Name:

Studienkennzahl:

Matrikelnummer:

Final Exam Computer Algebra (326.010) (no books allowed)

- (1) Let D be a Euclidean domain (such as \mathbb{Z} , or $\mathbb{Q}[x]$). Let p be an irreducible element of D, and a non-zero element of D.
 - (i) Explain how you could compute a^{-1} in D modulo p; i.e. an element b such that the remainder on division of $a \cdot b$ by p is 1.
 - (ii) Determine 35^{-1} in \mathbb{Z}_{73} ;
 - (iii) Determine $(x+1)^{-1}$ in $\mathbb{Q}[x]$ modulo $x^2 + 2$.
- (2) Theorem 4.1. (lecture notes computer algebra)
 Let a(x), b(x) be two non-constant polynomials in K[x], K a field. Then a and b have a non-constant common factor (i.e. a common root over the algebraic closure of K) if and only if there are polynomials p(x), q(x) ∈ K[x], not both equal to 0, with deg(p) < deg(b), deg(q) < deg(a), such that p(x)a(x) + q(x)b(x) = 0.

Based on Theorem 4.1, determine the formula for the Sylvester matrix of a and b.

(3) Consider the following polynomials in $\mathbb{Q}[x, y]$:

$$a(x,y) = xy^{2} + 2y^{2} - xy - 2,$$
 $b(x,y) = xy + 2y + x - 4$

- (i) Compute $\operatorname{res}_y(a, b) \in \mathbb{Q}[x]$, the resultant of a and b w.r.t. y;
- (ii) Can the solution x = -2 of $\operatorname{res}_y(a, b)$ be extended to a solution of the system a(x, y) = 0 = b(x, y)? Explain this situation.
- (iii) Can the solution x = 1 of $res_y(a, b)$ be extended to a solution of the system a(x, y) = 0 = b(x, y)? Explain this situation.
- (4) Prove: If f, g ∈ Q[x, y] are relatively prime (i.e. gcd(f, g) = 1), then there are only finitely many pairs (a, b) ∈ C² such that f(a, b) = 0 = g(a, b). [Hint: consider the gcd of f and g in Q(x)[y].]
- (5) Consider the polynomials a(x, y) and b(x, y) of Question (3). The system a(x, y) = b(x, y) = 0 has 2 roots in \mathbb{C}^2 . We want to determine a Gröbner basis G for the ideal generated by $\{a, b\}$ w.r.t. the lexicographic order with x < y:
 - spol(a, b) can be reduced to 2(4y + x 5), so we add c = 4y + x 5 to the basis; spol(a, c) can be reduced to $\frac{1}{4}(x^2 - 7x + 6)$, so we add $d = x^2 - 7x + 6$ to the basis;

Complete the algorithm and determine G.

28 Jan2014