
Computer Algebra, F.Winkler, WS 2013/14

5. Factorization

In the previous chapters we have discussed methods for solving systems of polynomial
or algebraic equations of the form

f1(x1, . . . , xn) = 0 ,
...

fm(x1, . . . , xn) = 0 .

Of course, if we can factor for instance the polynomial f1 into

f1 = f
(1)
1 · f

(2)
1 ,

the problem is reduced to solving the two simpler systems

f
(1)
1 (x1, . . . , xn) = 0 , f

(2)
1 (x1, . . . , xn) = 0 ,

...
...

fm(x1, . . . , xn) = 0 , fm(x1, . . . , xn) = 0 .

In this chapter we discuss factorization of univariate and also multivariate polynomials
over various coefficient domains. Typically we will assume that the polynomial to be
factored is squarefree. This can always be achieved by the method described in Section
3.3.

5.1 Factorization over finite fields

Similar to what we have done for the computation of gcds of polynomials, we will
reduce the computation of the factors of an integral polynomial to the computation of
the factors of the polynomial modulo a prime number. So we have to investigate this
problem first, i.e. we consider the problem of factoring a polynomial a(x) ∈ Zp[x], p a
prime number. W.l.o.g. we may assume that lc(a) = 1.

In the sequel we describe E.R. Berlekamp’s algorithm for factoring squarefree univari-
ate polynomials in Zp[x]. Throughout this section let a(x) be a squarefree polynomial of
degree n in Zp[x], p a prime number, having the following factorization into irreducible
factors

a(x) =
r∏

i=1

ai(x) .

Applying the algorithm CRA of Section 3.2 not to integers but to polynomials, we get
that for every choice of s1, . . . , sr ∈ Zp there exists a uniquely determined polynomial
v(x) ∈ Zp[x] such that

v(x) ≡ si mod ai(x) for 1 ≤ i ≤ r,
and
deg(v) < deg(a1) + . . .+ deg(ar) = n.

(5.1.1)

63

This is proven in [Win96], Theorem 3.1.11. In (5.1.1) it is essential that a is squarefree,
i.e. the ai’s are relatively prime.

Lemma 5.1.1. For every ai, aj , i 6= j, there exist s1, . . . , sr ∈ Zp such that the cor-
responding solution v(x) of (5.1.1) generates a factorization b · c of a with ai | b and
aj | c.

Proof: If r = 1 there is nothing to prove. So assume r ≥ 2. Choose si 6= sj and the other
sk’s arbitrary. Let v be the corresponding solution of (5.1.1). Then

ai(x) | gcd(a(x), v(x)− si) and aj(x) 6 | gcd(a(x), v(x)− si).

So we could solve the factorization problem over Zp, if we could get a complete overview
of the solutions v(x) of (5.1.1) for all the choices of s1, . . . , sr ∈ Zp. Fortunately this can
be achieved by linear algebra methods.

If v(x) satisfies (5.1.1), then

v(x)p ≡ spi = si ≡ v(x) mod ai(x) for 1 ≤ i ≤ r.

So we have
v(x)p ≡ v(x) mod a(x), and deg(v) < n. (5.1.2)

Every solution of (5.1.1) for some s1, . . . , sr solves (5.1.2).

But what about the converse of this implication? Is every solution of (5.1.2) also a
solution of (5.1.1) for some s1, . . . , sr? From the fact that GF (p) is the splitting field of
xp − x, we get that

v(x)p − v(x) = (v(x)− 0)(v(x)− 1) . . . (v(x)− (p− 1)).

So if v(x) satisfies (5.1.2), then a(x) divides v(x)p − v(x) and therefore every irreducible
factor ai(x) must divide one of the factors v(x)− s of v(x)p − v(x). Thus, every solution
of (5.1.2) is also a solution of (5.1.1) for some s1, . . . , sr. In particular, there are exactly
pr solutions of (5.1.2).

Fermat’s Little Theorem says: if the prime number p does not divide the integer a,
then ap−1 ≡ 1 mod p (Theorem 2.5.1 in [Win96]). Moreover, in Zp[x] we have

(a(x) + b(x))p = a(x)p + b(x)p

(Theorem 2.5.2 in [Win96]). So the solutions of (5.1.2) constitute a vector space over Zp.
We can get a complete overview of the solutions of (5.1.2), if we can compute a basis for
this vector space.

Let the (n× n)–matrix Q(a) over Zp,

Q(a) = Q =

q0,0 · · · q0,n−1
...

...
qn−1,0 · · · qn−1,n−1

 ,

64

be defined by

xpk ≡ qk,n−1x
n−1 + . . .+ qk,1x+ qk,0 mod a(x) for 0 ≤ k ≤ n− 1.

I.e., the entries in the k–th row of Q are the coefficients of xpk mod a(x). Using the
representation of v(x) = vn−1x

n−1 + . . .+ v0 as the vector (v0, . . . , vn−1), we have

v ·Q = v
⇐⇒

v(x) =
∑n−1

j=0 vjx
j =

∑n−1
j=0

∑n−1
k=0 vk · qk,jxj ≡∑n−1

k=0 vkx
pk = v(xp) = v(x)p mod a(x) .

We summarize all these results in the following theorem.

Theorem 5.1.2. With the notation used above, a polynomial v(x) = vn−1x
n−1+ . . .+ v0

in Zp[x] solves (5.1.2) if and only if the vector (v0, . . . , vn−1) is in the null–space of the
matrix Q− I (I the identity matrix of dimension n), i.e. v · (Q− I) = (0, . . . , 0).

Now we are ready to formulate Berlekamp’s algorithm for factoring squarefree univari-
ate polynomials in Zp[x].

FACTOR B(Berlekamp factorization algorithm)
for a given prime number p
and a squarefree polynomial a(x) in Zp[x],
the list F of prime factors of a is determined.
(1) Form the (n× n)–matrix Q over Zp, where the k–th line (qk,0, . . . , qk,n−1)

of Q satisfies
xpk mod a(x) = qk,n−1x

n−1 + . . .+ qk,0, for 0 ≤ k ≤ n− 1 ;

(2) By column operations transform the matrix Q− I into (e.g. lower–right)
triangular form;

From the triangular form read off the rank n− r of the matrix Q− I;
[There are exactly r linearly independent solutions v[1], . . . , v[r]

of v · (Q− I) = 0.
Let v[1] be the trivial solution (1, 0, . . . , 0).
So (after interpretation of vectors as polynomials) there are
pr solutions t1 · v[1] + . . .+ tr · v[r] of (5.1.2),
and therefore r irreducible factors of a(x)]

(3) If r = 1, then a(x) is irreducible and we set F := [a];
Otherwise, compute gcd(a(x), v[2](x)− s) for s ∈ Zp

and put the factors of a found in this way into the list F ;

As long as F contains fewer than r factors, choose the next
v[k](x), k = 3, . . . , r, and compute gcd(f(x), v[k](x)− s) for f in F ;

Add the factors found in this way to F ;

[Ultimately, F will contain all the factors of a(x).]

Example 5.1.3. Let us use FACTOR B for factoring the polynomial

a(x) = x5 + x3 + 2x2 + x+ 2

65

in Z3[x]. First we have to check for squarefreeness. a′(x) = 2x4 + x+ 1, so gcd(a, a′) = 1
in Z3[x] and therefore a(x) is squarefree.

The rows of the (5×5)–matrix Q are the coefficients of x0, x3, x6, x9, x12 modulo a(x).
So

Q =

1 0 0 0 0
0 0 0 1 0
0 1 2 1 2
0 1 1 2 2
2 0 2 1 1

.

Q− I can be transformed into the triangular form

0 0 0 0 0
0 0 0 1 0
0 0 1 1 2
0 0 1 1 2
1 0 0 0 0

.

We read off r = 2, i.e. there are 2 irreducible factors of a(x). The null–space of Q− I is
spanned by

v[1] = (1, 0, 0, 0, 0) and v[2] = (0, 0, 2, 1, 0).

Now we get the factors by appropriate gcd computations:

gcd(a(x), v[2](x) + 2) = x2 + x+ 2,
gcd(a(x), v[2](x) + 1) = x3 + 2x2 + 1 .

The basic operations in FACTOR B are the setting up and solution of a system of
linear equations and the gcd computations for determining the actual factors. The com-
plexity of FACTOR B is proportional to n3+prn2, where n is the degree of the polynomial.

66

5.2 Factorization over the integers

Before developing algorithms for actually producing a factorization of a reducible
polynomial, we might want to decide whether a given polynomial is in fact irreducible. A
powerful criterion for irreducibility is due to Eisenstein, a proof can be found for instance
in [vdW70].

Theorem 5.2.1. (Eisenstein’s irreducibility criterion) Let R be a ufd and f(x) = anx
n+

an−1x
n−1 + · · ·+ a1x+ a0 a primitive polynomial of positive degree n in R[x]. If there is

an irreducible element p of R such that
(p 6 | an, p|ai for all i < n, and p2 6 | a0) or (p 6 | a0, p|ai for all i > 0, and p2 6 | an),
then f(x) is irreducible in R[x].

Univariate polynomials

According to the corollary to Gauss’ lemma (Theorem 3.1.5) factorizations of univari-
ate integral polynomials are essentially the same in Z[x] and Q[x]. For reasons of efficiency
we concentrate on the case of integral polynomials. The factorization of integers is a much
harder problem than the factorization of polynomials. For this reason we do not intend
to factor the content of integral polynomials. Throughout this section we assume that
the polynomial to be factored is a primitive non-constant polynomial.

The problem of factoring a primitive univariate integral polynomial a(x) consists in
finding pairwise relatively prime irreducible polynomials ai(x) and positive integers mi

such that

a(x) =

r∏

i=1

ai(x)
mi .

As for polynomials over finite fields we will first compute a squarefree factorization of a(x).
By application of SQFR FACTOR our factorization problem is reduced to the problem
of factoring a primitive squarefree polynomial. So from now on let us assume that a(x)
is primitive and squarefree.

As in the case of polynomial gcds we would like to use the fast factorization algorithm
modulo a prime p. However, the approach of choosing several primes and combining
the results by the Chinese remainder algorithm does not work for factorization. We do
not know which of the factors modulo the different primes correspond to each other.
So we choose a different approach. The problem of factorization over Z is reduced to
factorization modulo p and a subsequent lifting of the result to a factorization modulo pk.
If k is high enough, the integer factors can be constructed.

Theorem 5.2.2. Let a(x) ∈ Z[x] be primitive and squarefree. Let p be a prime number
not dividing lc(a). Let a1(x), . . . , ar(x) ∈ Zp[x] be pairwise relatively prime such that
a ≡ a1 · . . . · ar mod p and lc(a1) = lc(a) mod p, lc(a2) = . . . = lc(ar) = 1. Then for

every natural number k there are polynomials a
(k)
1 (x), . . . , a

(k)
r (x) ∈ Zpk [x] with lc(a

(k)
1) =

lc(a) mod pk, lc(a
(k)
2) = . . . = lc(a

(k)
r) = 1 such that

a(x) ≡ a
(k)
1 (x) · . . . · a(k)r (x) mod pk and a

(k)
i (x) ≡ ai(x) mod p for 1 ≤ i ≤ r .

67

Proof: We proceed by induction on k. For k = 1 we can obviously choose a
(1)
i = ai and

all the requirements are satisfied.
So now assume that the a

(k)
i satisfy the requirements. I.e. for some d̂(x) ∈ Zp[x] we

have

a−
r∏

i=1

a
(k)
i ≡ pkd̂ mod pk+1.

We replace the leading coefficient of a
(k)
1 by (lc(a) mod pk+1). Then for some d(x) ∈ Zp[x]

we have

a−
r∏

i=1

a
(k)
i ≡ pkd mod pk+1,

where deg(d) < deg(a). We will determine bi(x) ∈ Zp[x] with deg(bi) < deg(ai) such that

a
(k+1)
i = a

(k)
i + pkbi.

Using this ansatz, we get

a−
r∏

i=1

a
(k+1)
i ≡ a−

r∏

i=1

a
(k)
i

︸ ︷︷ ︸

pkd

−pk
(r∑

i=1

bi

r∏

j=1,j 6=i

aj

︸ ︷︷ ︸

=:ãi

)

mod pk+1.

So the a
(k+1)
i ’s will constitute a factorization modulo pk+1 if and only if

d ≡
r∑

i=1

bi · ãi mod p.

A solution is guaranteed by an appropriate generalization of the extended Euclidean
algorithm (Theorem 3.1.2), applied to polynomials:

Fact: Let K be a field (e.g., Zp),
a1, . . . , ar ∈ K[x] pairwise relatively prime,
c ∈ K[x] s.t. deg(c) < deg(a1 · · · ar).
Then there exist u1, . . . , ur ∈ K[x] with
c =

∑r
i=1(ui

∏r
j=1,j 6=i aj) and deg(ui) < deg(ai) for 1 ≤ j ≤ r.

A proof of this fact can be found in [Win96], Theorem 3.1.2 and Exercise 11 in Section
3.1.

This completes the proof.

The proof of Theorem 5.2.2 is completely constructive and can be turned into an
algorithm LIFT FACTORS such that:

LIFT FACTORS(a, [a1, . . . , ar], p, k) = [a
(k)
1 , . . . , a(k)r] .

Putting these results together, we get the Berlekamp-Hensel algorithm FACTOR BH
for factoring primitive univariate squarefree polynomials over the integers.

68

FACTOR BH(Berlekamp-Hensel factorization algorithm)
for a given primitive squarefree polynomial a in Z[x],
determine the list of primitive irreducible factors F = [a1, . . . , ar] of a.
(1) Choose a prime number p such that p 6 | lc(a) and a is squarefree modulo p

(i.e. p does not divide the discriminant of a);
(2) [u1, . . . , us] := FACTOR B(a, p);

Normalize the ui’s such that lc(u1) = lc(a) mod p and lc(u2) = . . . = lc(us) = 1;
(3) Determine a natural number B which bounds the absolute value of

any coefficient in a factor of a over the integers
(for instance, use the Landau–Mignotte bound, Theorem 3.2.1);
Choose k such that pk ≥ 2|lc(a)|B;

(4) [v1, . . . , vs] := LIFT FACTORS(a, [u1, . . . , us], p, k);
(5) [combine factors]

a := a;
C := {2, . . . , s}; [v1 will be included in the last factor]
F := [] ;
m := 0;
while m <| C | do

m := m+ 1;
forall {i1, . . . , im} ⊆ C do

[integers modulo pk are centered around 0, i.e.
the representation of Zpk is {q | −pk/2 < q ≤ pk/2}]
b̃ := (lc(a) · vi1 · . . . · vim mod pK), interpreted as a polynomial in Z[x] ;

b := primitive part of b̃ ;
if b | a then

add b to the list F ;

a := a/b;
C := C \ {i1, . . . , im} ;

add a to the list F ;

Step (5) is necessary, because irreducible factors over the integers might factor further
modulo a prime p. In fact, there are irreducible polynomials over the integers which factor
modulo every prime number. An example of this is x4 + 1.

The complexity of FACTOR BH would be polynomial in the size of the input except for
step (5). Since in step (5), in the worst case, we have to consider all possible combinations
of factors modulo p, this might lead to a combinatorial explosion, rendering the algorithm
FACTOR BH exponential in the size of the input. Nevertheless, in practical examples the
combinations of factors does not present an insurmountable problem. Basically all the
major computer algebra systems employ some variant of FACTOR BH as the standard
factoring algorithm for polynomials over the integers.

Example 5.2.3. We want to factor the primitive squarefree integral polynomial

a(x) = 6x7 + 7x6 + 4x5 + x4 + 6x3 + 7x2 + 4x+ 1.

We use FACTOR BH. A suitable prime is 5, a(x) stays squarefree modulo 5.

69

By an application of the Berlekamp algorithm FACTOR B, a(x) is factored modulo 5
into

a(x) ≡ (x− 2)
︸ ︷︷ ︸

u1

· (x2 − 2)
︸ ︷︷ ︸

u2

· (x2 + 2)
︸ ︷︷ ︸

u3

· (x2 − x+ 2)
︸ ︷︷ ︸

u4

mod 5.

By an application of LIFT FACTORS we lift this factorization to a factorization modulo
25, getting

a(x) ≡ (6x+ 3)
︸ ︷︷ ︸

v1

· (x2 − 7)
︸ ︷︷ ︸

v2

· (x2 + 7)
︸ ︷︷ ︸

v3

· (x2 + 9x− 8)
︸ ︷︷ ︸

v4

mod 25.

The Landau–Mignotte bound for a is rather big. Let us assume that by some additional
insight we know that K = 2 is good enough for constructing the integral factors. Now
we have to try combinations of factors modulo 25 to get the factors over the integers. So
we set a := a and C := {2, 3, 4}. Testing the factors v2, v3, v4 we see that only v4 yields a
factor over the integers:

a1(x) := primitive part of(lc(a) · v4 mod 25) = 3x2 + 2x+ 1.

So now a := a/a1 = 2x5 + x4 + 2x+ 1. The combination of v2 and v3 yields the factor

a2(x) := primitive part of(lc(a) · v2 · v3 mod 25) = x4 + 1.

We set a := a/a2 = 2x+ 1. Now C has become empty, and the last factor is

a3(x) := a(x) = 2x+ 1.

FACTOR BH returns F = [a1, a2, a3], i.e. the factorization

a(x) = (3x2 + 2x+ 1) · (x4 + 1) · (2x+ 1).

In 1982 A.K. Lenstra, H.W. Lenstra, L. Lovász designed a factorization algorithm for
integer polynomials, the complexity of which is only polynomial in the size of the input.
Their idea relies of the computation of shortest vectors in lattices. For details we refer to
[Win96], Section 5.3.

Multivariate polynomials

L. Kronecker, in (Kronecker 1882), describes a method for reducing the factorization
of a multivariate polynomial over a unique factorization domain I to the factorization of
a univariate polynomial over I. The transformation introduces an exponential step in the
factorization algorithm.

When we are dealing with multivariate polynomials over the integers, we need not
use the quite time consuming Kronecker algorithm, but we can instead use evaluation
homomorphisms to construct a lifting approach. Let

f(x1, . . . , xn−1, xn)

70

be a primitive squarefree (w.r.t. xn) polynomial in Z[x1, . . . , xn]. We choose an evaluation
point (a1, . . . , an−1) ∈ Zn−1 which preserves the degree and squarefreeness, factor the
univariate polynomial

f(a1, . . . , an−1, xn),

and finally lift this factorization modulo the prime ideal

P = 〈x1 − a1, . . . , xn−1 − an−1〉

to a factorization moludo Pk for high enough k. Here we only give an example.

Example 5.2.4. Let us factor the squarefree integral polynomial

f(x1, x2, x) = x3 + ((x1 + 2)x2 + 2x1 + 1)x2+
((x1 + 2)x2

2 + (x2
1 + 2x1 + 1)x2 + 2x2

1 + x1)x+
(x1 + 1)x3

2 + (x1 + 1)x2
2 + (x3

1 + x2
1)x2 + x3

1 + x2
1.

First we choose an evaluation point that preserves the degree and squarefreeness and has
as many zero components as possible.
(x1, x2) = (0, 0): f(0, 0, x) = x3 + x2 is not squarefree, but
(x1, x2) = (1, 0): f(1, 0, x) = x3 + 3x2 + 3x+ 2 is squarefree.
By the change of variables x1 = w+1, x2 = z we move the evaluation point to the origin,

f(w + 1, z, x) = x3 + 3x2 + 3x+ 2+
w3 + (2x+ 4)w2 + (2x2 + 5x+ 5)w+
(w + 2)z3 + ((x+ 1)w + (3x+ 2))z2+
(w3 + (x+ 4)w2 + (x2 + 4x+ 5)w + (3x2 + 4x+ 2))z.

By fij(x) we denote the coefficient of wjzi in f .

We factor f00 (i.e. f evaluated at (w, z) = (0, 0)) in Z[x], getting

x3 + 3x2 + 3x+ 2 = (x+ 2)
︸ ︷︷ ︸

g00

(x2 + x+ 1)
︸ ︷︷ ︸

h00

.

Degree bounds for w and z in factors of

f(w + 1, z, x) = g(w, z, x)h(w, z, x),

are degw(g), degw(h) ≤ 3, and degz(g), degz(h) ≤ 3.

We lift g00 and h00 to highest degrees in w and z. We use the ansatz

g(w, z, x) = g00(x) + g01(x)w + g02(x)w
2 + g03(x)w

3+
(g10(x) + g11(x)w + g12(x)w

2 + g13(x)w
3)z+

(g20(x) + g21(x)w + g22(x)w
2 + g23(x)w

3)z2+
(g30(x) + g31(x)w + g32(x)w

2 + g33(x)w
3)z3 ,

and analogously for h(w, z, x).
First we lift to a factorization of f(w + 1, 0, x): a formal multiplication of g and h leads
to the equations

f01 = g01h00 + g00h01,
f02 = g00h02 + g01h01 + g02h00,
f03 = g00h03 + g01h02 + g02h01 + g03h00.

71

These equations can be solved by a modification of the extended Euclidean algorithm,
yielding

f(w + 1, 0, x) = ((x+ 2) + 1 · w) ((x2 + x+ 1) + (x+ 2)w + w2).

Now we lift to a factorization of f(w+1, z, x): again by the extended Euclidean algorithm
we successively solve

f10 = g00h10 + g10h00,
f11 − g01h10 − g10h01 = g00h11 + g11h00,

f20 − g10h10 = g00h20 + g20h00.

All the other equations have 0 as their left hand sides.

This leads to the factor candidates

f(w + 1, z, x) = ((x+ 2) + w + (2 + w)z) · ((x2 + x+ 1) + (x+ 2)w + w2 + xz + z2),

which are the actual factors. By resubstituting w = x1− 1, z = x2 we finally arrive at the
factorization

f(x1, x2, x) = (x+ x1x2 + x1 + x2 + 1) · (x2 + (x1 + x2)x+ x2
1 + x2

2).

72

5.3 Factorization over algebraic extension fields

We describe an algorithm that has been presented in [vdw70] and slightly improved
by B. Trager in 1976.

Let K be a computable field of characteristic 0 such that there is an algorithm for
factoring polynomials in K[x]. Let α be algebraic over K with minimal polynomial p(y) of
degree n. Throughout this section we call K the ground field and K(α) the extension field.
Often we will write a polynomial f(x) ∈ K(α)[x] as f(x, α) to indicate the occurrence of
α in the coefficients. Let α = α1, α2, . . . , αn be the roots of p(y) in a splitting field of p
over K. By φj , 1 ≤ j ≤ n, we denote the canonical field isomorphism that takes α into
αj , i.e.

φj : K(α) −→ K(αj)
α 7−→ αj

a 7−→ a for all a ∈ K.

φj can be extended to φj : K(α)[x] −→ K(αj)[x] by letting it act on the coefficients.

We will reduce the problem of factorization in K(α)[x] to factorization in K[x]. This
reduction will be achieved by associating a g ∈ K[x] with the given f ∈ K(α)[x] such
that the factors of f are in a computable 1–1 correspondence with the factors of g, i.e.

f ∈ K(α)[x] ←→ g ∈ K[x]

factors of f
1−1←→ factors of g.

A candidate for such a function is the norm, which maps an element in the extension field
to the product of all its conjugates over K. This product is an element of K.

norm[K(α)/K] : K(α) −→ K
β 7−→ ∏

β′∼β β
′,

where β ′ ∼ β means that β ′ is conjugate to β relative to K(α) over K. I.e. if β = q(α) is
the normal representation of β in K(α), then

norm[K(α)/K](β) =
n∏

i=1

q(αi).

If the field extension is clear from the context, we write just norm(·) instead of
norm[K(α)/K](·). Since the norm is symmetric in the αi’s, by the fundamental theorem
on symmetric functions is can be expressed in terms of the coefficients of p and thus lies
in K. The norm can be generalized from K(α) to K(α)[x] by defining the norm of a
polynomial h(x, α) to be

∏n
i=1 h(x, αi), which can be computed as

norm(h(x, α)) = resy(h(x, y), p(y)).

Clearly the norm can be generalized to multivariate polynomials. One important property
of the norm is multiplicativity, i.e.

norm(f · g) = norm(f) · norm(g). (5.4.1)

73

Theorem 5.3.1. If f(x, α) is irreducible over K(α), then norm(f) = h(x)j for some
irreducible h ∈ K[x] and some j ∈ N.

Proof: Assume norm(f) = g(x)h(x) and g, h are relatively prime. For 1 ≤ i ≤ n let
fi(x) = f(x, αi). Clearly f = f1 divides norm(f) =

∏
fi. So, since f is irreducible, f |g

or f |h. W.l.o.g. let us assume that f |h, i.e. h(x) = f1(x, α)h̃(x, α). Then h(x) = φj(h) =
φj(f1)φj(h̃) = fj h̃(x, αj). Therefore, fj|h for 1 ≤ j ≤ n. Since g and h are relatively
prime, this implies that gcd(fj , g) = 1 for 1 ≤ j ≤ n. Thus, gcd(norm(f), g) = 1, i.e.
g = 1.

The previous theorem yields a method for finding minimal polynomials for elements
β ∈ K(α). Let β = q(α), b(x) = norm(x− β) = norm(x− q(α)). x− β|b(x), so b(β) = 0.
Therefore the minimal polynomial pβ(x) has to be one of the irreducible factors of b(x). By
Theorem 5.3.1, b(x) = pβ(x)

j for some j ∈ N. So pβ(x) can be determined by squarefree
factorization of b(x).

K(α)[x] is a Euclidean domain, so by successive application of the Euclidean algorithm
the problem of factoring in K(α)[x] can be reduced to the problem of factoring squarefree
polynomials in K(α)[x] (see Section 3.3). From now on let us assume that f(x, α) ∈
K(α)[x] is squarefree.

Theorem 5.3.2. Let f(x, α) ∈ K(α)[x] be such that F (x) = norm(f) is squarefree. Let
F (x) =

∏r
i=1Gi(x) be the irreducible factorization of F (x). Then

∏r
i=1 gi(x, α), where

gi(x, α) = gcd(f,Gi) over K(α), is the irreducible factorization of f(x, α) over K(α).

Proof: The statement follows from

(i) every gi divides f ,

(ii) every irreducible factor of f divides one of the gi’s,

(iii) the gi’s are relatively prime, and

(iv) every gi is irreducible.

Ad (i): This is obvious from gi = gcd(f,Gi).

Ad (ii): Let v(x, α) be an irreducible factor of f over K(α). By Theorem 5.4.1, norm(v) =
w(x)k for some irreducible w(x) ∈ K[x]. v|f implies norm(v)|norm(f). Since norm(f) is
squarefree, norm(v) is irreducible and must be one of the Gi’s. So v | gi(x, α).
Ad (iii): Suppose the irreducible factor v of f divides both gi and gj for i 6= j. Then the
irreducible polynomial norm(v) divides both norm(Gi) = Gn

i and norm(Gj) = Gn
j . This

would mean that Gi and Gj have a common factor.

Ad (iv): Clearly every gi is squarefree. Assume that v1(x, α) and v2(x, α) are distinct
irreducible factors of f and that both of them divide gi = gcd(f,Gi). v1|Gi implies
norm(v1)|norm(Gi) = Gi(x)

n. Because of the squarefreeness of norm(f), we must have
norm(v1) = Gi. Similarly we get norm(v2) = Gi. But (v1 · v2)|f implies norm(v1 · v2) =
Gi(x)

2|norm(f), in contradiction to the squarefreeness of norm(f).

So we can solve our factorization problem overK(α), if we can show that we can restrict
our problem to the situation in which norm(f) is squarefree. The following lemmata and
theorem will guarantee exactly that.

74

Lemma 5.3.3. If f(x) is a squarefree polynomial in K[x], then there are only finitely
many s ∈ K for which norm(f(x− sα)) is not squarefree.

Proof: Let β1, . . . , βm be the distinct roots of f . Then the roots of f(x−sαj) are βi+sαj,
1 ≤ i ≤ m. Thus, the roots of G(x) = norm(f(x− sαj)) =

∏n
k=1 f(x− sαk) are βi + sαk

for 1 ≤ i ≤ m, 1 ≤ k ≤ n. G can have a multiple root only if

s =
βj − βi

αk − αl
,

where k 6= l. There are only finitely many such values.

Lemma 5.3.4. If f(x, α) is a squarefree polynomial in K(α)[x], then there exists a
squarefree polynomial g(x) ∈ K[x] such that f |g.
Proof: Let G(x) = norm(f(x, α)) =

∏
gi(x)

i be the squarefree factorization of the norm
of f . Since f is squarefree, f |g :=

∏
gi(x).

Theorem 5.3.5. For any squarefree polynomial f(x, α) ∈ K(α)[x] there are only finitely
many s ∈ K for which norm(f(x− sα)) is not squarefree.

Proof: Let g(x) be as in Lemma 5.3.4. By Lemma 5.3.3 there are only finitely many
s ∈ K for which norm(g(x− sα)) is not squarefree.
But f |g implies norm(f(x− sα))|norm(g(x− sα)). If norm(f(x− sα)) is not squarefree,
then neither is norm(g(x− sα)).

SQFR NORM(squarefree norm)
for f ∈ K(α)[x] squarefree,
we compute s ∈ N, g(x) = f(x− sα), N(x) = norm(g(x, α)),
s.t. N(x) is squarefree.
(1) s := 0; g(x, α) := f(x, α);
(2) N(x) := resy(g(x, y), p(y));
(3) while deg(gcd(N(x), N ′(x))) 6= 0 do

s := s + 1;
g(x, α) := g(x− α, α);
N(x) := resy(g(x, y), p(y));

So over an infinite field we can always find a transformation of the form f(x − sα),
s ∈ N, such that norm(f(x − sα)) is squarefree. These considerations give rise to an
algorithm for computing a linear change of variable which transforms f to a polynomial
with squarefree norm.

Now we are ready to present an algorithm for factoring polynomials over the extension
field.

75

FACTOR ALG(factorization over algebraic extension fields)
for given squarefree f ∈ K(α)[x],
the list F of irreducible factors of f over K(α) is detemined.
(1) [g, s, N] := SQFR NORM(f);
(2) L := list of irreducible factors of N(x) over K;

(3) if length(L) = 1 then return([f]);
(4) F := [];

for each H(x) in L do

h(x, α) := gcd(H(x), g(x, α));
g(x, α) := g(x, α)/h(x, α);
add h(x+ sα, α) to F ;

Example 5.3.6. We apply the factorization algorithm FACTOR ALG to the domain
Q(3
√
2)[x], i.e. K = Q, α a root of p(y) = y3 − 2. Let us factor the polynomial

f(x, α) = x4 + αx3 − 2x− 2α.

f(x, α) is squarefree. First we have to transform f to a polynomial g with squarefree
norm. The norm of f itself is

norm(f) = resy(f(x, y), p(y)) = −(x3 − 2)3(x3 + 2),

i.e. it is not squarefree. The transformation x 7→ x − α does not work, but x 7→ x − 2α
does:

g(x, α) := f(x− 2α, α) = x4 − 7αx3 + 18α2x2 − 42x+ 18α,
N(x) = norm(g) = x12 − 56x9 + 216x6 − 6048x3 + 11664,

and N(x) is squarefree. The factorization of N(x) is

N(x) = (x3 − 2)(x3 − 54)(x6 + 108).

Computing the gcd of all the factors of N(x) with g(x, α) gives us the factorization of
g(x, α):

g(x, α) = (x− α)(x− 3α)(x2 − 3αx+ 3α2),

which can be transformed by x 7→ x+ 2α to the factorization

f(x, α) = (x+ α)(x− α)(x2 + αx+ α2).

Sometimes we want to factor a polynomial over the algebraic closure of the field of
coefficients; i.e., we want to factor the polynomial into as many factors as possible over
any algebraic extension field. This is called absolute factorization. Alsolute factorization
is algorithmic. The basic idea is presented in [Win96], Section 5.5.

76

