Studienkennzahl: \qquad

Matrikelnummer: \qquad

Final Exam
Computer Algebra (326.010)
(no books allowed)
(1) Let D be a Euclidean domain (such as \mathbb{Z}, or $\mathbb{Q}[x]$). Let p be an irreducible element of D, and a a non-zero element of D.
(i) Explain how you could compute a^{-1} in D modulo p; i.e. an element b such that the remainder on division of $a \cdot b$ by p is 1 .
(ii) Determine 35^{-1} in \mathbb{Z}_{73};
(iii) Determine $(x+1)^{-1}$ in $\mathbb{Q}[x]$ modulo $x^{2}+2$.
(2) Theorem 4.1. (lecture notes computer algebra)

Let $a(x), b(x)$ be two non-constant polynomials in $K[x], K$ a field. Then a and b have a non-constant common factor (i.e. a common root over the algebraic closure of K) if and only if there are polynomials $p(x), q(x) \in K[x]$, not both equal to 0 , with $\operatorname{deg}(p)<\operatorname{deg}(b), \operatorname{deg}(q)<\operatorname{deg}(a)$, such that $p(x) a(x)+q(x) b(x)=0$.
Based on Theorem 4.1, determine the formula for the Sylvester matrix of a and b.
(3) Consider the following polynomials in $\mathbb{Q}[x, y]$:

$$
a(x, y)=x y^{2}+2 y^{2}-x y-2, \quad b(x, y)=x y+2 y+x-4
$$

(i) Compute $\operatorname{res}_{y}(a, b) \in \mathbb{Q}[x]$, the resultant of a and b w.r.t. y;
(ii) Can the solution $x=-2$ of $\operatorname{res}_{y}(a, b)$ be extended to a solution of the system $a(x, y)=0=b(x, y)$? Explain this situation.
(iii) Can the solution $x=1$ of $\operatorname{res}_{y}(a, b)$ be extended to a solution of the system $a(x, y)=0=b(x, y)$? Explain this situation.
(4) Prove: If $f, g \in \mathbb{Q}[x, y]$ are relatively prime (i.e. $\operatorname{gcd}(f, g)=1$), then there are only finitely many pairs $(a, b) \in \mathbb{C}^{2}$ such that $f(a, b)=0=g(a, b)$.
[Hint: consider the gcd of f and g in $\mathbb{Q}(x)[y]$.]
(5) Consider the polynomials $a(x, y)$ and $b(x, y)$ of Question (3). The system $a(x, y)=$ $b(x, y)=0$ has 2 roots in \mathbb{C}^{2}. We want to determine a Gröbner basis G for the ideal generated by $\{a, b\}$ w.r.t. the lexicographic order with $x<y$:
$\operatorname{spol}(a, b)$ can be reduced to $2(4 y+x-5)$, so we add $c=4 y+x-5$ to the basis; $\operatorname{spol}(a, c)$ can be reduced to $\frac{1}{4}\left(x^{2}-7 x+6\right)$, so we add $d=x^{2}-7 x+6$ to the basis;
Complete the algorithm and determine G.

