x = 0\\ x.f_6[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

■ つ♪の 直 〈亘〉〈重〉〈□〉〈へ□〉

Subtraction-dot is primitive recursive

$$f_5[x,y] \simeq \dot{x-y} \simeq \begin{cases} 0 & \Leftarrow x < y \\ x-y & \Leftarrow o.w. \end{cases}$$

$$f_5[x,y] \simeq \begin{cases} x & \Leftarrow y = 0\\ f_5[x,y-1] - 1 & \Leftarrow \text{ o.w.} \end{cases}$$

Factorial is primitive recursive $f_6[x] \simeq x!$

$$f_6[x] \simeq \begin{cases} 1 & \Leftarrow x = 0\\ x.f_6[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

ચ≞ ○ 오오 : 《글》 《글》 《글》 · (□) · (□)

Subtraction-dot is primitive recursive

$$f_5[x,y] \simeq \dot{x-y} \simeq \begin{cases} 0 & \Leftarrow x < y \\ x-y & \Leftarrow o.w. \end{cases}$$

$$f_{5}[x,y] \simeq \begin{cases} x & \Leftarrow y = 0\\ f_{5}[x,y-1] - 1 & \Leftarrow \text{ o.w.} \end{cases}$$

Factorial is primitive recursive $f_6[x] \simeq x!$

$$f_6[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ x.f_6[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Sign is primitive recursive

$$sg[x] \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ 1 & \Leftarrow \text{ o.w.} \end{cases}$$

$$sg[x] \simeq \begin{cases} 0 & \Leftarrow x = 0\\ O[sg[x-1]] + 1 & \Leftarrow \text{ o.w.} \end{cases}$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ O[\overline{sg}[x-1]] & \Leftarrow 0.w. \end{cases}$$

Sign is primitive recursive

$$sg[x] \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ 1 & \Leftarrow o.w. \end{cases}$$

$$sg[x] \simeq \left\{ egin{array}{ll} 0 & \Leftarrow x = 0 \ O[sg[x-1]] + 1 & \Leftarrow ext{ o.w.} \end{array}
ight.$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ O[\overline{sg}[x-1]] & \Leftarrow 0.W. \end{cases}$$

Sign is primitive recursive

$$sg[x] \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ 1 & \Leftarrow o.w. \end{cases}$$

$$sg[x] \simeq \left\{ egin{array}{ccc} 0 & \Leftarrow & x=0 \ O[sg[x-1]]+1 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ O[\overline{sg}[x-1]] & \Leftarrow 0.W. \end{cases}$$

Sign is primitive recursive

$$sg[x] \simeq \begin{cases} 0 & \Leftarrow x = 0 \\ 1 & \Leftarrow o.w. \end{cases}$$

$$sg[x] \simeq \left\{ egin{array}{cc} 0 & \Leftarrow & x=0 \ O[sg[x-1]]+1 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

$$\overline{sg}[x] \simeq \begin{cases} 1 & \Leftarrow x = 0 \\ O[\overline{sg}[x-1]] & \Leftarrow \text{ o.w.} \end{cases}$$

Absolute value is primitive recursive $mod[x, y] \simeq |x - y|$

 $mod[x,y] \simeq (\dot{x-y}) + (\dot{y-x})$

Minimum is primitive recursive min[x, y]

 $min[x,y] \simeq x - (x - y)$

Maximum is primitive recursive max[x, y]

 $max[x,y] \simeq x + (y - x)$

Absolute value is primitive recursive $mod[x, y] \simeq |x - y|$

 $mod[x, y] \simeq (\dot{x-y}) + (\dot{y-x})$

Minimum is primitive recursive min[x, y]

 $min[x,y] \simeq \dot{x-(x-y)}$

Maximum is primitive recursive max[x, y]

 $max[x,y] \simeq x + (y - x)$

Absolute value is primitive recursive $mod[x, y] \simeq |x - y|$

 $mod[x, y] \simeq (\dot{x-y}) + (\dot{y-x})$

Minimum is primitive recursive *min*[*x*, *y*]

 $min[x,y] \simeq \dot{x-(x-y)}$

Maximum is primitive recursive *max*[*x*, *y*]

 $max[x,y] \simeq x + (y - x)$

Absolute value is primitive recursive $mod[x, y] \simeq |x - y|$

 $mod[x, y] \simeq (\dot{x-y}) + (\dot{y-x})$

Minimum is primitive recursive *min*[*x*, *y*]

 $min[x, y] \simeq \dot{x-(x-y)}$

Maximum is primitive recursive max[x, y]

 $max[x,y] \simeq x + (\dot{y-x})$

Absolute value is primitive recursive $mod[x, y] \simeq |x - y|$

 $mod[x, y] \simeq (\dot{x-y}) + (\dot{y-x})$

Minimum is primitive recursive *min*[*x*, *y*]

 $min[x, y] \simeq \dot{x-(x-y)}$

Maximum is primitive recursive max[x, y]

 $max[x,y] \simeq x + (\dot{y-x})$

Absolute value is primitive recursive $mod[x, y] \simeq |x - y|$

 $mod[x, y] \simeq (\dot{x-y}) + (\dot{y-x})$

Minimum is primitive recursive *min*[*x*, *y*]

 $min[x, y] \simeq \dot{x-(x-y)}$

Maximum is primitive recursive max[x, y]

 $max[x, y] \simeq x + (\dot{y-x})$

Primitive recursion. Properties

Theorem If then else

Let f_0, f_1, g be primitive recursive. Then

$$h[\overline{x}] \simeq \begin{cases} f_0[\overline{x}] & \Leftarrow \ g[\overline{x}] = 0\\ f_1[\overline{x}] & \Leftarrow \ \text{o.w.} \end{cases}$$

is primitive recursive.

proof: $h[\overline{x}] \simeq \overline{sg}[g[\overline{x}]].f_0[x] + sg[g[\overline{x}]].f_1[x]$

Primitive recursion. Properties

Theorem If then else

Let f_0, f_1, g be primitive recursive. Then

$$h[\overline{X}] \simeq \begin{cases} f_0[\overline{X}] & \Leftarrow \ g[\overline{X}] = 0\\ f_1[\overline{X}] & \Leftarrow \ \text{o.w.} \end{cases}$$

is primitive recursive.

proof:

 $h[\overline{x}] \simeq \overline{sg}[g[\overline{x}]].f_0[x] + sg[g[\overline{x}]].f_1[x]$

Primitive recursion. Properties

Theorem If then₁ ... then_k else Let $f_0, \ldots, f_k, g_0, \ldots, g_{k-1}$ be primitive recursive. Then

$$h[\overline{x}] \simeq \left\{ egin{array}{ll} f_0[\overline{x}] & \Leftarrow & g_0[\overline{x}] = 0 \ f_1[\overline{x}] & \Leftarrow & g_0[\overline{x}]
eq 0 \land g_1[\overline{x}] = 0 \ \cdots & \cdots & \cdots \ f_k[\overline{x}] & \Leftarrow & ext{o.w.} \end{array}
ight.$$

is primitive recursive.

While loop

```
 \begin{array}{l} \textit{input}[x] \\ y := 0 \\ \textit{while } f[x, y] > 0 \ \textit{do } y := y + 1 \\ \textit{return}[y] \end{array}
```

```
g is obtained by minimization from

g[\overline{x}] \simeq y

iff

\forall z < y(f[\overline{x}, z] \downarrow \land f[\overline{x}, z] > 0)

f[\overline{x}, y] \simeq 0
```

```
g is obtained by minimization from f
g[\overline{x}] \simeq \mu y[f[\overline{x}, y] = 0]
```


While loop

```
 \begin{array}{l} \textit{input}[x] \\ y := 0 \\ \textit{while } f[x,y] > 0 \ \textit{do } y := y+1 \\ \textit{return}[y] \end{array}
```

```
g is obtained by minimization from f

g[\overline{x}] \simeq y

iff

\forall z < y(f[\overline{x}, z] \downarrow \land f[\overline{x}, z] > 0)

f[\overline{x}, y] \simeq 0
```

```
g is obtained by minimization from f
g[\overline{x}] \simeq \mu y[f[\overline{x}, y] = 0]
```


While loop

```
 \begin{array}{l} \textit{input}[x] \\ y := 0 \\ \textit{while } f[x, y] > 0 \ \textit{do } y := y + 1 \\ \textit{return}[y] \end{array}
```

```
g is obtained by minimization from f

g[\overline{x}] \simeq y

iff

\forall z < y(f[\overline{x}, z] \downarrow \land f[\overline{x}, z] > 0)

f[\overline{x}, y] \simeq 0
```

g is obtained by minimization from *f* $g[\overline{x}] \simeq \mu y[f[\overline{x}, y] = 0]$

The basic functions are partial

 $egin{aligned} O[x] &\simeq 0 \ S[x] &\simeq x+1 \ I_i^n[\overline{x}] &\simeq x_i \end{aligned}$

The superposition is partial

If f, g_1, \dots, g_k are partial, then $h[\overline{x}] \simeq f[g_1[\overline{x}], \dots, g_k[\overline{x}]]$ is partial.

The basic functions are partial

 $egin{aligned} O[x] &\simeq 0 \ S[x] &\simeq x+1 \ I_i^n[\overline{x}] &\simeq x_i \end{aligned}$

The superposition is partial

If f, g_1, \ldots, g_k are partial, then $h[\overline{x}] \simeq f[g_1[\overline{x}], \ldots, g_k[\overline{x}]]$ is partial.

The primitive recursion is partial

If f and g are partial, then

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow \ y = 0\\ g[\overline{x}, y, h[\overline{x}, y - 1]] & \Leftarrow \ \text{o.w.} \end{cases}$$

is partial.

The minimization is parti If *f* is partial, then $g[\overline{x}] \simeq \mu y[f[\overline{x}, y] = 0]$ is partial.

The primitive recursion is partial

If f and g are partial, then

$$h[\overline{x}, y] \simeq \begin{cases} f[\overline{x}] & \Leftarrow \ y = 0\\ g[\overline{x}, y, h[\overline{x}, y - 1]] & \Leftarrow \ o.w. \end{cases}$$

is partial.

The minimization is partial

If *f* is partial, then $g[\overline{x}] \simeq \mu y[f[\overline{x}, y] = 0]$ is partial.

Theorem All the partial functions are computable.

Alternative Definition Partial functions = Computable functions.

Theorem

All the partial functions are computable.

Alternative Definition

Partial functions = Computable functions.

Subtraction is partial

$$f[x,y] \simeq \begin{cases} x-y & \Leftarrow x \ge y \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

$$f[x,y] \simeq \mu z[x+y=z]$$

Division is partial

$$g[x,y] \simeq \begin{cases} x/y & \Leftarrow \exists k(y.k=x) \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

 $g[x, y] \simeq \mu k[k.y = x]$

Subtraction is partial

$$f[x,y] \simeq \begin{cases} x-y & \Leftarrow x \ge y \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

$$f[\mathbf{x},\mathbf{y}] \simeq \mu \mathbf{z}[\mathbf{x} + \mathbf{y} = \mathbf{z}]$$

Division is partial

$$g[x,y] \simeq \begin{cases} x/y & \Leftarrow \exists k(y.k=x) \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

 $g[x, y] \simeq \mu k[k.y = x]$

Subtraction is partial

$$f[x,y] \simeq \begin{cases} x-y & \Leftarrow x \ge y \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

$$f[\mathbf{x},\mathbf{y}] \simeq \mu \mathbf{z}[\mathbf{x} + \mathbf{y} = \mathbf{z}]$$

Division is partial

$$g[x,y] \simeq \left\{ egin{array}{ll} x/y & \Leftarrow \ \exists k(y.k=x) \ \uparrow & \Leftarrow \ ext{o.w.} \end{array}
ight.$$

・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

 $g[x,y] \simeq \mu k[k.y=x]$

Subtraction is partial

$$f[x,y] \simeq \begin{cases} x-y & \Leftarrow x \ge y \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

$$f[\mathbf{x},\mathbf{y}] \simeq \mu \mathbf{z}[\mathbf{x} + \mathbf{y} = \mathbf{z}]$$

Division is partial

$$g[x,y] \simeq \begin{cases} x/y & \Leftarrow \exists k(y.k=x) \\ \uparrow & \Leftarrow \text{ o.w.} \end{cases}$$

 $g[x, y] \simeq \mu k[k.y = x]$

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト 三 国

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ ■

Enumeration of the computable functions

Enumeration = Encoding = Effective codding

Uniqueness: each object has a unique code

- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.
Enumeration = Encoding = Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.

Enumeration = Encoding = Effective codding

- Uniqueness: each object has a unique code
- Totality: each natural number is a code of an object
- Effectiveness: For each object one can find algorithmically its code and for each code (number) one can find its object.

▶ Let P₀, P₁,..., P_n,... be a list of all the programs (on one variable), and 0, 1,..., n,... be an effective codding of these programs.

• Each program corresponds to a computable function φ

Let φ₀, φ₁,..., φ_n,...
 be a list of all the computable functions (on one variable), and 0, 1,..., n,... be an effective codding of these functions.

- ▶ Let P₀, P₁,..., P_n,... be a list of all the programs (on one variable), and 0, 1,..., n,... be an effective codding of these programs.
- Each program corresponds to a computable function φ
- Let φ₀, φ₁,..., φ_n,...
 be a list of all the computable functions (on one variable), and 0, 1,..., n,... be an effective codding of these functions.

- ► Let P₀, P₁,..., P_n,... be a list of all the programs (on one variable), and 0, 1,..., n,... be an effective codding of these programs.
- Each program corresponds to a computable function φ
- Let φ₀, φ₁,..., φ_n,...
 be a list of all the computable functions (on one variable), and 0, 1,..., n,... be an effective codding of these functions.

Example

Total function which is not computable

$$f[x] \simeq \begin{cases} \varphi_x[x] + 1 & \Leftarrow \varphi_x[x] \downarrow \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

Assume *f* is computable. Then $f = \varphi_a$ for some *a*. If $a \in Dom[\varphi_a]$ then $\varphi_a[a] \downarrow$. Hence, $f[a] = \varphi_a[a] = \varphi_a[a] + 1$ If $a \notin Dom[\varphi_a]$ then $\varphi_a[a] \uparrow$. Hence, $f[a] = \varphi_a[a] = 0$, but $\varphi_a[a] \uparrow$

Example

Total function which is not computable

$$f[x] \simeq \begin{cases} \varphi_x[x] + 1 & \Leftarrow \varphi_x[x] \downarrow \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

Assume *f* is computable. Then $f = \varphi_a$ for some *a*. If $a \in Dom[\varphi_a]$ then $\varphi_a[a] \downarrow$. Hence, $f[a] = \varphi_a[a] = \varphi_a[a] + 1$ If $a \notin Dom[\varphi_a]$ then $\varphi_a[a] \uparrow$. Hence, $f[a] = \varphi_a[a] = 0$, but $\varphi_a[a] \uparrow$

Kleene's S-m-n Theorem

S-m-n Theorem

For any n, m exists a primitive recursive function S_n^m , such that for any $a, \overline{x}, \overline{y}$ $\varphi_a^{(m+n)}[\overline{x}, \overline{y}] \simeq \varphi_{S_n^m[a,\overline{x}]}^{(n)}[\overline{y}]$

Property

Let F be a computable function. Then there exists a number e, such that,

 $F[e,\overline{x}]\simeq \varphi_e[\overline{x}]$

Property

There exists a number *e*, such that,

 $\boldsymbol{e}\simeq arphi_{\boldsymbol{e}}[\overline{\boldsymbol{X}}]$

Kleene's S-m-n Theorem

S-m-n Theorem

For any n, m exists a primitive recursive function S_n^m , such that for any $a, \overline{x}, \overline{y}$ $\varphi_a^{(m+n)}[\overline{x}, \overline{y}] \simeq \varphi_{S_n^m[a,\overline{x}]}^{(n)}[\overline{y}]$

Property

Let F be a computable function. Then there exists a number e, such that,

 $F[e,\overline{x}]\simeq \varphi_e[\overline{x}]$

Property

There exists a number *e*, such that,

 $\boldsymbol{e} \simeq \varphi_{\boldsymbol{e}}[\overline{\boldsymbol{X}}]$

Kleene's S-m-n Theorem

S-m-n Theorem

For any n, m exists a primitive recursive function S_n^m , such that for any $a, \overline{x}, \overline{y}$ $\varphi_a^{(m+n)}[\overline{x}, \overline{y}] \simeq \varphi_{S_n^m[a,\overline{x}]}^{(n)}[\overline{y}]$

Property

Let F be a computable function. Then there exists a number e, such that,

 $F[e,\overline{x}] \simeq \varphi_e[\overline{x}]$

Property

There exists a number e, such that,

 $\boldsymbol{e} \simeq \varphi_{\boldsymbol{e}}[\overline{\boldsymbol{X}}]$

Universal Function Theorem

The universal function $\Phi_n[a, \overline{x}] \simeq \varphi_a^{(n)}[\overline{x}]$

is computable.

Property

The class of all the total functions on *n*-variables does not have a computable universal function.

proof

Assume $\Phi[a, \overline{x}]$ is an universal function for the class of all the total functions on one variable.

Let $\varphi[x] \simeq \Phi[x, x] + 1$.

Since Φ is total, φ is also total and hence, there exists a, such that $\varphi[x] \simeq \Phi[a, x]$.

 $\varphi[a] \simeq \Phi[a, a]$, and also $\varphi[a] \simeq \Phi[a, a] + 1$.

Universal Function Theorem

The universal function

 $\Phi_n[a,\overline{x}]\simeq \varphi_a^{(n)}[\overline{x}]$

is computable.

Property

The class of all the total functions on *n*-variables does not have a computable universal function.

proof

Assume $\Phi[a, \overline{x}]$ is an universal function for the class of all the total functions on one variable.

Let $\varphi[x] \simeq \Phi[x, x] + 1$.

Since Φ is total, φ is also total and hence, there exists *a*, such that $\varphi[x] \simeq \Phi[a, x]$.

 $\varphi[a] \simeq \Phi[a, a]$, and also $\varphi[a] \simeq \Phi[a, a] + 1$.

Universal Function Theorem

The universal function

 $\Phi_n[a,\overline{x}]\simeq \varphi_a^{(n)}[\overline{x}]$

is computable.

Property

The class of all the total functions on *n*-variables does not have a computable universal function.

proof

Assume $\Phi[a, \overline{x}]$ is an universal function for the class of all the total functions on one variable.

Let $\varphi[x] \simeq \Phi[x, x] + 1$.

Since Φ is total, φ is also total and hence, there exists *a*, such that $\varphi[x] \simeq \Phi[a, x]$.

 $\varphi[a] \simeq \Phi[a, a]$, and also $\varphi[a] \simeq \Phi[a, a] + 1$.

Universal Function Theorem

The universal function

 $\Phi_n[a,\overline{x}]\simeq \varphi_a^{(n)}[\overline{x}]$

is computable.

Property

The class of all the total functions on *n*-variables does not have a computable universal function.

proof

Assume $\Phi[a, \overline{x}]$ is an universal function for the class of all the total functions on one variable.

Let $\varphi[x] \simeq \Phi[x, x] + 1$.

Since Φ is total, φ is also total and hence, there exists *a*, such that $\varphi[x] \simeq \Phi[a, x]$. $\varphi[a] \simeq \Phi[a, a]$, and also $\varphi[a] \simeq \Phi[a, a] + 1$.

Characteristic function of a set χ_A

$$\chi_{A}[\overline{X}] \simeq \begin{cases} 1 & \Leftarrow \overline{X} \in A \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

Decidable Set A set *A* is decidable iff χ_A is computable.

Characteristic function of a set χ_A

$$\chi_{\mathcal{A}}[\overline{\mathbf{X}}] \simeq \begin{cases} \mathbf{1} & \Leftarrow \ \overline{\mathbf{X}} \in \mathcal{A} \\ \mathbf{0} & \Leftarrow \ \text{o.w.} \end{cases}$$

Decidable Set A set A is decidable iff χ_A is computable.

Characteristic function of a set χ_A

$$\chi_{\mathcal{A}}[\overline{\mathbf{X}}] \simeq \begin{cases} \mathbf{1} & \Leftarrow \ \overline{\mathbf{X}} \in \mathcal{A} \\ \mathbf{0} & \Leftarrow \ \text{o.w.} \end{cases}$$

Decidable Set

A set *A* is decidable iff χ_A is computable.

Semicharacteristic function of a set C_A

$$C_{\mathcal{A}}[\overline{x}] \simeq \left\{ egin{array}{ll} 1 & \Leftarrow \ \overline{x} \in \mathcal{A} \\ \uparrow & \Leftarrow \ \mathrm{o.w.} \end{array}
ight.$$

Semidecidable Set

A set A is semidecidable iff C_A is computable.

Semicharacteristic function of a set C_A

$$C_{\mathcal{A}}[\overline{x}] \simeq \begin{cases} 1 & \Leftarrow \ \overline{x} \in \mathcal{A} \\ \uparrow & \Leftarrow \ \text{o.w.} \end{cases}$$

Semidecidable Set

A set A is semidecidable iff C_A is computable.

Theorem If *A* is decidable then it is also semidecidable.

Theorem

If A is decidable then \overline{A} is also decidable.

Theorem

If A and B are decidable then $A \cup B$, $A \cap B$ and $A \setminus B$ are decidable.

Theorem

Theorem

If A is decidable then it is also semidecidable.

Theorem

If A is decidable then \overline{A} is also decidable.

Theorem

If A and B are decidable then $A \cup B$, $A \cap B$ and $A \setminus B$ are decidable.

Theorem

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

Theorem

If A is decidable then it is also semidecidable.

Theorem

If A is decidable then \overline{A} is also decidable.

Theorem

If *A* and *B* are decidable then $A \cup B$, $A \cap B$ and $A \setminus B$ are decidable.

Theorem

Theorem If *A* is decidable then it is also semidecidable.

Theorem If *A* is decidable then \overline{A} is also decidable.

Theorem

If *A* and *B* are decidable then $A \cup B$, $A \cap B$ and $A \setminus B$ are decidable.

Theorem

Theorem

A set *A* is semidecidable iff there exists a computable function φ , such that, $A = Dom[\varphi]$

Post Theorem

A set A is decidable iff A and \overline{A} are semidecidable.

Kleene Set \mathbb{K} The set $\mathbb{K} = \{x \mid \varphi_x[x] \downarrow\}$ is called Kleene set.

Theorem \mathbb{K} is semidecidable but not decidable.

Theorem

A set A is semidecidable iff there exists a computable function φ , such that,

 $A = Dom[\varphi]$

Post Theorem

A set A is decidable iff A and \overline{A} are semidecidable.

Kleene Set \mathbb{K} The set $\mathbb{K} = \{x \mid \varphi_x[x] \downarrow\}$ is called Kleene set.

Theorem

 \mathbb{K} is semidecidable but not decidable.

Theorem

A set A is semidecidable iff there exists a computable function $\varphi,$ such that,

 $A = Dom[\varphi]$

Post Theorem

A set A is decidable iff A and \overline{A} are semidecidable.

Kleene Set K

The set $\mathbb{K} = \{x \mid \varphi_x[x] \downarrow\}$ is called Kleene set.

Theorem

 ${\mathbb K}$ is semidecidable but not decidable.

Theorem

A set A is semidecidable iff there exists a computable function $\varphi,$ such that,

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト ・ 国

 $A = Dom[\varphi]$

Post Theorem

A set A is decidable iff A and \overline{A} are semidecidable.

Kleene Set \mathbb{K} The set $\mathbb{K} = \{x \mid \varphi_x[x] \downarrow\}$ is called Kleene set.

Theorem

 $\ensuremath{\mathbb{K}}$ is semidecidable but not decidable.

Outline

Introduction

Mathematical Preliminaries

Computability

Primitive Recursive Functions Partial Functions Enumeration of the Computable Functions Decidable and Semidecidable Sets

Conclusion and Discussions

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$P[Q, x] \simeq \begin{cases} 1 & \Leftarrow Q[x] \downarrow \\ 0 & \Leftarrow \text{ o.w.} \end{cases}$$

$$P[a,x] \simeq \left\{ egin{array}{cc} 1 & \Leftarrow & arphi_a[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

 $a \in \mathbb{K} \iff \varphi_a[a] \downarrow \Leftrightarrow P[a, a] = 1$

 $a \in \overline{\mathbb{K}} \iff \varphi_a[a] \uparrow \Leftrightarrow P[a, a] = 0$ Thus $\overline{\mathbb{K}}$ is decidable, which is a contradiction

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$P[Q, x] \simeq \left\{ egin{array}{cc} 1 & \Leftarrow & Q[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

$$P[a,x] \simeq \left\{ egin{array}{cc} 1 & \Leftarrow & arphi_a[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

 $a \in \mathbb{K} \iff \varphi_a[a] \downarrow \Leftrightarrow P[a,a] = 1$

 $a \in \overline{\mathbb{K}} \iff \varphi_a[a] \uparrow \Leftrightarrow P[a, a] = 0$ Thus $\overline{\mathbb{K}}$ is decidable, which is a contradiction

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$P[Q,x]\simeq \left\{ egin{array}{ll} 1 & \Leftarrow & Q[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

$$P[a,x] \simeq \left\{ egin{array}{ll} 1 & \Leftarrow & arphi_a[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

 $a \in \mathbb{K} \iff \varphi_a[a] \downarrow \Leftrightarrow P[a,a] = 1$

 $a \in \overline{\mathbb{K}} \iff \varphi_a[a] \uparrow \Leftrightarrow P[a, a] = 0$ Thus $\overline{\mathbb{K}}$ is decidable, which is a contradiction.

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$P[Q,x]\simeq \left\{ egin{array}{ll} 1 & \Leftarrow & Q[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

$$P[a,x] \simeq \left\{ egin{array}{ll} 1 & \Leftarrow arphi_a[x] \downarrow \ 0 & \Leftarrow ext{ o.w.} \end{array}
ight.$$

 $a \in \mathbb{K} \Leftrightarrow \varphi_a[a] \downarrow \Leftrightarrow P[a, a] = 1$

 $a \in \overline{\mathbb{K}} \iff \varphi_a[a] \uparrow \Leftrightarrow P[a, a] = 0$ Thus $\overline{\mathbb{K}}$ is decidable, which is a contradiction.

Halting Problem

There is no program P which may decide for an arbitrary program Q executed on arbitrary input x, whether Q will terminate on x or not.

$$P[Q,x]\simeq \left\{ egin{array}{ll} 1 & \Leftarrow & Q[x] \downarrow \ 0 & \Leftarrow & \mathrm{o.w.} \end{array}
ight.$$

$${m P}[{m a},{m x}]\simeq \left\{ egin{array}{ll} 1 & \Leftarrow \ arphi_{m a}[{m x}]\downarrow \ 0 & \Leftarrow \ {
m o.w.} \end{array}
ight.$$

 $a \in \mathbb{K} \Leftrightarrow \varphi_a[a] \downarrow \Leftrightarrow P[a, a] = 1$

 $a \in \overline{\mathbb{K}} \Leftrightarrow \varphi_a[a] \uparrow \Leftrightarrow P[a, a] = 0$ Thus $\overline{\mathbb{K}}$ is decidable, which is a contradiction.

