to be prepared for 15.10.2013

Exercise 1. The idea of Karatsuba can also be applied to the multiplication of polynomials. Determine the number of multiplications necessary for multiplying the polynomials

$$
a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \text { und } b_{1} x^{2}+b_{2} x+b_{3}
$$

both with the classical and with the Karatsuba method.
Exercise 2. Consider the integers $a=215712, b=739914$. Determine the gcd of a and b and integers s, t such that $\operatorname{gcd}(a, b)=s a+t b$.

Exercise 3. Use the Euclidean algorithm for finding the positive integer solutions of the equation

$$
34 x+38 y=1000
$$

Exercise 4. Consider the polynomials

$$
\begin{aligned}
& f=x^{6}-2 x^{5}-x^{4}-4 x^{3}-5 x^{2}-2 x-3 \\
& g=3 x^{6}-x^{5}+4 x^{4}-2 x^{3}+2 x^{2}-x+1
\end{aligned}
$$

f and g are elements of the ring $\mathbb{Z}[x]$. Apply the extended Euclidean algorithm in $\mathbb{Q}[x]$ to compute $\operatorname{gcd}(f, g)$ as a linear combination of f and g. Use a computeralgebra system of your choice.

Exercise 5. Consider the polynomials $U(x), V(x)$ computed by the extended Euclidean algorithm for the input polynomials $u(x), v(x)$ over \mathbb{Q}, i.e., $\operatorname{gcd}(u, v)=$ $U u+V v$. Prove that, if $u=x^{m}-1$ and $v=x^{n}-1$, then the extended Euclidean algorithm provides polynomials U, V with integer coefficients. Find U and V when $u=x^{23}-1$ and $v=x^{18}-1$.

