
Reverse of a List:

A Simple Case Study in Lisp Programming

TUTORIAL MATERIAL FOR THE LISP LECTURE

Tudor Jebelean, RISC–Linz, Mai 2010

Summary. We present the process of constructing the mathematical model, designing the
algorithm, and elaborating few versions of the Lisp program for reversing a list. Although
simple, this example demonstrates some important principles of algorithm design and of
programming. Moreover, it illustrates the characteristics of the main programming styles:
declarative, functional, and imperative.

The problem. We consider the relation of a list being the reverse of another:

L ∼ L′.

For instance:
〈〉 ∼ 〈〉,

〈1〉 ∼ 〈1〉,

〈1, 2, 3〉 ∼ 〈3, 2, 1〉.

We want to solve the problem:

• given a list L

• find a list L′

• such that L ∼ L′.

The first step of the analysis must establish the truth of the statement:
For any list L, there exists a unique list L′ such that L ∼ L′.

For the present example we will consider this statement obvious, however the proof is an
interesting logical exercise which also allows a better understanding of the problem and an
approach to its solution.

1



The function. As logical consequence of the above statement, we know that there exists
a unique function, call it R, with the property:

For any list L, L ∼ R[L].
(In this text we use square brackets like in F [x] for denoting function application and
predicate application, in contrast to the usual round parantheses like in F (x).)
This function R is the solution to our problem, but now we must implement it.

A first step towards implementation is to find properties of the function R. For instance:

R[〈〉] = 〈〉,
R[〈1〉] = 〈1〉,

R[〈1, 2, 3〉] = 〈3, 2, 1〉.

The first property appears to be interesting because it handles an important special case
of lists. The second property can be clearly generalized to:

For any object x, R[〈x〉] = 〈x〉.
The same kind of generalization would be possible for the third property too, but here
clearly it would be more interesting to express it for lists of any length. If we use the
symbol ^ for denoting concatentation of two lists, then we can express properties like:

R[L ^ L′] = R[L′] ^ R[L],

R[〈x〉^ L] = R[L] ^ 〈x〉,
R[L ^ 〈x〉] = 〈x〉^ R[L],

for any object x and for any lists L, L′. (It is easy to check these properties on simple
examples.)
Note that such properties often include universally quantified variables (like L, x), which
sometimes have a certain type (like L is a list). In the sequel we will use x as a universal
quantified variable for objects of any type, and L, L′ for arbitrary lists. (The statements
where these symbols occur are implicitely universally quantified.)

A declarative program. Let us pick-up two particular properties:

R[〈〉] = 〈〉 (1)

R[〈x〉^ L] = R[L] ^ 〈x〉 (2)

Note that these two properties allow, in a relatively easy way, to compute the value of R
for any input. For instance:

R[〈1, 2, 3〉] =

R[〈2, 3〉] ^ 〈1〉 =

(R[〈3〉] ^ 〈2〉) ^ 〈1〉 =

((R[〈〉] ^ 〈3〉) ^ 〈2〉) ^ 〈1〉 =

((〈〉^ 〈3〉) ^ 〈2〉) ^ 〈1〉 =

〈3, 2, 1〉.

2



This computation is ”easy” becase, at each step, there is only one equality among (1),
(2) which is applicable from left to right on [a parto of] the current expression to be
computed. Therefore, this is already an program, which can be used for computation in
an environment that is able to identify and apply the appropriate equalities. Such an
environment is called a ”rewriting environment” (as for instance Mathematica and Maude)
and the equalities, interpreted as ”rewrite rules” form a so called ”rewrite based program”.
The rewrite based programming is an example declarative programming, because one
declares certain properties of the function which is implemented. (Another example of
declarative programming is logic programming, which allows arbitrary predicates, not only
equalities, as for instance Prolog.) Rewrite based programs consist in equalities (sometimes
conditioned – see below) which have on the left-hand side a term of the form R[pattern]
(where R does not occur in the pattern) and on the right-hand side an arbitrary expression,
possibly containing R.

The properties (1), (2) allow to compute the reverse of any list. This is so because:

• any list is either of the form 〈〉 or of the form 〈x〉^ L,

• at each step, the recursive call to R applies to a shorter list, thus this process will
eventually terminate.

These two properties are a consequence of the fact that the domain of finite lists can be
inductively defined as follows:

• 〈〉 is a list,

• if L is a list, then 〈x〉^ L is also a list;

• these are all lists.

(Note that there are also other ways to define the domain of lists inductively.) Thus we
can infer a scheme for constructing a rewrite program for a function F on lists, using this
inductive definition:

• Find out an expression without F which equals F [〈〉].

• Find out an expression which equals F [〈x〉^ L] and which may contain F , but only
as F [L].

This scheme expresses, in fact, a general principle which applies for any function and any
inductive defined domain. However, it is not allways possible to construct efficient and
effective implementations starting from any inductive definition.

The inductive principle used in the above definition of lists is also used in the programming
language Lisp and in its evaluation environment. Namely, the Lisp language uses the
following notations:

〈〉 : (),
〈1, 2, 3〉 : (1 2 3),
〈x〉^ L : (cons x L).

3



(In Lisp, function application – like F [x, z] – is denoted by a paranthesized list contain-
ing the function name followed by the arguments – like (F x y).) Note that Lisp uses a
special function – cons – for the operation of prepending an object at the beginning of a
list. Moreover, the internal representation of Lisp objects is based on the same inductive
principle. Namely, the empty list is represented by a special value named nil, while a list
is represented by a pointer to a the so called cons cell. A cons cell contains two elements:
the first element of the list and the rest of the list (which is either nil or a pointer to a
cons cell). For instance, the list 〈1, 2, 3〉 or (1 2 3) is represented internally like this:

1 - 2 - 3 nil

Any object occurring in a list can also be a list,
for instance 〈1, 〈2, 3, 4〉, 5〉 or (1 (2 3 4) 5) is represented as:

1 - -

?

5 nil

2 - 3 - 4 nil

Clearly in this representation the function cons is very easy to evaluate by a Lisp interpreter
or compiler.

A functional program. Let us use two list specific functions which decompose a list in
its first element (head – H) and the rest of its elements (tail – T ). For instance:

H[〈1, 2, 3〉] = 1,

T [〈1, 2, 3〉] = 〈2, 3〉,

but H[〈〉] and T [〈〉] are not defined. Using these functions, we can transform the formulae
(1) and (2) into the conditional equalities:

L = 〈〉 ⇒ R[L] = 〈〉,
L 6= 〈〉 ⇒ R[L] = R[T [L]] ^ 〈H[L]〉,

which are sometimes abbreviated as:

R[L] = 〈〉 if L = 〈〉,
R[L] = R[T [L]] ^ 〈H[L]〉 if L 6= 〈〉.

Moreover, the two of them can be also expressed together as:

R[L] =

{
〈〉 if L = 〈〉
R[T [L]] ^ 〈H[L]〉 otherwise,

4



which is the usual notation from mathematical texts (remember the definition of the ab-
solute value of a real number). In some programming languages one uses the syntactically
equivalent if–then–else construct:

R[L] = (if L = 〈〉 then 〈〉 else R[T [L]] ^ 〈H[L]〉).

This programming style is called functional programming because it describes how
to construct functions by composition of other functions. The shape of the conditional
equalities is now more restricted: on the left-hand side one only allows expressions of the
form F [variable]. This kind of programs is even easier to interpret, because the environment
does not recognizes certain patterns, but only applies functions to arguments.

Lisp is a typical functional programming environment. Lisp provides the functions H[L]
and T [L] and it should be obvious that the internal representation of lists described above
makes these two functions very easy to compute. In Lisp H[L] is written as (car L) and
T [L] as (cdr L). The program above is coded as follows:

(defun R (L)

(if (eq L ())

()

(append (R (cdr L)) (list (car L)))))

This code is just a syntactic version of the functional definition given before in a more logical
style. The reader can check the correspondence by using the additional Lisp language
conventions:

(defun F (x) body) : ∀
x

F [x] = body

(if condition body1 body2) : if condition then body1 else body2

and the remarks that eq is the Lisp equality predicate, the function append is concatenation
of lists, and the function list creates the list of its arguments. Due to the representation
of Lisp lists as cons cells, concatenation of lists (in particular the appending of an object
at the end of a list) is more difficult than cons, because it requires the scanning of the
first argument. Therefore, the Lisp program above has quadratic time complexity (the
computing time is proportional to the square of the length of the input list).

Tail recursion. If we inspect carefully the evaluation of R[〈a, b, c〉] above, we see that
certain computations can be performed earlier, in order to avoid the growth of the inter-
mediate terms. Namely, the evaluation can also be written as:

R[〈a, b, c〉] = R[〈a, b, c〉] ^ 〈〉 =

R[〈b, c〉] ^ 〈a〉 =

R[〈c〉] ^ 〈b, a〉 =

R[〈〉] ^ 〈c, b, a〉 = 〈c, b, a〉.

This computation can be performed using a new (auxiliary) function A with two arguments:

R[〈a, b, c〉] = A[〈a, b, c〉 , 〈〉] =

5



A[〈b, c〉 , 〈a〉] =

A[〈c〉 , 〈b, a〉] =

A[〈〉 , 〈c, b, a〉] = 〈c, b, a〉,

Obviously we may generalize this to:

R[L] = A[L, 〈〉]

but what is the implementation of A? Using the instances above and the inductive definition
of lists on the first argument, we discover the declarative program:

A[〈〉, L′] = L′, (3)

A[〈x〉^ L, L′] = A[L, 〈x〉^ L′], (4)

as well as the functional program:

L = 〈〉 ⇒ A[L, L′] = L′,

L 6= 〈〉 ⇒ A[L, L′] = A[T [L], 〈H[L]〉^ L′],

in equivalent notation:

A[L, L′] = L′ if L = 〈〉,
A[L, L′] = A[T [L], 〈H[L]〉^ L′] if L 6= 〈〉.

or:

A[L, L′] =

{
L′ if L = 〈〉
A[T [L], 〈H[L]〉^ L′] otherwise,

or:

A[L, L′] = (if L = 〈〉 then L′ else A[T [L], 〈H[L]〉^ L′]).

The function A is called tail recursive because the recursive application of A is the last
(”at tail”) operation which is performed on the right-hand side of the equality. This means
that the terms which appear during the evaluation (see the example) do not grow, as they
do when evaluation the [non-tail-recursive] function R. In terms of concrete computer
implementation, the evaluation of a non-tail-recursive program needs an arbitrary large
amount of memory (usually a stack) for storing the current intermediate term, while a
tail-recursive program needs a fixed amount of memory for storing the current arguments
of the function (two in our example).

In Lisp this implementation has the following syntax:

(defun R (L)

(A L ()))

(defun A (L Lp)

(if (eq L ())

Lp

(A (cdr L) (cons (car L) Lp))))

Moreover, since A does not use append, but cons, this implementation is significantly more
efficient: it has linear time complexity.

6



An imperative program. The functional tail-recursive program implementing A can
be transformed into:

R[L] { L1 := L;
L2 := 〈〉;
While(L1 6= 〈〉) { L2 := 〈H[L1]〉^ L2;

L1 := T [L1];
};

Return[L2];
}

This is an imperative program, because it specifies the imperative commands that are to
be executed by the computer in order to compute the value of the function. We use above
an ad-hoc syntax, similar to the one of most imperative programming languages:

• ”F [X]{body}”: the implementation of a function F of argument X.

• ”v := expression”: store the value of the expression under the name v. (Note that
”:=” is different from the logical equality ”=”.)

• ”While(condition){body}”: repeat body as long as the condition holds.

• ”Return(expression)”: exit the program returning the value of the expression as the
value of the function which is implemented.

The imperative program is quite far from the logical properties of the original function R,
however it is much more easier to compile or to intrepret.

In C or in Java the program may look like this:

reverse(list L) {

list L1, L2;

L1 = L;

L2 = emptylist();

while(nonempty(L1)){

L2 = cons(head(L1), L2);

L1 = tail(L1);

};

return Lp;

}

In Lisp we can also write such an imperative program, using the iterative construct do:

(defun R (L)

(do ((L2 () (cons (car L1) L2))

(L1 L (cdr L1)))

((eq L1 ())

L2)))

7



The body of the function starts with a list of triples: each triple declares an internal
variable, its initial value, and the operation which must be executed at each step in order
to update this variable. Next comes the condition for terminating the loop, and then the
return value. The previous tail recursive version of R can be transformed automatically
into this iterative version, even using a Lisp program!

Conclusion. Any programmer with a minimal training is able to write the imperative
program for the simple problem of reversing a list, without having to go explicitely through
the process described above. For programmers with more training, this is also possible
for much more complicated problems. However, as the problems are more complex, the
incidence of errors or even failures to design the program increases. This is why it is useful
to study the algorithm design principles demonstrated above and to apply them explicitely
in our programming practice. As we see from this example, the most important part of
programming is not the actual writing of the code in the respective programming language,
but the construction of the mathematical model and the design of the algorithm such that
it is correct and efficient.

8


