to be prepared for 29.10.2013

Exercise 14. Prove that every Euclidean domain is a principal ideal domain, and that every principal ideal domain is a unique factorization domain.

Exercise 15. Consider the two polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Compute $\operatorname{gcd}(f(x), g(x))$

1. by passing to the quotient field;
2. by a polynomial remainder sequence.

Exercise 16. Consider the two polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Compute $\operatorname{gcd}(f(x), g(x))$ by the modular algorithm.
Exercise 17. Compute the gcd of the bivariate integer polynomials

$$
\begin{aligned}
f(x, y) & =y^{6}+x y^{5}+x^{3} y-x y+x^{4}-x^{2} \\
g(x, y) & =x y^{5}-2 y^{5}+x^{2} y^{4}-2 x y^{4}+x y^{2}+x^{2} y
\end{aligned}
$$

by the subresultant algorithm.
Exercise 18. Consider the bivariate polynomials

$$
\begin{aligned}
& f(x, y)=x^{2} y^{3}-5 x y^{3}+6 y^{3}-6 x y^{2}+18 y^{2}+2 x y-4 y-12 \\
& g(x, y)=x^{2} y^{3}+3 x y^{3}-10 y^{3}-6 x y^{2}-30 y^{2}-4 x y+8 y+24 .
\end{aligned}
$$

Compute the gcd of f and g by the modular algorithm. Take care of leading coefficients.

