Logic 1

First-Order Logic

Mădălina Erașcu Tudor Jebelean
Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria
\{merascu, tjebelea\}@risc.jku.at

November 21, 2013

Outline

Syntax

Semantics
(Un)Satisfiability \& (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution

Outline

Syntax

Semantics

(Un)Satisfiability \& (In) Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution

Syntax

The language of FOL consists in terms and formulas. Terms are defined recursively as follows:

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then
$P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.
An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then
$f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then
$P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.
An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then
$f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then
$P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.
An atom is \mathbb{T}, \mathbb{T}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-place function symbol, and t_{1}, \ldots, t_{n} are terms then $f\left[t_{1}, \ldots, t_{n}\right]$ is a term.
4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left[t_{1}, \ldots, t_{n}\right]$ is an atom.

An atom is \mathbb{T}, \mathbb{F}, or an n-ary predicate applied to n terms.
A literal is an atom or its negation.

Syntax (cont'd)

Formulas are defined as follows:

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\forall F$ and $\exists F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\forall F$ and $\exists F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier \forall or \exists.

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.

A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\underset{x}{x}}$.
A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall F}$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\underset{x}{r}}$.
A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable x is bound in the formula F if there is an occurrence of x in the scope of a binding quantifier $\underset{x}{\forall}$ or $\underset{x}{\underset{x}{r}}$.
A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow

5. $\underset{x}{\forall} \underset{y}{\exists}(E[y, f[x]] \wedge \underset{z}{\forall}(E[z, f[x]] \Rightarrow E[y, z]))$

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable x is bound in the formula F if there is an occurrence of x in

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow
5. $\underset{x}{\forall} x+1 \geq x$
6. $\neg\left(\frac{\exists}{x} E[0, f[x]]\right)$
7. $\underset{x}{\forall} \underset{y}{\exists}(E[y, f[x]] \wedge \underset{z}{\forall}(E[z, f[x]] \Rightarrow E[y, z]))$

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable x is bound in the formula F if there is an occurrence of x in

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow
5. $\underset{x}{\forall} x+1 \geq x$
6. $\neg(\underset{x}{\exists} E[0, f[x]])$
7. $\underset{x}{\forall} \underset{y}{\exists}(E[y, f[x]] \wedge \underset{z}{\forall}(E[z, f[x]] \Rightarrow E[y, z]))$

Syntax (cont'd)

Formulas are defined as follows:

1. An atom is a formula.
2. If F and G are formulas then $\neg F, F \vee G, F \wedge G, F \Longrightarrow G$, and $F \Longleftrightarrow G$ are formulas.
3. If F is a formula and x is a variable, then $\underset{x}{\forall} F$ and $\underset{x}{\exists} F$ are formulas.
4. Formulas are generated only by a finite number of applications of the above rules.
A variable x is bound in the formula F if there is an occurrence of x in

A variable x is free in the formula F if there is an occurrence of x that is not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers, functions, predicates, atoms, terms, formulas from the bellow
5. $\underset{x}{\forall} x+1 \geq x$
6. $\neg(\underset{x}{\exists} E[0, f[x]])$
7. $\underset{x}{\forall} \underset{y}{\exists}(E[y, f[x]] \wedge \underset{z}{\forall}(E[z, f[x]] \Rightarrow E[y, z]))$

Outline

Syntax
Semantics
(Un)Satisfiability \& (In)Validity
Equivalences of Formulas
Normal Forms
Formula Clausification
Substitution

Semantics

An interpretation / of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:
\Rightarrow to each constant we assign an element in D

- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T} . \Gamma\}$. Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{F}\}$, where
$I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics

An interpretation / of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$ Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{T}\}$, where
$l \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics

An interpretation / of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$. Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{F}\}$, where
$I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$.

Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain D and an assignment of values to each constant, function, symbol and predicate symbol occurring in F as follows:

- to each constant we assign an element in D
- to each function symbol we assign a mapping from D^{n} to D
- to each predicate symbol we assign a mapping from D^{n} to $\{\mathbb{T}, \mathbb{F}\}$.

Then the semantics of the formula F is a function $f: \mathcal{I} \rightarrow\{\mathbb{T}, \mathbb{F}\}$, where $I \in \mathcal{I}$ and \mathcal{I} is the set of all interpretations of the formula F.

Semantics (cont'd)

Example: Find the truth value of the formulas:

- $F_{1}: \Longleftrightarrow \underset{x}{\forall} \underset{y}{\forall} x \leq y$, where $I:\left\{\begin{array}{l}D=\{0,1\} \\ \leq_{1} \rightarrow \leq_{\mathbb{Z}}\end{array}\right.$
- $F_{2}: \Longleftrightarrow \underset{x}{\forall} \underset{y}{\exists} x+y>c$, where $I:\left\{\begin{array}{l}D=\{0,1\} \\ c_{1}=0 \\ +\prime \rightarrow+\mathbb{Z} \\ >_{1} \rightarrow>_{\mathbb{Z}}\end{array}\right.$
- $F_{3}: \Longleftrightarrow \underset{x}{\forall}(P[x] \Longrightarrow Q[f[x], a])$, where

$$
I:\left\{\begin{array} { l }
{ D = \{ 1 , 2 \} } \\
{ a _ { l } = 1 } \\
{ f _ { l } : D \rightarrow D } \\
{ P _ { l } : D \rightarrow \{ \mathbb { T } , \mathbb { F } \} } \\
{ Q _ { l } : D ^ { 2 } \rightarrow \{ \mathbb { T } , \mathbb { F } \} }
\end{array} \left\{\begin{array}{l}
\\
\left\{\begin{array}{l}
f_{l}[1]=1 \\
f_{l}[2]=1 \\
P_{l}[1]=\mathbb{T} \\
P_{l}[2]=\mathbb{F}
\end{array}\right. \\
Q_{l}[1,1]=\mathbb{T} \\
Q_{l}[2,1]=\mathbb{F} \\
Q_{l}[1,2]=\mathbb{F} \\
Q_{l}[2,2]=\mathbb{T}
\end{array}\right.\right.
$$

Outline

Syntax
\section*{Semantics}

(Un)Satisfiability \& (In)Validity
Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.

```
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is
evaluated to \mathbb{F}}\mathrm{ in I.
A formula F is valid if for all interpretations /, F is evaluated to T in /
A formula F is invalid iff there exists an interpretation I, such that F is
evaluated to \mathbb{F}\mathrm{ in }/\mathrm{ .}
A formula }G\mathrm{ is a Iogical consequence of formulas F}\mp@subsup{F}{1}{},\mp@subsup{F}{2}{},\ldots.,\mp@subsup{F}{n}{}\mathrm{ iff for
every interpretation I, if F}\mp@subsup{F}{1}{}\wedge\mp@subsup{F}{2}{}\wedge\ldots\wedge\mp@subsup{F}{n}{}\mathrm{ is true in I,G is also true
in I
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that
```


(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.

A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in $/$.
A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in $/$.

A formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ iff for every interpretation I, if $F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$ is true in I, G is also true in 1

Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.
A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in I.
A formula F is invalid iff there exists an interpretation I, such that F is
evaluated to \mathbb{F} in 1 .
A formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ iff for every interpretation I, if $F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$ is true in I, G is also true in I

Note that validity and satisfiability applies to closed formulas Examples: Prove that

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.
A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in I. A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in I.
A formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ iff for every interpretation I, if $F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$ is true in I, G is also true in 1

Note that validity and satisfiability applies to closed formulas. Examples: Prove that

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation / such that F is evaluated to \mathbb{T} in I.
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.
A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in I. A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in I.
A formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ iff for every interpretation I, if $F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$ is true in I, G is also true in I.
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

- $\forall P[x] \wedge \exists \neg P[y]$ is inconsistent.

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation / such that F is evaluated to \mathbb{T} in I.
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.
A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in I.
A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in I.
A formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ iff for every interpretation I, if $F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$ is true in I, G is also true in 1 .
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

- $\underset{x}{\forall} P[x] \wedge \underset{y}{\exists} \neg P[y]$ is inconsistent.

(Un)Satisfiability \& (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I such that F is evaluated to \mathbb{T} in I.
A formula F is unsatisfiable (inconsistent) iff for all interpretations I, F is evaluated to \mathbb{F} in I.
A formula F is valid iff for all interpretations I, F is evaluated to \mathbb{T} in I.
A formula F is invalid iff there exists an interpretation I, such that F is evaluated to \mathbb{F} in I.
A formula G is a logical consequence of formulas $F_{1}, F_{2}, \ldots, F_{n}$ iff for every interpretation I, if $F_{1} \wedge F_{2} \wedge \ldots \wedge F_{n}$ is true in I, G is also true in 1 .
Note that validity and satisfiability applies to closed formulas.
Examples: Prove that

- $\underset{x}{\forall} P[x] \wedge \underset{y}{\exists} \neg P[y]$ is inconsistent.

Outline

```
Syntax
```


Semantics

(Un)Satisfiability \& (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution

Equivalences of Formulas

Two formulas F and G are equivalent iff the truth values of F and G are the same under any interpretation.

Equivalences of Formulas

$$
\begin{aligned}
& F \Longleftrightarrow G \equiv(F \Rightarrow G) \wedge(G \Rightarrow F) \\
& F \Rightarrow G \equiv \neg F \vee G \\
& F \vee G \equiv G \vee F \\
& (F \vee G) \vee H \equiv F \vee(G \vee H) \\
& F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H) \\
& F \vee \mathbb{T} \equiv \mathbb{T} \\
& F \vee \mathbb{F} \equiv F \\
& F \vee \neg F \equiv \mathbb{T} \\
& \neg(\neg F) \equiv F \\
& \neg(F \vee G) \equiv \neg F \wedge \neg G \\
& (Q x) F[x] \vee G \equiv(Q x)(F[x] \vee G) \\
& \neg \forall F[x] \equiv \underset{x}{\exists} \neg F[x] \\
& \forall F[x] \vee \underset{x}{\forall}[x] \not \equiv \underset{x}{\forall}(F[x] \vee G[x]) \\
& \underset{x}{\exists} F[x] \vee \underset{x}{\exists} G[x] \equiv \underset{x}{\exists}(F[x] \vee G[x])
\end{aligned}
$$

Equivalences of Formulas

$$
\begin{aligned}
& F \Longleftrightarrow G \equiv(F \Rightarrow G) \wedge(G \Rightarrow F) \\
& F \Rightarrow G \equiv \neg F \vee G \\
& F \vee G \equiv G \vee F \\
& (F \vee G) \vee H \equiv F \vee(G \vee H) \\
& F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H) \\
& F \vee \mathbb{T} \equiv \mathbb{T} \\
& F \vee \mathbb{F} \equiv F \\
& F \vee \neg F \equiv \mathbb{T} \\
& \neg(\neg F) \equiv F \\
& \neg(F \vee G) \equiv \neg F \wedge \neg G \\
& (Q x) F[x] \vee G \equiv(Q x)(F[x] \vee G) \\
& \neg \underset{x}{\forall} F[x] \equiv \underset{x}{\exists} \neg F[x] \\
& \stackrel{\underset{x}{x}}{\forall} \underset{\sim}{\forall}] \vee \underset{x}{\forall G[x]} \underset{x}{\neq} \underset{x}{\forall}(F[x] \vee G[x]) \\
& \underset{x}{\underset{\sim}{\underset{x}{x}}} F[x] \vee \underset{x}{\underset{\sim}{G}}[x] \equiv \underset{x}{\underset{x}{x}}(F[x] \vee G[x]) \\
& \begin{array}{l}
F \wedge G \equiv G \wedge F \\
(F \wedge G) \wedge H \equiv F \wedge(G \wedge H) \\
F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H) \\
F \wedge \mathbb{T} \equiv F \\
F \wedge F \equiv \mathbb{F} \equiv \mathbb{F} \\
F \wedge \neg F \equiv \mathbb{F} \\
\neg(F \wedge G) \equiv \neg F \vee \neg G \\
(Q x) F[x] \wedge G \equiv(Q x)(F[x] \wedge G) \\
\neg(\exists x) F[x] \equiv \underset{x}{\forall} \neg F[x] \\
\forall F[x] \wedge \underset{x}{\forall G[x]} \equiv \underset{x}{\forall} \underset{x}{\forall}(F[x] \wedge G[x]) \\
\exists F[x] \wedge \underset{x}{\exists} G[x] \underset{x}{\exists}(F[x] \wedge G[x])
\end{array}
\end{aligned}
$$

Which implications do not hold in the $\not \equiv \equiv$ above?

Equivalences of Formulas

$$
\begin{aligned}
& F \Longleftrightarrow G \equiv(F \Rightarrow G) \wedge(G \Rightarrow F) \\
& F \Rightarrow G \equiv \neg F \vee G \\
& F \vee G \equiv G \vee F \\
& (F \vee G) \vee H \equiv F \vee(G \vee H) \\
& F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H) \\
& F \vee \mathbb{T} \equiv \mathbb{T} \\
& F \vee \mathbb{F} \equiv F \\
& F \vee \neg F \equiv \mathbb{T} \\
& \neg(\neg F) \equiv F \\
& \neg(F \vee G) \equiv \neg F \wedge \neg G \\
& (Q x) F[x] \vee G \equiv(Q x)(F[x] \vee G) \\
& \neg \underset{x}{\forall} F[x] \equiv \underset{x}{\exists} \neg F[x] \\
& \stackrel{\underset{x}{x}}{\forall} \underset{\sim}{\forall}] \vee \underset{x}{\forall G[x]} \underset{x}{\neq} \underset{x}{\forall}(F[x] \vee G[x]) \\
& \underset{x}{\underset{\sim}{\underset{x}{x}}} F[x] \vee \underset{x}{\underset{\sim}{G}}[x] \equiv \underset{x}{\underset{x}{x}}(F[x] \vee G[x]) \\
& F \wedge G \equiv G \wedge F \\
& (F \wedge G) \wedge H \equiv F \wedge(G \wedge H) \\
& F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H) \\
& F \wedge \mathbb{T} \equiv F \\
& F \wedge \mathbb{F} \equiv \mathbb{F} \\
& F \wedge \neg F \equiv \mathbb{F} \\
& \neg(F \wedge G) \equiv \neg F \vee \neg G \\
& (Q x) F[x] \wedge G \equiv(Q x)(F[x] \wedge G) \\
& \neg(\underset{x}{\exists} x) F[x] \equiv \underset{x}{\forall} \neg F[x] \\
& \begin{array}{l}
\forall F[x] \wedge \underset{x}{\forall} G[x] \equiv \underset{x}{\forall} \underset{x}{\exists} F[x] \wedge \underset{x}{\exists} G[x] \underset{x}{\forall}(F[x] \wedge G[x]) \\
\underset{x}{\exists}(F[x] \wedge G[x])
\end{array}
\end{aligned}
$$

Which implications do not hold in the $\not \equiv \equiv$ above?

Equivalences of Formulas (cont'd)

Note that

$$
\begin{aligned}
& \forall F[x] \vee \underset{x}{\forall} \underset{x}{\forall}[x] \equiv \underset{x}{\forall} \underset{x}{\forall} F[x] \vee \forall \underset{x}{\exists} G[x] \wedge \underset{x}{\exists} G[x] \equiv \underset{x}{\exists} F[x] \wedge \underset{y}{\forall} G[y] \equiv \underset{x, y}{\forall} F[x] \vee G[y] \\
& \underset{x}{\exists} F[x] \wedge G[y]
\end{aligned}
$$

Outline

Syntax
\section*{Semantics}
(Un)Satisfiability \& (In)Validity
Equivalences of Formulas
Normal Forms
Formula Clausification
\section*{Substitution}

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and V to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, Λ, and V to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form $\forall M$, where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form
where M is a quantifier-free formula in CNF

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form
where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.

A FOL formula is in Skolem standard form if it is of the form
where M is a quantifier-free formula in CNF.

Normal Forms

Normal forms:

1. CNF
2. DNF
3. negation normal form (NNF)
4. prenex normal form (PNF)
5. Skolem standard form

Negation normal form (NNF) requires that \neg, \wedge, and \vee to be the only logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the formula is in the form $\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) M$, where $Q_{i} \in\{\forall, \exists\}$ and M is quantifier-free.
A FOL formula is in Skolem standard form if it is of the form $\underset{x_{1}, \ldots, x_{n}}{\forall} M$, where M is a quantifier-free formula in CNF.

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q)
$$

2. Bring the following formulas into Skolem standard form

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q) .
$$

2. Bring the following formulas into Skolem standard form

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q)
$$

2. Bring the following formulas into Skolem standard form

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q)
$$

2. Bring the following formulas into Skolem standard form

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

Normal Forms (cont'd)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal form

$$
(\underset{x}{\forall} P[x]) \Rightarrow Q \equiv \underset{x}{\exists}(P[x] \Rightarrow Q) .
$$

2. Bring the following formulas into Skolem standard form

$$
\begin{aligned}
& \underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z]) \\
& \underset{x, y}{\forall}(\underset{z}{\exists} P[x, z] \wedge P[y, z]) \Rightarrow \underset{u}{\exists} Q[x, y, u]
\end{aligned}
$$

Outline

Syntax
\section*{Semantics}
\section*{(Un)Satisfiability \& (In)Validity}
\section*{Equivalences of Formulas}
Normal Forms

Formula Clausification

Substitution

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is
$\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))$
can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x y, z}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is
$\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))$
can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

The standard form of the formula above, that is

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a
formula F, then F is inconsistent iff S is inconsistent.

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is

$$
\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))
$$

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Formula Clausification

A clause is a disjunction of literals.
Examples: $\neg P[x] \vee Q[y, f[x]], P[x]$
A set of clauses S is regarded as a conjunction of all clauses in S, where every variable in S is considered governed by a universal quantifier.
Example: Let

$$
\underset{x}{\forall} \underset{y, z}{\exists}((\neg P[x, y] \wedge Q[x, z]) \vee R[x, y, z])
$$

The standard form of the formula above, that is

$$
\underset{x}{\forall}((\neg P[x, f[x]] \vee R[x, f[x], g[x]]) \wedge(Q(x, g[x]) \vee R[x, f[x], g[x]]))
$$

can be represented by the following set of clauses

$$
\{\neg P[x, f[x]] \vee R[x, f[x], g[x]], Q(x, g[x]) \vee R[x, f[x], g[x]]\}
$$

Note that, if S is a set of clauses that represents a standard form of a formula F, then F is inconsistent iff S is inconsistent.

Formulas Clausification (cont'd)

Example:

Transform the formulas $F_{1}, F_{2}, F_{3}, F_{4}$, and $\neg G$ into a set of clauses, where

$$
F_{1}: \quad \underset{x, y}{\forall} \underset{z}{\exists} P[x, y, z]
$$

$$
\underset{x, y, z, u, v, w}{\forall}((P[x, y, u] \wedge P[y, z, v] \wedge P[u, z, w]) \Rightarrow P[x, v, w])
$$

$F_{2}: \wedge$

$$
\underset{x, y, z, u, v, w}{\forall}(P[x, y, u] \wedge(P[y, z, v] \wedge P[x, v, w]) \Rightarrow P[u, z, w])
$$

$F_{3}: \underset{x}{\forall} P[x, e, x] \wedge \underset{x}{\forall} P[e, x, x]$
$F_{4}: \underset{x}{\forall} P[x, i[x], e] \wedge \underset{x}{\forall} P[i[x], x, e]$
$G: \quad(\underset{x}{\forall} P[x, x, e]) \Rightarrow \underset{u, v, w}{\forall}(P[u, v, w] \Rightarrow P[v, u, w])$

Outline

Syntax
Semantics
(Un)Satisfiability \& (In)Validity
Equivalences of Formulas
Normal Forms
Formula Clausification

Substitution

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.
We have

$$
\begin{array}{ll}
C_{1}^{\prime}: & P[f[a]] \vee Q[f[a]] \\
C_{2}^{\prime}: & \neg P[f[a]] \vee R[a]
\end{array}
$$

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.
We have

$$
\begin{array}{ll}
C_{1}^{\prime}: & P[f[a]] \vee Q[f[a]] \\
C_{2}^{\prime}: & \neg P[f[a]] \vee R[a]
\end{array}
$$

C_{1}^{\prime} and C_{2}^{\prime} are ground instances.

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[a]$ in $C_{1}, x \rightarrow a$ in C_{2}.
We have

$$
\begin{array}{ll}
C_{1}^{\prime}: & P[f[a]] \vee Q[f[a]] \\
C_{2}^{\prime}: & \neg P[f[a]] \vee R[a]
\end{array}
$$

C_{1}^{\prime} and C_{2}^{\prime} are ground instances.
A resolvent of C_{1}^{\prime} and C_{2}^{\prime} is

$$
C_{3}^{\prime}: \quad Q[f[a]] \vee R[a]
$$

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have
C_{1}^{*} is an instance of C_{1}.
A resolvent of

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

$$
\begin{array}{ll}
C_{2}: & \neg P[f[x]] \vee R[x] \\
C_{1}^{*}: & P[f[x]] \vee Q[f[x]]
\end{array}
$$

is

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

$$
\begin{array}{ll}
C_{2}: & \neg P[f[x]] \vee R[x] \\
C_{1}^{*}: & P[f[x]] \vee Q[f[x]]
\end{array}
$$

is

$$
C_{3}: \quad Q[f[x]] \vee R[x]
$$

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution

Example: Let

$$
\begin{array}{ll}
C_{1}: & P[x] \vee Q[x] \\
C_{2}: & \neg P[f[x]] \vee R[x]
\end{array}
$$

Let $x \rightarrow f[x]$ in C_{1}. We have

$$
C_{1}^{*}: \quad P[f[x]] \vee Q[f[x]]
$$

C_{1}^{*} is an instance of C_{1}.
A resolvent of

$$
\begin{array}{ll}
C_{2}: & \neg P[f[x]] \vee R[x] \\
C_{1}^{*}: & P[f[x]] \vee Q[f[x]]
\end{array}
$$

is

$$
C_{3}: \quad Q[f[x]] \vee R[x]
$$

C_{3}^{\prime} is an instance of $C_{3} . C_{3}$ is the most general clause.

Substitution (cont'd)

A substitution σ is a finite set of the form $\left\{v_{1} \rightarrow t_{1}, \ldots, v_{n} \rightarrow t_{n}\right\}$ where every t_{i} is a term different from v_{i} and no two elements in the set have the same variable v_{i}.

Let σ be defined as above and E be an expression. Then $E \sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_{i} in E by the term t_{i}

Example: Let $\sigma=\{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E=f[z, a, g[x], y]$. Then $E \sigma=f[h[a, y], a, g[z], y]$.

Substitution (cont'd)

A substitution σ is a finite set of the form $\left\{v_{1} \rightarrow t_{1}, \ldots, v_{n} \rightarrow t_{n}\right\}$ where every t_{i} is a term different from v_{i} and no two elements in the set have the same variable v_{i}.

Let σ be defined as above and E be an expression. Then $E \sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_{i} in E by the term t_{i}

Example: Let $\sigma=\{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E=f[z, a, g[x], y]$. Then $E \sigma=f[h[a, y], a, g[z], y]$.

Substitution (cont'd)

A substitution σ is a finite set of the form $\left\{v_{1} \rightarrow t_{1}, \ldots, v_{n} \rightarrow t_{n}\right\}$ where every t_{i} is a term different from v_{i} and no two elements in the set have the same variable v_{i}.

Let σ be defined as above and E be an expression. Then $E \sigma$ is an expression obtained from E by replacing simultaneously each occurrence of v_{i} in E by the term t_{i}
Example: Let $\sigma=\{x \rightarrow z, z \rightarrow h[a, y]\}$ and $E=f[z, a, g[x], y]$. Then $E \sigma=f[h[a, y], a, g[z], y]$.

Substitution (cont'd)

Let

$$
\begin{aligned}
\theta & =\left\{x_{1} \rightarrow t_{1}, \ldots, x_{n} \rightarrow t_{n}\right\} \\
\lambda & =\left\{y_{1} \rightarrow u_{1}, \ldots, y_{n} \rightarrow u_{n}\right\}
\end{aligned}
$$

Then the composition of θ and $\lambda(\theta \circ \lambda)$ is obtained from the set

$$
\left\{x_{1} \rightarrow t_{1} \lambda, \ldots, x_{n} \rightarrow t_{n} \lambda, y_{1} \rightarrow u_{1}, \ldots, y_{n} \rightarrow u_{n}\right\}
$$

by deleting any element $x_{j} \rightarrow t_{j} \lambda$ for which $x_{j}=t_{j} \lambda$ and any element $y_{i} \rightarrow u_{i}$ such that y_{i} is among $\left\{x_{1}, \ldots, x_{n}\right\}$.

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \\
& \theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}
\end{aligned}
$$

Then
$n_{1} \circ \theta_{2}=\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$ $=\{x \rightarrow a, y \rightarrow f[g[x]]\}$

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:
$\theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\}$
$\theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$

Then
$\theta_{1} \circ \theta_{2}=\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$ $=\{x \rightarrow a, y \rightarrow f[g[x]]\}$

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \\
& \theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}
\end{aligned}
$$

Then
$\theta_{1} \circ \theta_{2}=\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}$ $=\{x \rightarrow a, y \rightarrow f[g[x]]\}$

Substitution (cont'd)

Example 1:

$$
\begin{aligned}
\theta & =\{x \rightarrow f[y], y \rightarrow z\} \\
\lambda & =\{x \rightarrow a, y \rightarrow b, z \rightarrow y\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta \circ \lambda & =\{x \rightarrow f[b], y \rightarrow y, x \rightarrow a, y \rightarrow b, z \rightarrow y\} \\
& =\{x \rightarrow f[b], z \rightarrow y\}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \theta_{1}=\{x \rightarrow a, y \rightarrow f[z], z \rightarrow y\} \\
& \theta_{2}=\{x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\theta_{1} \circ \theta_{2} & =\{x \rightarrow a, y \rightarrow f[g[x]], z \rightarrow z, x \rightarrow b, y \rightarrow z, z \rightarrow g[x]\} \\
& =\{x \rightarrow a, y \rightarrow f[g[x]]\}
\end{aligned}
$$

