to be prepared for 22.10 .2013

Exercise 6. An integral domain is a commutative ring $D \neq\{0\}$ without zero divisors, that means, $r s=0 \Rightarrow r=0 \vee s=0(\forall r, s \in D)$. Give a proof for the following statement.

1. If D is an integral domain, then also the polynomial ring $D[x]$.
2. Derive from this that - for arbitrary fields k - the ring $k\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain.
3. Give similar arguments for the ring $D[[x]]$ of formal power series.

Exercise 7. Explain why the following is or is not a Euclidean domain.

1. \mathbb{Z} with degree function $\delta(n)=|n| ;$
2. \mathbb{Q} with $\delta(r)=|r|$;
3. $\mathbb{Z}[i]$ with $\delta(z)=|z|^{2}$;
4. $k[x]$ where k is a field, with $\delta(f)=\operatorname{deg}(f)$;
5. $k[x, y]$ where k is a field, with $\delta(f)=\operatorname{deg}(f)$ (the total degree of f).

Exercise 8. Let R be commutative ring, $R[x]$ the corresponding polynomial ring. Prove that $R[x]$ is a Euclidean domain if and only if R is a field.

Exercise 9. Prove that every Euclidean domain is a principal ideal domain, and that every principal ideal domain is a unique factorization domain.

Exercise 10.

1. Prove the following theorem: If I is a unique factorization domain, then so is $I[x]$.
2. Conclude that, for a field $k, k\left[x_{1}, \ldots, x_{n}\right]$ is a unique factorization domain.

Exercise 11. Prove the following statement:
Let R be an integral domain, $a(x), b(x) \in R[x], b \neq 0$, and $m=\operatorname{deg}(a) \geq n=$ $\operatorname{deg}(b)$. There are uniquely defined polynomials $q(x), r(x) \in R[x]$ such that

$$
\begin{aligned}
& \operatorname{lc}(b)^{m-n+1} \cdot a(x)=q(x) \cdot b(x)+r(x) \quad \text { and } \\
& r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(b)
\end{aligned}
$$

Exercise 12. Compute the pseudo-quotient $q(x)$ and the pseudo-remainder $r(x)$ for the two integral polynomials

$$
\begin{aligned}
u(x) & =x^{6}+x^{5}-x^{4}+2 x^{3}+3 x^{2}-x+2 \quad \text { and } \\
v(x) & =2 x^{3}+2 x^{2}-x+3
\end{aligned}
$$

Exercise 13. Let R be an integral domain, $a, b \in R[x], b \neq 0, m=\operatorname{deg}(a) \geq$ $n=\operatorname{deg}(b), \alpha, \beta \in R$. Prove:

$$
\begin{aligned}
\operatorname{pquot}(\alpha a, \beta b) & =\beta^{m-n} \alpha \cdot \operatorname{pquot}(a, b) \text { and } \\
\operatorname{prem}(\alpha a, \beta b) & =\beta^{m-n+1} \alpha \cdot \operatorname{prem}(a, b) .
\end{aligned}
$$

