
Computer Algebra, F.Winkler, WS 2013/14

2.2. Gröbner bases at work: Inverse Kinematics in Robotics

We consider robots with prismatic and revolute joints. The kinematics of such robots
can be described by multivariate polynomial equations, after having represented angles α
by their sines and cosines and having added the equation sin2(α)+ cos2(α) = 1 to the set
of polynomial equations. W.r.t. the geometry of robots, there are basically two problems
to be considered:

• forward kinematics: determines the position (and orientation) of the end-effector
for given lengths of prismatic joints and angles of revolute joints

• inverse kinematics: determines possible lengths and angles from a predetermined
goal position of the end-effector.

Whereas a forward kinematics problem always has exactly one solution, an inverse kine-
matics problem could have no, exactly one, or several (possibly infinitely many) solutions.

Example:

6

-�
�
�
�
�
�
�

�
�
�
�
�
�
���

�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
u

�� �� �� �� �� ��

�� �� �� �� �� ��

�
��

x

y

z

δ1

δ2

l1

l2

end-effector

This is a family of robots (l1, l2 are the parameters of the family) with 2 degrees of freedom.

l1, l2 lengths of the two robot arms (prismatic joints)
px, py, pz x-, y-, and z-coordinates of the position

of the end-effector
δ1, δ2 angles describing the rotations of the

revolute joints
s1, s2, c1, c2 sines and cosines of δ1, δ2, respectively

Let the lengths l1, l2 of the arms (prismatic joints) be fixed. This means we are considering
one particular robot in this family. Since this robot has 2 degrees of freedom, we can in
general prescribe 2 coordinates of a point in space, say the x and z coordinates, and then

9

the remaining y coordinates is fixed up to finitely many possibilities. Of course, if we
specify coordinates out of the reach of the robot, we will get no solutions.

So we consider the following system of algebraic equations:
given l1, l2, px, pz,
solve for s1, c1, s2, c2, py

l2 · c1 · c2 − px = 0,
l2 · s1 · c2 − py = 0,
l2 · s2 + l1 − pz = 0,

c2
1
+ s2

1
− 1 = 0,

c2
2
+ s2

2
− 1 = 0.

These equations can be transformed into a Gröbner basis in the polynomial ring
Q(l1, l2, px, pz)[c1, c2, s1, s2, py] :

−l2
2
+ l2

1
− 2l1pz + p2

z
+ p2

x
+ p2

y
= 0.

l2s2 + l1 − pz = 0,

(l2
2
− l2

1
+ 2l1pz − p2

z
) · s2

1
− l2

2
+ l2

1
− 2l1pz

+p2
z
+ p2

x
= 0,

(l3
2
− l2l

2

1
+ 2l2l1pz − l2p

2

z
− l2p

2

x
) · c2

+(−l2
2
+ l2

1
− 2l1pz + p2

z
) · s1 · py = 0,

(l2
2
− l2

1
+ 2l1pz − p2

z
− p2

x
) · c1 − px · s1 · py = 0,

In this Gröbner basis the variables “are separated”, i.e. we can solve for 1 variable at a
time (starting from the last polynomial up to the first).

So, for instance, for
l1 = 30 length of first bar
l2 = 45 length of second bar

px = 45·
√
6

4
≃ 27.5567 x-coordinate of end-eff.

pz =
45·

√
2

2
+ 30 ≃ 61.8198 z-coordinate of end-eff.

we get (among others) the solution

py =
45
√
2

4
, s2 =

√
2

2
, s1 =

1

2
, c2 =

√
2

2
, c1 =

√
3

2
,

i.e. the angles have to be set to δ1 = 30◦, δ2 = 45◦.

All this can be computed in Maple 16 as follows:
> with(Groebner):
> F := { l2*c1*c2 - px,
> l2*s1*c2 - py,
> l2*s2 + l1 - pz,
> c1ˆ2 + s1ˆ2 - 1,

10

> c2ˆ2 + s2ˆ2 - 1 };

F := {l2 c1 c2− px, l2 s1 c2− py, l2 s2 + l1− pz, c12 + s12 − 1, c22 + s22 − 1}
> G := Basis(F,plex(c1,c2,s1,s2,py))

G := { −l22 + l12 − 2l1pz + pz2 + px2 + py2,

l2s2 + l1− pz,

(l22 − l12 + 2l1pz − pz2)s12 − l22 + l12 − 2l1pz + pz2 + px2,

(l23 − l2l12 + 2l2l1pz − l2pz2 − l2px2)c2 + (−l22 + l12 − 2l1pz + pz2)s1py,
(l22 − l12 + 2l1pz − pz2 − px2)c1− pxs1py }

> l1:=30; l2:=45; px:=45*sqrt(6)/4; pz:=45*sqrt(2)/2+30;

l1 := 30
l2 := 45

px := 45

4

√
6

pz := 45

2

√
2 + 30

> solve(G[1]);
45

4

√
2, −45

4

√
2

> py:= 45*sqrt(2)/4;

py :=
45

4

√
2

> solve(G[2]);
1

2

√
2

> s2:= %;

s2 :=
1

2

√
2

> solve(G[3]);
1

2
,
−1

2
> s1:=1/2;

s1 :=
1

2
> solve(G[4]);

1

2

√
2

> c2:= %;

c2 :=
1

2

√
2

> solve(G[5]);
1

4

√
12

> c1:= sqrt(3)/2;

c1 :=
1

2

√
3

So we have solved a particular inverse kinematics problem for this robot

11

