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The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and ty, ..., t, are terms then
flty, ..., ta] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t, ..., t, are terms then
P[ty, ..., t,] is an atom.

An atom is T, [F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.
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Formulas are defined as follows:
1. An atom is a formula.

2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. Vx+1=x
2. - (é Eo, f[x]])
3.7 3(El. A1) A Y (Elz fIX] = Ely.2))
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Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

> to each constant we assign an element in D
» to each function symbol we assign a mapping from D" to D

> to each predicate symbol we assign a mapping from D" to {T,F}.

Then the semantics of the formula F is a function f : Z — {T,F}, where
| € T and 7 is the set of all interpretations of the formula F.



Semantics (cont’d)

Example: Find the truth value of the formulas:

D ={0,1}
<= <z
D= {07 1}
C = 0
+1 =tz
> — >y
> F5:<= VY (P[x] = Q|[f[x], a]), where

X

> F i< VYV x<y, where I:{
Xy

> Fobi<= VI x+y>c, where [:
Xy

D ={1,2}
3/21
fi:D—=D Z%E};l
I
P[] =T

P, : D — {T,F} P:H:F

. QL1]=T Q[1,2]=F
Q: D? = {T,F} QR=F QPR2=T
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(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to IF in /.

A formula F is valid iff for all interpretations /, F is evaluated to T in /.

A formula F is invalid iff there exists an interpretation /, such that F is
evaluated to FF in /.

A formula G is a logical consequence of formulas Fy, Fp, ..., F, iff for
every interpretation /, if F; A Fo A ... A F,istruein /|, G is also true
in /.

Note that validity and satisfiability applies to closed formulas.
Examples: Prove that
» VYP[x] A 3=P[y] is inconsistent.
x y



Outline

Equivalences of Formulas



Equivalences of Formulas
Two formulas F and G are equivalent iff the truth values of F and G are
the same under any interpretation.



Equivalences of Formulas

(F=G)AN(G=F)

)

FVv(GVH)
(FV G)A(FVH)

~(-F
ﬁEF\/)G) = -FA-G
(X)FX]VG = (Qx)(F[x]V G)
ﬂYF[x] = g—\F[X]

VEI v YGHd # V(FI v GIX)
%F[X]V;'G[X] = 3(F[x]V G[x])

X

FAG = GAF

(FAGYAH = FA(GAH)
FA(GVH) = (FAG)V(FAH)
FAT = F

FAF = F

FA-F = F

“(FAG) = =FV-G
(AX)FIX]NG = (Qx)(F[x] A G)
S@OFR = Y-FI
YF[X]/\‘)V(’G[X] = Y(F[X]/\G[Xl)

SFIX A 36K £ I(FI A Gl
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(F=G)AN(G=F)
F=G =
FVvG = GVF
(FVG)VH =
FV(GAH) =
FVT = T
FVF = F
FV—F
- (=F)
-~(FVG) = -FA-G
(X)FX]VG = (Qx)(F[x]V G)
ﬂYF[x] = )E(l—\F[X]

VFIX] vV VGIx] # VY(F[X] v G[x])
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FVv(GVH)
(FV G)A(FVH)

T
F
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FAT = F

FAF = F

FA-F = F
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Equivalences of Formulas

F—< G = (F=G)A(G=F)
F=G = —-FVG
FVG = GVF FAG = GAF
(FVG)VH = FV(GVH) (FAGYAH = FA(GAH)
FV(GAH) = (FVG)A(FVH) FA(GVH) = (FAG)V(FAH)
FvVT = T FAT = F
FVF = F FAF = F
Fv-F = T FA-F = F
—\(—|F) = F
-~(FVG) = -FA-G “(FAG) = =FV-G
(X)FX]VG = (Qx)(F[x]V G) (AX)FIX]NG = (Qx)(F[x] A G)
ﬂYF[x] = )E(l—\F[X] —\(>E(|X)F[X] = YﬂF[x]
VFIx] v VGIx] £ V(F[x] v G[x]) || VFIX]AVGIX] = V(F[x]AGIX])
)E(”:[X]\/;'G[X] = é(F[x]\/G[x]) )EJF[X] A )EJG[X] e g(F[X] A G[x])
Which implications do not hold in the # above?

~ z

4= —



Equivalences of Formulas (cont’d)

Note that
YF[X]\/YG[X] = YF[X]\/YG[)/] = XVyF[X]\/G[y]
SFIX A 361 = 3FI A6 = ’XayF[x]AG[y]
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Normal Forms

Normal forms:
1. CNF
DNF
negation normal form (NNF)

prenex normal form (PNF)

LA

Skolem standard form

Negation normal form (NNF) requires that =, A, and V to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Qix1)...(Qnxs) M, where Q; € {V,3} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form V M,

X1yee+5Xn

where M is a quantifier-free formula in CNF.
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Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form

(YP[X]) =Q = 3(PK= Q).

2. Bring the following formulas into Skolem standard form

>

¥ 3 ((<Pley] A Qlxz)) v Rlxy.2)

Y (3P[x,z]/\P[y,z]) = 3Q[x,y, u]
X,y \z u
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every variable in S is considered governed by a universal quantifier.

Example: Let
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xy

The standard form of the formula above, that is
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Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.

Example: Let

" 1((ﬂp[x,y] A Qlx,z]) V R[x,y,z])

xy

The standard form of the formula above, that is

V(=P fIXIl vV RIx flx],glx]]) A (Q(xglx]) v Rlx, f[x],g[x]]))
can be represented by the following set of clauses

{=Plx flIx]I vV RIx, fx], g[x]], Q(x,g[x]) v RIx, f[x], g[x]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F, then F is inconsistent iff S is inconsistent.



Formulas Clausification (cont’d)

Example :
Transform the formulas Fi, F>,F3,F4, and =G into a set of clauses, where

Fll

le

F4Z

vV 3P[x,y, Z]
X,y z

v ((P[x,y,u] N Ply,z,v] A Plu,z,w]) = Px,v,w])

xX,y,Z,u,v,w
N
v (P[x,y,ul A (Ply,z,v] A Plx,v,w]) = Plu,z,w])

X,y,Z,Uu,v,w

VP[x,e,x] A VP[e, x, x]
VP[x,i[x], e] A VP[i[x], x, €]

(YP[X,X, e]) = u,Y,w(P[u’ v,w] = Plv,u,w])
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Substitution

Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[x]
Let x — f[a] in Ci, x = ain G,.
We have
q P[fla]] v Q[f[a]]
G =P[f[a]] V R[a]

C{ and Cj are ground instances.
A resolvent of C{ and C} is

G Q[f[a]] V Rla]
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Example: Let
G P[x] vV Q[x]
G:  ~P[fIx] vV R[x]

Let x — f[x] in C;. We have
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Substitution

Example: Let
Cl .
C2 .

Let x — f[x] in C;. We have
G

C} is an instance of .

A resolvent of
C2 .
G

C3:

Pix] Vv QIx]
=P[f[x]] V R[x]

PIFX] v QIf[X]]

-P[f[x]] V R[x]

PIFIX] v QIf[X]]

QX v R



Substitution

Example: Let

G Plx] Vv Q[x]

G : =P[f[x]] V R[]
Let x — f[x] in C;. We have

(G Plf[x]] vV Q[f[x]]

C} is an instance of .

A resolvent of

G -P[f[x]] V R[x]
(G Pf[x]] vV QI[f[x]]
G : Q[f[x]] V R[x]

(4 is an instance of G;. G is the most general clause.
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the same variable v;.
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Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.

Let o be defined as above and E be an expression. Then Eo is an
expression obtained from E by replacing simultaneously each occurrence
of v; in E by the term t;

Example: Let 0 = {x = z,z — h[a,y]} and E = f[z,a,g[x],y]. Then
Eo = f[hla,y], 2. g[2], y].



Substitution (cont’d)

Let

0= {Xl — 1, .. Xp — t,,}
A={y1 = U1, ... Yo — Un}

Then the composition of § and A (6 o A) is obtained from the set
{x1 = B oy Xp = ta\ Y1 = U1, ey Yo —> Un}

by deleting any element x; — t;A for which x; = t;A and any element
¥i — u; such that y; is among {xi, ..., X, }.



Substitution (cont’d)
Example 1:

0=1{x—flyly =z}
A={x—ay—bz—y}



Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then

Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}



Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then
Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}
Example 2:

bp={x—=ay—flz],z—=y}
O ={x—=> by —z,z— g[x]}



Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then
Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}
Example 2:

bp={x—=ay—flz],z—=y}
O ={x—=> by —z,z— g[x]}

Then
f100, ={x — a,y = flg[x]l,z = z,x = b,y = z,z — g[x]}
={x—=ay— flg[x]]}
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