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Abstract

We present a method for the generation of the verification conditions for the total correctness of
imperative programs containing nested loops with abrupt termination statements, and we illustrate it
on several examples. The conditions are (first-order) formulae obtained by certain transformations
of the program text.

The loops are treated similarly to calls of recursively defined functions. The program text is
analyzed on all branches by forward symbolic execution using certain meta-level functions which
define the syntax, the semantics, the verification conditions for the partial correctness, and the termi-
nation conditions. The termination conditions are expressed as induction principles, however still in
first-order logic.

Our approach is simpler than others because we use neither an additional model for program
execution, nor a fixpoint theory for the definition of program semantics. Because the meta-level
functions are fully formalized in predicate logic, it is possible to prove in a purely logical way and at
object level that the verification conditions are necessary and sufficient for the existence and unique-
ness of the function implemented by the program.

1 Introduction

We present the theoretical foundations of a formal method for handling the total correctness of arbitrarily-
nested (possibly abruptly terminating) while loops in imperative programs. The goal of our approach
is mainly foundational: we aim at the identification of the minimal logical apparatus necessary for
formulating and proving (in a computer assisted manner) a correct collection of methods for program
verification. The study of such a minimal logical apparatus should increase the confidence in program
verification tools and possibly reveal some foundational relations between logic and programming. This
computer aided formalization may open the possibility of reflection of the method on itself (treatment of
the meta-functions as programs whose correctness can be studied by the same method).

A while loop is treated similarly to a recursive call of a new function together with the definition
and specification of it. The semantics of a loop is a logical implicit definition of a function. The invariant
has the role of input and output condition of this virtual function. The parameters of the virtual function
are the so called critical variables — the variables which are modified within the loop body. The actual
arguments of the call are the values of the critical variables when entering the loop.

The distinctive feature of our approach is the formulation of the termination condition as an induction
principle developed from the structure of the program with respect to while loops. This termination
condition ensures the logical existence of the function implemented by the loop. (The existence is not
automatic, because a loop corresponds from the logical point of view to an implicit definition.) Moreover,
the termination condition can be also used for proving the uniqueness of the function as well as the total
correctness of the loop.

Syntactically, a program is considered to be a tuple of statements, which contains terms and formulae
expressed in an object theory. (By a theory we understand a set of formulae in the language of predicate
logic.) Therefore, the program statements are meta-constructs which incorporate object terms and object
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formulae as quoted meta-terms. Currently, we consider programs which have some input parameters and
produce a single return value, thus a program defines a function.

The semantics of the program is the object level formula which defines logically the function im-
plemented by the program. This formula is constructed by traditional forward symbolic execution: the
program is executed on symbolic arguments, and a clause for the implicit definition of the program func-
tion is generated on each execution path of the program. We consider the conjunction of these clauses as
being the semantics of the program. In a similar way, on each path, one generates the partial correctness
conditions as safety conditions, functional correctness conditions, and assertive conditions (conditions
whose goal is represented by an intermediary program assertion), altogether ensuring the partial correct-
ness. Separately, the termination condition is generated as an induction principle. Remarkably, all the
conditions are expressed in the object logic.

The method is completely formalized as functional meta-definitions of the syntax checker, of the
semantics constructor and of the generators of the verification conditions. These meta-level items take
the program text, the specification (input and output conditions) and, eventually, assertions like the loop
invariant or others, introduced by Assert construct. The program can be annotated via Assert at any
point of the program and mandatory after a loop terminating abruptly via break. We impose the second
case because, at the end of the loop terminated via break, one can not characterize precisely the critical
variables at the exit point of the loop as fulfilling the invariant and the negated loop condition like in the
case of normal terminating loops. Therefore, the critical variables from loops terminating abruptly via
break are known to fulfill the invariant and the assertion.

The approach is also universal because the programming language itself is predicate logic (terms
and formulae from the object theory), except for Assert construct, and the few meta-constructs which
represent the basic imperative statements (assignment, conditionals, loops, abrupt statements: break,
return).

The method is implemented in Mathematica [22] on top of the Theorema system [S]. Because the
formalization of the functional meta-definitions are given in the ,,pattern matching” style, that is, it ex-
hibits the behavior of the meta-function for various specific classes of arguments, the differences between
the meta-level definitions presented in the following sections and the real implementation are minor.

This paper extends the calculus presented in [8]] and details the approach for programs containing
while loops. Emphasis is put on the termination of loops. We also present the proof of the fact that the
termination condition ensures the existence and the uniqueness of the function implemented by the loop.
The proof is elementary, using only natural number induction and few inference rules and we think that
this set is minimal. Proofs in the Theorema system [5]] will be done in order to confirm or to extend this
assumption as part of the future work.

Related Work

Our approach follows the principles of forward symbolic execution [13]] and functional semantics [[17]],
but additionally gives formal definitions in a meta-theory for the meta-level functions which define the
syntax, the semantics, and the verification conditions. To our knowledge there is no other work on
symbolic execution approaching the verification problem in a fully formal way.

However, the ideas from the formalization of the calculus are not completely new; [15] describes
the behavior of concurrent systems as relation between the variables in the current state and in the post-
state. A similar approach is encountered in [2], where the program equations (involving relation between
current and post-state) are used to express nondeterminacy and termination. In the same manner, [20]
presents the formal calculus for imperative languages containing complex structures. Specification lan-
guages used in the framework of verification tools use also this concept — see e.g JML [6].

The most well-known techniques for proving that a loop terminates is to manually annotate it with
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a termination term [11], to synthesize the termination term based on the loop behavior [4, [19} 3] or to
compute the closure of some well-founded relations [7]. They can be seen in the context of our work as
methods for proving certain classes of inductive termination conditions that we generate.

The interactive theorem prover Coq [1] mechanizes the most well-known semantics for imperative
languages (operational, denotational and axiomatic). Our approach is in the spirit of the axiomatic se-
mantics, if we think to the fact that we annotate the program (input and output specification, invariants
for loops and Assert constructs). But actually we transform the imperative program into a functional
one (a tail-recursive function for each loop), so one expects to apply some kind of operational (call-by-
value or call-by-name) or denotational semantics (based on fix-point theory) for functional languages.
One one side, we are not interested how the functions evaluate their arguments, therefore we do not
use operational semantics. On the other side, denotational semantics based on fix-point theory needs an
additional model for dealing with nonterminating programs. Our approach uses implicitly the semantics
of predicate logic, no matter if the program is imperative or recursive.

Most of the proof assistants provide infrastructure for proving/disproving the termination of clas-
sical examples with general recursion. ACL2 [12]] handles total functions that must be proved total
at the definition time; sometimes the system is able to infer this fact. Isabelle [18], HOL4 [10] and
Coq []] are basically using the recursion package TFL [21]] and thus allow definitions of total recursive
functions by using the fixed-point operators and well-founded relations supplied by the user. Proving
termination reduces to show that the relation is well-founded and the arguments of the recursive calls are
decreasing. Our approach is equivalent, in the sense that the termination condition is equivalent to the
well-foundedness of the partial order defined by the transformation of the critical variables within the
loop.

The treatment of termination in [14] also uses inductive conditions extracted from the program re-
cursions, but in the form of implicit definitions of domains (set theory is also needed). However, the
existence of such inductively defined objects is not proved directly.

Since our study is foundational, it constitutes a complement and not a competitor for practical
work dealing with termination proofs, like e. g. termination of term rewriting systems http: // www.
termination-portal. org/| the size-change termination principle [16] or the approaches for prov-
ing the termination of industrial-size code (Microsoft Windows Operating System Drivers) [7]].

2 Logical Foundations of Imperative Loops

Our approach is purely logic, meaning that the program correctness, and implicitly loop correctness,
are provable in predicate logic, without using any additional theoretical model for program semantics or
program execution, but only using the theories relevant to the predicates, constants and functions present
in the program text. We call such theories object theories.

A meta-theory (in predicate logic with equality) is further constructed for reasoning about programs.
The meta-theory contains specific functions and predicates from the set theory. Moreover it needs the
tuple theory: (...) denotes a tuple, — is the concatenation of tuples; x — ¢ is a pair denoting the re-
placement of the variable x with the term ¢ (a set of replacements is a substitution, and substitutions can
also be composed); as well as appropriate function symbols for the construction of program statements
(assignment, conditionals, loops, abrupt statements: break, return).

The program statements and the program itself are meta-terms. Also the terms and the formulae
from the object theory are meta-terms from the point of view of the meta-theory, and they are considered
quoted (because the meta-theory does not contain any equalities between programming constructs, and
also does not include the object theory).

The expressions composing the definitions of the meta-level predicate and functions presented below
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are to be understood as universally quantified over the meta-variables of various types: v €V C ¥ is an
initialized variable, t € .7 is a term, @, ¥ are boolean expressions, B, Pr and Py are tuples of statements
representing the loop body and the two paths corresponding to the if statement, respectively. t and t’ de-
note conventionally loop invariants which hold at the beginning of the loop and are inductively preserved
by each iteration of the loop. The user should provide such an invariant. We denote conventionally by &’s
the critical variables. For simplicity we consider a single critical variable & in loops. It is straightforward
to extend this formalism to tuples of critical variables.

A program P is a tuple of statements and is documented with pre- (Ip)and postconditions (Op). It
takes as input a certain number of variables, conventionally denoted o and it returns a single value,
conventionally denoted 3.

The meta-theory also contains the properties of the meta-predicates IT, IT' (syntax checkers) and
meta-functions X, ¥’, and X" (semantics constructors), I and I'"" (verification conditions generators), and
0, @', and ®” (termination condition generators).

All meta-functions use forward symbolic execution: the state of the program is represented by a
formula @ and by a substitution o. The formula contains the accumulated conditions on the current ex-
ecution path (the path condition). The substitution assigns the current symbolic values (terms depending
on the input) to the currently initialized variables. Program analysis proceeds as follows:

o Initially new symbolic constants are assigned to the input variables.
e After that, the program analysis proceeds in forward manner, statement by statement.
e An assignment updates the substitution ¢ using the variable and the term of the assignment.

e A conditional (if) splits the analysis of the corresponding execution path and adds the condition
formula and its negation to the two new path conditions.

e return ends the analysis on the current execution path and break ends the analysis of the current
loop.

e an assertion introduced via Assert should follow from the current path condition.

A while statement splits the analysis of the program in three paths adding new path constraints to ®
as follows:

1. One path analyzes the statements occurring after the loop, considering that the loop is not executed
at all.

2. On the second path the loop is executed symbolically using fresh values for the critical variables,
which are assumed to fulfill the invariant and the loop condition.

3. The third path continues the analysis of the program after the loop, by assigning fresh values to
the critical variables, which are assumed to fulfill the invariant and the negated loop condition, or,
in the case of loops terminated abruptly via break, they are assumed to fulfill the invariant and the
assertion after the loop.

At the end of the analysis, the original constant symbols are translated back to the input variables.

Note that for reasoning about loops, in particular about their correctness one needs only the item 2 in
the enumeration above.

The output of the meta-functions consists in a tuple of formulae, each of them to be understood as
universally quantified over the free variables.

We illustrate the method using Example |l|(Search in a bidimensional array) containing two nested,
abrupt terminating loops. Line 1 and 2 represent the input, respectively the output condition of the
program. The loops are annotated with the invariants 1; and 1.

4
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Algorithm 1 Search in a bidimensional array

1. in A:array of reals, m,n:integers, e:real where m>0,n>0
2. out B: integer or tuple where( 1 I App=e= (A, =€)

0<k<m0<I<n
V VY AypFe= (f=-1))

0<k<m0<I<n
3.1local inti,j;
4.1:=0;
5.while (i < m)
6. 1: 0§l§m/\0§]§nAOSVk<iOS‘3’<nA[kM;Ae,
7. ji=0;
8. while (j<n)
0. Q:Ogl§m/\0§]§n/\OSVk<iO§y<jA[kW]756,
10. if (e =Ayy)
11. return[(i, j)1;
12. ji=Jj+1
13. i:=i+1;

14.return[-1]

3 Syntax and Semantics

WEe first introduce a meta-predicate IT (and the auxiliary one IT) which checks the syntax and a meta-
function X (and the auxiliary ones ¥’ and ") which constructs the semantics. These are not actually
needed for the implementation of a program verification system. They are only needed in order to reason
about the effect of the verification condition generator. For instance, all statements about the effect of the
meta-functions can be formulated only on programs which fulfill the predicate I1. Likewise, the effect
of a program P is expressed as a logical formula X[P], which constitutes the implicit definition of the
function realized by the program. Additionally, we construct the semantics of each loop as an implicit
definition of the function implemented by the loop on the critical variables.

The verification conditions for partial correctness are generated by a meta-function I" (and the aux-
iliary ones I'"), while the termination condition, one for each while loop is generated by the meta-level
function O (and the auxiliary ones ®@’, ®").

3.1 Syntax

The predicate IT checks a program for syntactic correctness including the fact that each variable is initial-
ized, that each branch has a return statement and that break statement occurs only in while loops and,
if that is the case, then an Assert construct occurs after the loop body. The meta-level function Vars con-
structs a list with the variables occurring in a term or formula, the meta-level predicate IsF OLFormula
checks whether an expression is a first-order logic formula and HasAssert checks if, in case of break
statement, the program is annotated with an Assert construct.

IsF OLFormula[lp|o]]
Definition 1. /. I1[P] :&< A IsFOLFormula|Op[o, B]]

O{o — o}, Pl{ay — a}
2. M|V, (xeturn[t]) — P| :< Vars[t] CV

3. [V, (v: =t)— P]:= Vars[t) CV AII[VU{v},P]
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Vars[p] CV

IsF OLFormula[ @]
[v,pPr — P]
[V,Pr — PJ

4. H[V, <£((p)PT,PF> VP] S A

Vars[p] CV

IsF OLFormula|@] A IsF OLFormulalt]
IT'[V,B — P]

[V, P]

5. [V, (while(¢)dot,B) — P] :& A

6. I1V,(Assert|¢|) — P] :& IsFOLFormulal@] ATI[V, P]
7. O|V,P|=F

The input variable o from Definition [I][T] behaves like a global variable. Some of the principles
of the syntactic check are as follows: the variables occurring in a term ¢ or in a formula ¢ have to
be initialized (e.g. Definition [I]@ The formulae Ip, Op, ¢, and 1, which are supposed to be well-
formed first-order formulae, are checked correspondingly (e.g. Definition [I]5). In case of successful
assignment the variable v is added to the set V of initialized variables. break statement outside the
loop body gives a syntax error (Definition [I][7), while it is allowed inside the loop body (Definition [2).
This is also the reason why a new auxiliary predicate IT" was introduced to make distinction between its
behavior. Moreover if break occurs, we also check if the program is annotated with an Assert construct
(Definition [2][7). Absence of the return statement in the program means syntax error (Definition [I][7)),
unlike the same situation in the loop body (Definition 2|[5)), which means that we reached the end of the
loop body.

Definition 2. /. IT'[V,(return[t]) — P]:& Varst] CV
2. TI'[V, (break) — P] :< HasAssert|P]

3. WV, (v: =t) — P]:& Vars[t) CVAIT[VU{v},P]

Vars[p] CV

IsF OLFormula[@]
I'V,Pr — P]
IU[V,Pr — P]

4. [V, (i£(@)Pr,Pr) — P] i N\

5 IV, ()] :& T

Vars[p] CV

IsF OLFormula|@] N IsF OLFormulalt]
IU'[V,B — P]

Ir'[v,P]

6. TI'[V, (while(@)dot,B) — P| = A

7. II'|V,(Assert|@]) — P] :& IsFOLFormula[@) ANIT'[V, P]

8 'V,Pl:&F

The meta-predicate IT', except for break statement, behaves similarly to IT.
Remark 1. We are aware that the syntax checker could be implemented by a single meta-predicate
and additionally using a global variable to check whether we are or we are not in a loop with break
statement. We prefer however specialized auxiliary predicate for the loop body for the cleanliness of the

formalization. The preference for specialized functions for [different types of] loops will be encountered
also in the formalization of the meta-level functions in the next sections.
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For instance our illustrating example is syntactically correct.

3.2 Semantics

For programs containing while loops there are two possibilities for constructing their semantics. The
one presented in [8] uses the loop condition, the invariant and the values computed by the loop for the
critical variables in order to characterize the loop. Although simple, this technique does not allow to
reason about the loop itself, because its effect is encoded into the invariant, rather than in its semantics.
We propose in this paper a semantics relating while loops to function calls (2)), which is more precise
and necessary for proving the correctness of our method in Section [6]

We define the semantics of a program via the meta-level function X as being an implicit definition
at object level of the function implemented by the program. The semantics function depends also on
some global variables like the initial program state, the input condition, and symbols .%# — standing
for the program function, respectively f; (i € N) — a new symbol for each loop analyzed. These denote
conventionally the function defined by the loop and, together with a tuple of statements, are the arguments
of the meta-level semantics function. The output is a list of the formulae with the shape:

V(@ = (Fla]=1)), (1)

a:lp

one for each path of the program. In case of loop semantics, .# is actually a f. Each formula is a condi-
tional definition for .% [@] and depends on the accumulated [negated] conditions ® coming from the if
statements and from the effect of the loop encoded as the invariant leading to a certain return statement,
whose argument (symbolically evaluated) represents the corresponding value of .7 [a], namely 7. The
operations from the body of the loops present in the program are not reflected explicitly in these clauses,
except if a return or a break in non-nested loops is encountered. Similarly, the operations performed
in a nested loop are not visible in its wrapper loop (Definition [5]5), except the outcome of the abrupt
statements. It is the loop invariant that encodes them. Each loop occurring at the main level will trigger
the generation of two paths — leading to two sets of clauses. On one path the loop is not executed, and
on the other the loop is executed and its effect is expressed using the invariant. The loops occurring in
nested way are not visible at all in the semantics, but their effect will be used in the generation of the
verification conditions.

For example the branch (1,3,5,6,8,9,10,11) of the Exampleconsiders the execution of both loops,
which are terminating abruptly. On this branch the semantics of the program is: m > 0An > 0Ai <

mAUNj<nAtA(e=Ay;) = (F[mn] = (ij)). Note that the return statement influences also
the semantics of the loops, namely, on the branch (5,6,8,9,10,11) the outer loop has the semantics:
uAi<mAj<nApA(e=Ap;) = (fili,j] = (i, j)), and on the path: (8,9,10,11), the inner loop has
the semantics lz/\j<n/\(6— ][1) (f2lj]l = (i, )))-

Template semantics formula for loops (2)) states the following: for all critical variables satisfying the
invariant, if the loop condition is not fulfilled then its semantics (denoted conventionally by f) can be
computed directly in terms of the function S from the object theory; otherwise the loop analysis leads to
recursive definitions of the semantics on each branch, the recursive argument being constructed by the
application of the substitution oy to the critical variables. The substitution oy is obtained by updating
op with all the assignments on the respective path of the loop.

~¢ = (/18] = 518))
YAS @n@= (/18] = f5ow) @

The meta-level function X together with the auxiliary functions X’ and X" produce implicit definitions
for each loop of the program and also for the program itself.
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Definition 3. 1. X[P|=X[{o — ao},Ip[o0],P, F|{ox — a}

2. X[o,®, (returnft]) — P,.7]| = (P = (F|w] =t0))

3. X[o,®, (break) — P,.F| = ()

4. X[o,®,(v:=1) — P.F| =X[c{v = tc},® P.F]

Z[G,CI)/\([)G,PT \/P,ﬁ]

> Eloy®, QE(@)Pr, Pr) — P 7] =— { 26, D A-00, Py — P,F]

6. X[o, P, (), F]| =)

7. X[o,®,(while(¢)dot,B) — P,.#| =
Lo, ®A-¢@o,P,.7] (1)
(mpoy = (f[6] =60)){6 — &}
_ <5\1A{ 5[0, 90, B, f]{8 — 3} }> @)
Y[op, oo A0y, B, F] (3)
Z[Go,qD/\ﬁ(pGo/\lGo,P,g‘\] (4)

8. Z[o,®, (Assert[p]) — P,.F] =X[0, PN\ @0, P, F]

The meta-level function ¥ constructs a set of implicit definitions for the current module. The basic
idea is to start with the a substitution which assigns the conventional constant[s] o to the program
argument[s] o and with the input condition as a premise, and then to update the current substitution and
the current path condition according to the statements of the program (symbolic execution).

A return statement constructs the expression of the program function on the respective branch (Def-
inition [3|[2)), assignments update the current state of the program (Definition [3|l4)), if forks the program
execution (Definition [3][5). Definitions 3|3 (break) and 3][6] (end of the loop) are applied only in the case
the currently analyzed module has no nested loops. Analysis of a while loop is done as follows: one
branch considers that the loop is not executed at all (Definition [3][7]1), respectively, that the loop was
analyzed and terminates (Definition [3][7]4) and in both cases proceeds with the execution of the rest of
the program. One branch analyzes the loop body after the same principles the program is (Definition
Bl713). Additionally semantics formula for the current loop is constructed (Definition [3|[7}2), where the
auxiliary function ¥’ is used (Definition ). break behavior is different for non-nested and nested loops:
for non-nested loops in the current module analyzed it computes the program function on the respective
branch (Definition [42), in contrary, has no effect for nested loops (Definition [5|[2)). Definition [3|[7]3 an-
alyzes inductively the structure of while loops handling in this way arbitrarily nested loops. Each time
Definition [3][7]2 is applied a new symbol f denoting conventionally the function of the current loop is
generated which is used also in and Definition [3][7]3. An Assert construct (Definition [3|[]) updates the
set of assumptions and afterwards continues the analysis of the program.

The inductive definitions of the auxiliary semantics functions are similar to the main function, except
for break and end of the loop body when [recursive] semantics definitions have to be constructed.

Definition4. 1. ¥'[0,®, (returnft]) — P, f] = (P = (f[6] =10))
2. Y[o,®, (break) — P, f] = (® = (f[)] = 80))
3. Y[o,®,(vi=t) — P, f]=Y[o{v—1t0},PPf]

Z/[Gaq)7PT VPaf]

4. Z/[Gvcba <£((p)PT’PF> \/Rf] - /\{ El[c,é,PF \/P,f]
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5. ¥[o,®,(), f] = (® = (f[&] = f[0])
6. X'[o,®,(while(¢)dot,B) — P, f] =L"[c, P, (while(¢)dot,B) — P, f]{& — &}

7. ¥[0,®, (Assert[g]) — P.f] = £[o, A0, P.f]

Definition 5. 1. X'[0,®, (return(t]) — P, f] = (® = (f[&)] =10))
2. ¥'o,®, (break) — P, f] =T
3. Yo, ®@,(v:=t) — P, f]=2"[c{v = tc},®,P,f]

le[G’cI)/\(pGaPT \/Paf]
Yo, ®N—@o,Pr — P, f]

N

- S0.®, (1£(9)Pr Pr) — P.f] = A{

5. ¥[c,®,(),f] =T

Yo, ®A-¢@0o,P, f]
. Y'[o,®,(while(p)dot,B) — P, f] =A< X'[00, 90y A10y,B, f]
Y'[60, P A —@0n A 10y, P, f]

=)

7. ¥'[0,®, (Assert[p]) — P, f] = X0, B 9o, P, /]

Remark 2. We are aware that the semantics constructor could be implemented with less meta-level
functions and having some supplementary global variables. We prefer however specialized auxiliary
predicate for the loop body for the cleanliness of the formalization.

The semantics formulae of Example|(l|are as follows.
Semantics of the program.
1)

m>0An>0A0>m= (F[mn|=—
i<m/\llAj<n/\12/\(e:Amm):(9[m,n]:<i,j>)
m>0An>0ANi>mA1y = (F[m,n]=—1)
Semantics of the outer loop.
= m= (il = (i)
i<mnj=n=(fili,j] = Ali+1,])

YV AQ . . . ..
i,j: l<m/\]<n/\lz/\(€:Amm)=>(f1[l,]]:<l,]>)
i<m/\j2n/\12:(f1[i,j}:fl[i+1,j])

Semantics of the inner loop.
jzn=(f[jl=1)

M nA(e=Apy) = (L] =)
Jj<nA(e#Ayy) = (LU= r£l+1])

4 Generation of the Partial Correctness Verification Conditions

The meta-functions I" and I generate the partial correctness conditions. These ensure safety (all func-
tions are used with appropriate values of the arguments) and functional correctness (the values returned
by the main function satisfy the output specification). Separately, the meta-function ® generates a ter-
mination condition for each loop. (We do not treat in this paper recursive calls, thus no termination
condition is generated for the main program.)

The meta-level function I" generates safety and functional verification conditions. Safety conditions
are formulae with the shape & = [;[t], where I, is the input condition of some function %, and ¢ the
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symbolic value of the function call (the formula & accumulates the conditions from if and while state-
ments and the input and output conditions for the function calls on the respective branch). For instance
the precondition (True) of 4 from the assignments of our running example has to be ensured. More in-
teresting examples are on bounded integers, where the safety conditions can detect arithmetic overflow.
Functional and, respectively, assertive conditions are formulae checking that the output condition on the
currently returned value, respectively, the assertion at a certain point in the program, is a consequence of
the accumulated conditions on the respective branch. An example of functional verification condition is
the formula:

m>0An>0N0>m=( 3 3 A[k]m:€:>(A[lgl”ﬁz]:e))/\( \4 v A[kw]#ei(—lz—l)),

0<k<m0<I<n 0<k<m0<I<n

obtained from the analysis of the path: (1,3,4,5,14,2).

As in the previous definitions, the function I" depends also on some global variables, namely, the
initial program state and the input specification. The arguments are the current symbolic state o, the
accumulated path conditions & and a tuple of statements, and generates a list of verification conditions.

Definition 6. /. T'[P|=T[{a — oo}, Ip[o],P|{ap — a}
2. I'lo,®, (return[r]) — P] = (® = Ofap,10])
3. I'o,®,(v:=t) — P|=T[oc{v—rc}, P

I'o,®A¢o,Pr— P]

4. Tlo,®,(1£(9)Pr, Pr) — P] =~ { I'lo,® A=¢o,Pr — P

5 To,®,()] = (P =10)

I'o,®A-¢@o,P] (1)

(P=10) (2)
[[op,100 A @0y, 1,B]{6 — 8} (3)
['[oy,100 A0y, P (4)

6. I'lo,®, (while(¢p)dot,B) — P] =—

(= 90)

7. T'lo,®, (Assert[o]) — P] —V{ I'[o,® A @0, Pl

The input variable & behaves as a global variable. The verification conditions for partial correctness
are generated as follows: the return statement finishes the analysis of the respective branch, checking
that the postcondition (Definition [6]2)) is fulfilled, an assignment updates the the program state (Defini-
tion [6]3)), if forks the program analysis (Definition ). while loops split the analysis of the program in
three branches: one branch considers that the loop is not executed (Definition [6][] 1), another analyzes
the body of the loop (Definition [6][6]3) after checking that the invariant holds at the beginning of the
loop analysis (Definition [6]l6]2), the third one analyzes the rest of the program taking into account that
the loop was executed (the invariant and the negated loop condition are part of the path condition) and
terminates (Definition [6]]6]4). The assertion introduced via Assert is checked if it follows from the ex-
isting assumptions and afterwards it is added to the accumulated assumptions on the respective path.
Note that due to the syntax check which does not allow a break in the main program, no corresponding
inductive definition is needed.

Definition7. 1. I'[0,®, 1,9, (return(t]) — P| = (® = Oy[0y,10])
2. T'[0,®,1,9, (break) — P] = (P = ¥0)

3. I'[o,®,1,0,(v:=t) — P|=T"[o{v—1t0},P,1,0,P]

10
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o, ®PA@0,1,0,Pr— P]

4 Ilo®,1,0,(1£(0)Pr.Pr) — P :v{ o, ®AN=@0,1,¢,Pp — P]

5 o, ®,1,9,()] =(®=10)

I'[c,®A—=90C,1,0,P]

(®=10)
I"[0p,1'00 A 90Oy, 11, @, B|{d — 6}
["[op, 1100 A =90y, 11, ¢, P)

6. I'[o,®,1,¢,(while(¢p)dot’,B) — P] =—

(®=vo)

7. T'lo,®,1,9, (Assert[d]) — P] :v{ Plo,®nd0,1,¢,P]

The inductive definitions corresponding to I” are the same as of I', except that break also occurs.
The symbol ¥ stands for an assertion and it is a first order logic formula. The Assert construct occurs
in the tuple of statements P, so Definition [/}f2]is correct because 1 occurs also in the left hand side.

Remark 3. We are aware to the fact that only a meta-function could have been used for the generation
of the verification conditions by using global variables for the extra arguments 1 and @ of I"'. Though we
prefer two meta-level functions for cleanliness.

5 Termination

Non-recursive programs containing nested abrupt terminating while loops terminate if each loop ter-
minates. We approach the termination by considering the loop a separate module whose termination
condition is:

—¢ = 7[d]

(SV AL @ AP AT[OoOW] = T[d] ;= 6V7r[5] 3)

In formula (3)), 7 is a new constant symbol, thus in fact it behaves like a universally quantified pred-
icate. This is why this formula is in fact an induction principle. The formula consists in an implication
between two universally quantified parts, both over 6 (standing for the loop critical variable[s]) which
satisfy the loop invariant 1. The left-hand side is a conjunction of implicational clauses. The first clause
corresponds to the end of the loop (¢ is the loop condition), and the other clauses correspond to the
paths of execution of the loop. Each path has associated a path condition ¢ and a substitution 6 which
encodes symbolically the effect of this path on the critical variable[s] O.

We explain now the rationale behind (3. Let us consider the predicate 7[8]: “the loop terminates on
input 8” (whose definition we do not actually know). The left-hand side of the implication represents a
property T [r] which should be fulfilled by this predicate 7. Intuitively, this property states that the loop
terminates if the condition ¢ is not fulfilled, and furthermore, corresponding to each execution path, it
states that the loop terminates on § if it terminates on the values updated by the execution of the loop
oow. Intuitively, we consider that the predicate expressing termination is the strongest predicate obeying
this property 7. The termination condition states that the invariant 1 is stronger than any predicate
fulfilling T — thus it will be also stronger than 7. In this way we can express termination without explicit
use of 7.

Therefore, the condition states that the loop terminates for any values of the critical variable which
fulfills the invariant, in particular for the values of the critical variable at the entry point of the loop
because they preserve the invariant. This is, however, only an intuitive explanation, and in the next

11
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section we show rigourously that the termination condition is sufficient for the existence and uniqueness
of the function implemented by the loop.

Loop analysis implies collecting in & the conditions of the if statements, the invariants of the inner
loops and the output characterization of the additional functions encountered — if it is the case, and also
formulae of the type m[dow]|. The operations in the inner loops do not appear explicitly in the outer
ones (they are encoded in the loop invariant), except for break — if the currently analyzed module has
non-nested loops, and for return — at any level.

As in the semantics formula (2)), the ellipsis in (3)) might represent other conditional definitions for f
coming from other iterative paths, and from the analysis of the abrupt terminating statements.

The termination condition, one for each loop, is generated automatically by the meta-level functions
@, ® and .

The meta-level function ® analyzes the current module (program or loop) and specializes itself into
@’ for the analysis of loops and into ®” for modules which contain nested loops, because the break
statement has different behavior for nested, respectively non-nested loops.

The main function ® depends on the global variable representing the initial program state. The
truth constant T is used as assumption at the beginning of the program analysis (Definition [§][I)) and
also each time a new module is analyzed (Definition [§][7}2). This assumption is sufficient because we
generate termination conditions only for loops specified by the corresponding invariant. The meta-level
function works by symbolic execution, generating a list of termination conditions, one for each loop
of the program as follows: updates the program state in case of assignments (Definition [§J[), forks
the analysis of the program in two execution paths in case of conditional if (Definition [§]5), returns the
empty tuple in case of return statement (because termination of a module corresponds to the termination
of the inner iterative structures, if they exist). Definitions [§|3] — handling break statements and [g][6] -
handling end of while are applied only if the module analyzed does not contain nested loops, these
cases occurring by the application of Definition [§[7]2. Each time a loop is analyzed, a new symbol
7 standing for an arbitrary predicate is generated and the analysis proceeds as follows: a termination
condition for the currently analyzed loop is generated (Definition [§][7}1) where an auxiliary function
@' is used, a path analyzes the loop body similarly to the program (Definition [8][7}2) and the last one
continues with the analysis of the statements after the loop (Definition [§][7]3). Note that same analysis is
performed to each loop, independently of the degree of nestedness, due to Definition[§][7]2. An Assert
construct (Definition [§][§) updates the set of assumptions and afterwards continues the analysis of the
program.

The inductive definitions corresponding to the meta-function ® are as follows:

Definition 8.
1. O[P] =0O[{a — o}, T,Pl{oty — a}
2. O[o,®, (return[t]) — P] = ()
3. ©[o,®, (break) — P] = ()
4. ©[0,®,(v:=1) — P|=0[c{v —>tc},P,P]

Olo,PN@o,Pr — P]
®lo, P AN—¢0,Pr — P]

“

Olo.® (as(g)Pr.rr) — Pl = {

6. ©[0,®,()] =)

12
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7. O[o,®, (while(@)dot,B — P| =
-0y = n[d]){d — 0}
<5\1A{ ((9’[60?¢00,B,7T)]{50—>5}:>7t[5] };‘5\1"[5]> (1)
®|oy, pop A10p,B]  (2)
@[G(),T,P] (3)

8. O[c, D, (Assert[p]) — P] = 0Olo, P A ¢o,P]

The auxiliary functions ® and ®” behave similarly to ®, except that they generate a disjunction of
formulae (for the simplicity of the approach), one for each path analyzed, from which the termination of
the loop must follow (Definition [§][7}1) and that:

e return statement has the same behavior in non- and nested loops: they return the accumulated
path conditions (Definitions [9|[T| and [TO|[T);

e break statement behaves similarly to return in non-nested loops (Definition [O|2)), but for pro-
grams with nested loops the analysis performed in inner loops is not visible in the wrapper ones

(Definitions [TO]2).

e at the end of the non-nested loop, a path condition involving the termination predicate 7 is con-
structed (Definition[9][5)), while the analysis performed in the nested loops is not visible in the outer
loops (Definition [I0}I5))

e nested loops are always analyzed by the meta-function ®” (Definition [9][6).
Definition 9.

1. ®'[c,®,(return[d]) — P,n] =P

2. O'[o, P, (break) — P,n| =P

3. @'c,®,(v:=t) — Pn]=0'[c{v—1t0},D,Pn]

O'lc, PN @0, Pr— P |

/ . _
40 [G,CI)7 <£((P)PT,PF> P’TC} o \/{ @l[G,q)/\—!(pG,PF \_/P,ﬂ']

5. @o,®,(),n] = (PAT[dC])

6. ®[c,®, (while(¢)dot,B) — P,rt] = ®"[c, P, (while(p)dot,B) — P,w]{d — O}

7. @'o,®,(Assert[¢]) — P,7t] = O@'[c, P A @0o, P, 7]

Definition 10.

1. @0, P, (return[d]) — P,n| =

2. ®'[o,®, (break) — P,|=TF

3. ®N[G>cba <V = t> \/P,TL'] = ®”[G{V - tG},CID,P,TC]

Q"[c, PN @o,Pr — P,7|

/! 3 =
4. ©"[0,®,(if(@)Pr,Pr) Pv”]—\/{ 0"[c,® A0, Py — P,7]

5. @[c,®,(),n]=TF

13
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0'[o,®A—¢0, P, 7]
6. @"[o,®, (while(@)dot,B) — P,mt] =V < ©"[0y, 9oy A0y, B, 7]
®'[0p, 70y A0y, P, 7]

7. @'[o,®,(Assert[@]) — P,n] = O"[c, DA @o, P, 7]

The termination conditions for the loops in Example[I]are as below. There are actually two induction
principles, developed from the structure of the loops. The program terminates if both loops terminates,
i.e. the following two formulae hold. The tuples of numbers between the formulae represent the program
lines analyzed leading to the respective path condition. The line corresponding to the invariant of the
currently analyzed loop occurs in all tuples but is omitted.

Termination of the outer loop.
i>m=mli,Jj]
(5,6)
i<mAj>nAmli+1,j]= mli,j]
(5,6,8,13)
vV AL . .
i,j:1 l<m/\]<n/\lz/\(Amm:e):>7151[l,]]
(5,6,8,9,10)
i<mAj>nAuAmli+1,j] = mli,j]
(5,6,8,9,13)
= V sl [ivj]
1,7:1

Termination of the inner loop.
jz>n=m [ j]

(8,9)

v A j<I’lA(A[iMj]:€):>TL'2U]
j (8,9,10)

J<nA(Apy #e) Amlj+1] = m[)]
L (8,9,10,12)
= V mJ]
Ji2

Remark 4. We are aware that the termination condition generator could be implemented with less
meta-level functions and having some supplementary global variables. We prefer however specialized
auxiliary predicate for the loop body for the cleanliness of the formalization.

6 Correctness of the Method

The loop semantics as given by the function ¥ can be brought into the form:

| 018] = (f[8] = s8]
W] S\ZA{ ~0[6] = (f(6] = FIR[8)) @

where Q[6] represents the disjunction of the negated loop condition with all path conditions on which
the loop terminates abruptly or normally, while S and R express the effects of the loop body on different
paths, possibly including case distinction.

Then the termination condition given by ® can be expressed as:

0[8] = 7[6]
W{ ~0[8) A m[R[8]) = 7[8] } = gl 5)

14



A Purely Logical Approach to Imperative Program Verification Erascu, Jebelean

The total correctness formula for while loops is expressed as: “The formula SVl[ f18]] is a logical
il

consequence of the semantics X[W] and the verification conditions.” However, this always holds in
the case that X[W] is contradictory to the theory, which may happen on the iterative execution path.
Therefore, one proves first that the existence (and the uniqueness) of an f satisfying X[W] is a logical
consequence of the verification conditions. This follows from the termination condition.

We give now the main steps of the development leading to this fact. Please note that we use n,m as
natural numbers.

Lemma 1. (Existence of the recursion index.) The formula SV HNQ[ "18]] is a logical consequence of
o
the termination condition (5)) and the safety verification conditions.

Proof. The proof uses the induction principle given in (3), where 7[§] is HNQ[ "18]].
n:
We have to prove that:

vV A
S:1

0[] = 3 OIR"[3]
{1MM§QWWWW$%QWW]

In the first clause 7 is 0, and in the second clause n on the right hand side is the successor (in natural
number theory) of n from the left hand side. Therefore EINQ[R” [6]] holds. O
n:

Remark 5. One can define now a function (the recursion index of 6) M[8] = min{n | Q[R"[6]} because
the set is nonempty.

Remark 6. It is straightforward to show that M[8]* = M|8].

Theorem 1. (Existence of the function implemented by the loop.) The formula (@) is a logical conse-
quence of the termination condition (B) and the safety verification conditions.

Proof. We take f[8] := RMI%][§] the witness for the loop semantics. Clearly f satisfies {@). Further we
prove that:

M8
3 3 0418 < m) = RO

by natural induction on m.

Base Case. If m = 0 then n = 0 and f[8] := R°[8] = S[5].

Induction Step. Assume ?I EV (M[8] < m) = RMI9)[§] and prove ? 6V (M[8] < m+1) = RMISI[§]. The
1l il

goal from the induction hypothesis and from the induction conclusion are identical for M[6] < m. In
the case M[8] = m+ 1, the goal of the induction conclusion can be rewritten as RM(%!" [§] and further as
RM1[8], due to Remark|6} O

Theorem 2. (Total correctness.) The formula SV 1[f[0]] is a logical consequence of the program seman-
il
tics and the verification conditions.
Proof. By taking m[0] as 1[f[6]] in (5], we have to prove that:
v n{ 2 3]
s | QI8 A[fIR[S]]] = 1[f[8]]
The first implication holds by using the semantics definition for f in the case Q[8] holds and the
functional verification condition expressing the fact that the invariant is preserved also at the last iteration

of the loop. The premises of the second implication hold because f[R[8]] is defined (R[6] satisfies 1) and
t[f[R[8]]] is preserved at each loop iteration by the corresponding functional verification condition. [

Note that this proof is basically identical for tail recursive functions in general, and very similar to
the single recursion programs [9]].
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7 Conclusion

The method presented in this paper combines forward symbolic execution and functional semantics for
reasoning about [abrupt terminating] imperative non-recursive programs. A distinctive feature of our
approach is the formulation of the termination condition as an induction principle depending on the
structure of the program with respect to loops. Moreover, the total correctness condition is expressed at
object level, and we do not need any additional construction for the definition of program execution (in
particular for termination).

In the past we approached the problem of termination of recursive programs, which is more complex
but it is solved in a similar manner as in this paper. This approach can be easily extended to programs
containing loops, but where recursive calls are outside the loops. Otherwise, the termination problem
appears to be very complex, thus further investigation of it is needed.
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