
Logic 1
First-Order Logic

Mădălina Eraşcu Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

November 21, 2013



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and t1, ..., tn are terms then
f [t1, ..., tn] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t1, ..., tn are terms then
P[t1, ..., tn] is an atom.

An atom is T, F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.

2. If F and G are formulas then ¬F , F ∨ G , F ∧ G , F =⇒ G , and
F ⇐⇒ G are formulas.

3. If F is a formula and x is a variable, then ∀
x
F and ∃

x
F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier ∀

x
or ∃

x
.

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. ∀
x
x + 1 ≥ x

2. ¬
(
∃
x
E [0, f [x ]]

)
3. ∀

x
∃
y

(
E [y , f [x ]] ∧ ∀

z
(E [z , f [x ]]⇒ E [y , z ])

)



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics

An interpretation I of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

I to each constant we assign an element in D

I to each function symbol we assign a mapping from Dn to D

I to each predicate symbol we assign a mapping from Dn to {T,F}.

Then the semantics of the formula F is a function f : I → {T,F}, where
I ∈ I and I is the set of all interpretations of the formula F .



Semantics (cont’d)

Example: Find the truth value of the formulas:

I F1 :⇐⇒ ∀
x
∀
y
x ≤ y , where I :

{
D = {0, 1}
≤I → ≤Z

I F2 :⇐⇒ ∀
x
∃
y
x + y > c , where I :


D = {0, 1}
cI = 0
+I → +Z
>I → >Z

I F3 :⇐⇒ ∀
x

(P[x ] =⇒ Q[f [x ], a]), where

I :



D = {1, 2}
aI = 1

fI : D → D

{
fI [1] = 1
fI [2] = 1

PI : D → {T,F}
{

PI [1] = T
PI [2] = F

QI : D2 → {T,F}
{

QI [1, 1] = T QI [1, 2] = F
QI [2, 1] = F QI [2, 2] = T



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation I
such that F is evaluated to T in I .

A formula F is unsatisfiable (inconsistent) iff for all interpretations I , F is
evaluated to F in I .

A formula F is valid iff for all interpretations I , F is evaluated to T in I .

A formula F is invalid iff there exists an interpretation I , such that F is
evaluated to F in I .

A formula G is a logical consequence of formulas F1, F2, ..., Fn iff for
every interpretation I , if F1 ∧ F2 ∧ ... ∧ Fn is true in I , G is also true
in I .

Note that validity and satisfiability applies to closed formulas.

Examples: Prove that

I ∀
x
P[x ] ∧ ∃

y
¬P[y ] is inconsistent.



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Equivalences of Formulas
Two formulas F and G are equivalent iff the truth values of F and G are
the same under any interpretation.

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Which implications do not hold in the 6≡ above?

=⇒ 6=⇒
6⇐= ⇐=



Equivalences of Formulas

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Which implications do not hold in the 6≡ above?

=⇒ 6=⇒
6⇐= ⇐=



Equivalences of Formulas

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Which implications do not hold in the 6≡ above?

=⇒ 6=⇒
6⇐= ⇐=



Equivalences of Formulas

F ⇐⇒ G ≡ (F ⇒ G ) ∧ (G ⇒ F )
F ⇒ G ≡ ¬F ∨ G
F ∨ G ≡ G ∨ F F ∧ G ≡ G ∧ F
(F ∨ G ) ∨ H ≡ F ∨ (G ∨ H) (F ∧ G ) ∧ H ≡ F ∧ (G ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) F ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H)
F ∨ T ≡ T F ∧ T ≡ F
F ∨ F ≡ F F ∧ F ≡ F
F ∨ ¬F ≡ T F ∧ ¬F ≡ F
¬ (¬F ) ≡ F
¬ (F ∨ G ) ≡ ¬F ∧ ¬G ¬ (F ∧ G ) ≡ ¬F ∨ ¬G
(Qx)F [x ] ∨ G ≡ (Qx) (F [x ] ∨ G ) (Qx)F [x ] ∧ G ≡ (Qx) (F [x ] ∧ G )
¬∀

x
F [x ] ≡ ∃

x
¬F [x ] ¬(∃

x
x)F [x ] ≡ ∀

x
¬F [x ]

∀
x
F [x ] ∨ ∀

x
G [x ] 6≡ ∀

x
(F [x ] ∨ G [x ]) ∀

x
F [x ] ∧ ∀

x
G [x ] ≡ ∀

x
(F [x ] ∧ G [x ])

∃
x
F [x ] ∨ ∃

x
G [x ] ≡ ∃

x
(F [x ] ∨ G [x ]) ∃

x
F [x ] ∧ ∃

x
G [x ] 6≡ ∃

x
(F [x ] ∧ G [x ])

Which implications do not hold in the 6≡ above?

=⇒ 6=⇒
6⇐= ⇐=



Equivalences of Formulas (cont’d)

Note that

∀
x
F [x ] ∨ ∀

x
G [x ] ≡ ∀

x
F [x ] ∨ ∀

y
G [y ] ≡ ∀

x,y
F [x ] ∨ G [y ]

∃
x
F [x ] ∧ ∃

x
G [x ] ≡ ∃

x
F [x ] ∧ ∃

y
G [y ] ≡ ∃

x,y
F [x ] ∧ G [y ]



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms

Normal forms:

1. CNF

2. DNF

3. negation normal form (NNF)

4. prenex normal form (PNF)

5. Skolem standard form

Negation normal form (NNF) requires that ¬, ∧, and ∨ to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Q1x1)...(Qnxn) M, where Qi ∈ {∀,∃} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form ∀
x1,...,xn

M,

where M is a quantifier-free formula in CNF.



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form (

∀
x
P[x ]

)
⇒ Q ≡ ∃

x
(P[x ]⇒ Q) .

2. Bring the following formulas into Skolem standard form

I

∀
x

∃
y,z

((¬P[x , y ] ∧ Q[x , z]) ∨ R[x , y , z])

I

∀
x,y

(
∃
z
P[x , z] ∧ P[y , z]

)
⇒ ∃

u
Q[x , y , u]



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Formula Clausification
A clause is a disjunction of literals.

Examples: ¬P[x ] ∨ Q[y , f [x ]], P[x ]

A set of clauses S is regarded as a conjunction of all clauses in S , where
every variable in S is considered governed by a universal quantifier.

Example: Let

∀
x
∃
y ,z

((¬P[x , y ] ∧ Q[x , z ]) ∨ R[x , y , z ])

The standard form of the formula above, that is

∀
x

((¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]]) ∧ (Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]))

can be represented by the following set of clauses

{¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]],Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F , then F is inconsistent iff S is inconsistent.



Formula Clausification
A clause is a disjunction of literals.

Examples: ¬P[x ] ∨ Q[y , f [x ]], P[x ]

A set of clauses S is regarded as a conjunction of all clauses in S , where
every variable in S is considered governed by a universal quantifier.

Example: Let

∀
x
∃
y ,z

((¬P[x , y ] ∧ Q[x , z ]) ∨ R[x , y , z ])

The standard form of the formula above, that is

∀
x

((¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]]) ∧ (Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]))

can be represented by the following set of clauses

{¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]],Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F , then F is inconsistent iff S is inconsistent.



Formula Clausification
A clause is a disjunction of literals.

Examples: ¬P[x ] ∨ Q[y , f [x ]], P[x ]

A set of clauses S is regarded as a conjunction of all clauses in S , where
every variable in S is considered governed by a universal quantifier.

Example: Let

∀
x
∃
y ,z

((¬P[x , y ] ∧ Q[x , z ]) ∨ R[x , y , z ])

The standard form of the formula above, that is

∀
x

((¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]]) ∧ (Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]))

can be represented by the following set of clauses

{¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]],Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F , then F is inconsistent iff S is inconsistent.



Formula Clausification
A clause is a disjunction of literals.

Examples: ¬P[x ] ∨ Q[y , f [x ]], P[x ]

A set of clauses S is regarded as a conjunction of all clauses in S , where
every variable in S is considered governed by a universal quantifier.

Example: Let

∀
x
∃
y ,z

((¬P[x , y ] ∧ Q[x , z ]) ∨ R[x , y , z ])

The standard form of the formula above, that is

∀
x

((¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]]) ∧ (Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]))

can be represented by the following set of clauses

{¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]],Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F , then F is inconsistent iff S is inconsistent.



Formula Clausification
A clause is a disjunction of literals.

Examples: ¬P[x ] ∨ Q[y , f [x ]], P[x ]

A set of clauses S is regarded as a conjunction of all clauses in S , where
every variable in S is considered governed by a universal quantifier.

Example: Let

∀
x
∃
y ,z

((¬P[x , y ] ∧ Q[x , z ]) ∨ R[x , y , z ])

The standard form of the formula above, that is

∀
x

((¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]]) ∧ (Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]))

can be represented by the following set of clauses

{¬P[x , f [x ]] ∨ R[x , f [x ], g [x ]],Q(x , g [x ]) ∨ R[x , f [x ], g [x ]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F , then F is inconsistent iff S is inconsistent.



Formulas Clausification (cont’d)

Example :
Transform the formulas F1, F2,F3,F4, and ¬G into a set of clauses, where

F1 : ∀
x,y
∃
z
P[x , y , z ]

F2 :

∀
x,y ,z,u,v ,w

((P[x , y , u] ∧ P[y , z , v ] ∧ P[u, z ,w ]) ⇒ P[x , v ,w ])

∧
∀

x,y ,z,u,v ,w
(P[x , y , u] ∧ (P[y , z , v ] ∧ P[x , v ,w ]) ⇒ P[u, z ,w ])

F3 : ∀
x
P[x , e, x ] ∧ ∀

x
P[e, x , x ]

F4 : ∀
x
P[x , i [x ], e] ∧ ∀

x
P[i [x ], x , e]

G :
(
∀
x
P[x , x , e]

)
⇒ ∀

u,v ,w
(P[u, v ,w ] ⇒ P[v , u,w ])



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity

Equivalences of Formulas

Normal Forms

Formula Clausification

Substitution



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]



Substitution
Example: Let

C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [a] in C1, x → a in C2.



Substitution
Example: Let

C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [a] in C1, x → a in C2.

We have
C ′1 : P[f [a]] ∨ Q[f [a]]
C ′2 : ¬P[f [a]] ∨ R[a]



Substitution
Example: Let

C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [a] in C1, x → a in C2.

We have
C ′1 : P[f [a]] ∨ Q[f [a]]
C ′2 : ¬P[f [a]] ∨ R[a]

C ′1 and C ′2 are ground instances.



Substitution
Example: Let

C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [a] in C1, x → a in C2.

We have
C ′1 : P[f [a]] ∨ Q[f [a]]
C ′2 : ¬P[f [a]] ∨ R[a]

C ′1 and C ′2 are ground instances.

A resolvent of C ′1 and C ′2 is

C ′3 : Q[f [a]] ∨ R[a]



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [x ] in C1. We have

C∗1 : P[f [x ]] ∨ Q[f [x ]]

C∗1 is an instance of C1.

A resolvent of
C2 : ¬P[f [x ]] ∨ R[x ]
C∗1 : P[f [x ]] ∨ Q[f [x ]]

is

C3 : Q[f [x ]] ∨ R[x ]

C ′3 is an instance of C3. C3 is the most general clause.



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [x ] in C1. We have

C∗1 : P[f [x ]] ∨ Q[f [x ]]

C∗1 is an instance of C1.

A resolvent of
C2 : ¬P[f [x ]] ∨ R[x ]
C∗1 : P[f [x ]] ∨ Q[f [x ]]

is

C3 : Q[f [x ]] ∨ R[x ]

C ′3 is an instance of C3. C3 is the most general clause.



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [x ] in C1. We have

C∗1 : P[f [x ]] ∨ Q[f [x ]]

C∗1 is an instance of C1.

A resolvent of
C2 : ¬P[f [x ]] ∨ R[x ]
C∗1 : P[f [x ]] ∨ Q[f [x ]]

is

C3 : Q[f [x ]] ∨ R[x ]

C ′3 is an instance of C3. C3 is the most general clause.



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [x ] in C1. We have

C∗1 : P[f [x ]] ∨ Q[f [x ]]

C∗1 is an instance of C1.

A resolvent of
C2 : ¬P[f [x ]] ∨ R[x ]
C∗1 : P[f [x ]] ∨ Q[f [x ]]

is

C3 : Q[f [x ]] ∨ R[x ]

C ′3 is an instance of C3. C3 is the most general clause.



Substitution

Example: Let
C1 : P[x ] ∨ Q[x ]
C2 : ¬P[f [x ]] ∨ R[x ]

Let x → f [x ] in C1. We have

C∗1 : P[f [x ]] ∨ Q[f [x ]]

C∗1 is an instance of C1.

A resolvent of
C2 : ¬P[f [x ]] ∨ R[x ]
C∗1 : P[f [x ]] ∨ Q[f [x ]]

is

C3 : Q[f [x ]] ∨ R[x ]

C ′3 is an instance of C3. C3 is the most general clause.



Substitution (cont’d)

A substitution σ is a finite set of the form {v1 → t1, ..., vn → tn} where
every ti is a term different from vi and no two elements in the set have
the same variable vi .

Let σ be defined as above and E be an expression. Then Eσ is an
expression obtained from E by replacing simultaneously each occurrence
of vi in E by the term ti

Example: Let σ = {x → z , z → h[a, y ]} and E = f [z , a, g [x ], y ]. Then
Eσ = f [h[a, y ], a, g [z ], y ].



Substitution (cont’d)

A substitution σ is a finite set of the form {v1 → t1, ..., vn → tn} where
every ti is a term different from vi and no two elements in the set have
the same variable vi .

Let σ be defined as above and E be an expression. Then Eσ is an
expression obtained from E by replacing simultaneously each occurrence
of vi in E by the term ti

Example: Let σ = {x → z , z → h[a, y ]} and E = f [z , a, g [x ], y ]. Then
Eσ = f [h[a, y ], a, g [z ], y ].



Substitution (cont’d)

A substitution σ is a finite set of the form {v1 → t1, ..., vn → tn} where
every ti is a term different from vi and no two elements in the set have
the same variable vi .

Let σ be defined as above and E be an expression. Then Eσ is an
expression obtained from E by replacing simultaneously each occurrence
of vi in E by the term ti

Example: Let σ = {x → z , z → h[a, y ]} and E = f [z , a, g [x ], y ]. Then
Eσ = f [h[a, y ], a, g [z ], y ].



Substitution (cont’d)

Let

θ = {x1 → t1, ..., xn → tn}
λ = {y1 → u1, ..., yn → un}

Then the composition of θ and λ (θ ◦ λ) is obtained from the set

{x1 → t1λ, ..., xn → tnλ, y1 → u1, ..., yn → un}

by deleting any element xj → tjλ for which xj = tjλ and any element
yi → ui such that yi is among {x1, ..., xn}.



Substitution (cont’d)
Example 1:

θ = {x → f [y ], y → z}
λ = {x → a, y → b, z → y}

Then

θ ◦ λ = {x → f [b], y → y , x → a, y → b, z → y}
= {x → f [b], z → y}

Example 2:

θ1 = {x → a, y → f [z ], z → y}
θ2 = {x → b, y → z , z → g [x ]}

Then

θ1 ◦ θ2 = {x → a, y → f [g [x ]], z → z , x → b, y → z , z → g [x ]}
= {x → a, y → f [g [x ]]}



Substitution (cont’d)
Example 1:

θ = {x → f [y ], y → z}
λ = {x → a, y → b, z → y}

Then

θ ◦ λ = {x → f [b], y → y , x → a, y → b, z → y}
= {x → f [b], z → y}

Example 2:

θ1 = {x → a, y → f [z ], z → y}
θ2 = {x → b, y → z , z → g [x ]}

Then

θ1 ◦ θ2 = {x → a, y → f [g [x ]], z → z , x → b, y → z , z → g [x ]}
= {x → a, y → f [g [x ]]}



Substitution (cont’d)
Example 1:

θ = {x → f [y ], y → z}
λ = {x → a, y → b, z → y}

Then

θ ◦ λ = {x → f [b], y → y , x → a, y → b, z → y}
= {x → f [b], z → y}

Example 2:

θ1 = {x → a, y → f [z ], z → y}
θ2 = {x → b, y → z , z → g [x ]}

Then

θ1 ◦ θ2 = {x → a, y → f [g [x ]], z → z , x → b, y → z , z → g [x ]}
= {x → a, y → f [g [x ]]}



Substitution (cont’d)
Example 1:

θ = {x → f [y ], y → z}
λ = {x → a, y → b, z → y}

Then

θ ◦ λ = {x → f [b], y → y , x → a, y → b, z → y}
= {x → f [b], z → y}

Example 2:

θ1 = {x → a, y → f [z ], z → y}
θ2 = {x → b, y → z , z → g [x ]}

Then

θ1 ◦ θ2 = {x → a, y → f [g [x ]], z → z , x → b, y → z , z → g [x ]}
= {x → a, y → f [g [x ]]}


	Syntax
	Semantics
	(Un)Satisfiability & (In)Validity
	Equivalences of Formulas
	Normal Forms
	Formula Clausification
	Substitution

