Logic 1
First-Order Logic

Madalina Erascu  Tudor Jebelean

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

{merascu,tjebelea}@risc.jku.at

November 21, 2013

A,
N



Outline

Syntax

Semantics

(Un)Satisfiability & (In)Validity
Equivalences of Formulas
Normal Forms

Formula Clausification

Substitution



Outline

Syntax



Syntax

The language of FOL consists in terms and formulas.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:



Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.



Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:
1. A constant is a term.

2. A variable is a term.



Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and ty, ..., t, are terms then
flty, ..., ta] is a term.



Syntax

The language of FOL consists in terms and formulas.

Terms are defined recursively as follows:

1.
2.
3.

A constant is a term.
A variable is a term.

If f is an n-place function symbol, and ti, ..., t, are terms then
flt1, ..., tn] is a term.

. All terms are generated by applying the above rules.



Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and ty, ..., t, are terms then
flty, ..., ta] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t, ..., t, are terms then
P[ty, ..., t,] is an atom.



Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and ty, ..., t, are terms then
flty, ..., ta] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t, ..., t, are terms then
P[ty, ..., t,] is an atom.

An atom is T, [F, or an n-ary predicate applied to n terms.



Syntax

The language of FOL consists in terms and formulas.
Terms are defined recursively as follows:

1. A constant is a term.

2. A variable is a term.

3. If f is an n-place function symbol, and ty, ..., t, are terms then
flty, ..., ta] is a term.

4. All terms are generated by applying the above rules.

If P is an n-place predicate symbol and t, ..., t, are terms then
P[ty, ..., t,] is an atom.

An atom is T, [F, or an n-ary predicate applied to n terms.

A literal is an atom or its negation.



Syntax (cont’d)

Formulas are defined as follows:



Syntax (cont’d)
Formulas are defined as follows:

1. An atom is a formula.



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.

2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.

2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.
2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.



Syntax (cont’d)

Formulas are defined as follows:

1.
2.

3.
4,

An atom is a formula.

If F and G are formulas then =F, FV G, FA G, F= G, and
F <= G are formulas.

If Fis a formula and x is a variable, then VF and 3F are formulas.

Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.
2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.
2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.
2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.
Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. Y x+1>x



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.

2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1.Vx+1>x

2. - (é Eo, f[x]])



Syntax (cont’d)
Formulas are defined as follows:
1. An atom is a formula.

2. If F and G are formulas then -F, FV G, FA G, F = G, and
F <= G are formulas.

3. If Fis a formula and x is a variable, then VF and 3F are formulas.

4. Formulas are generated only by a finite number of applications of
the above rules.

A variable x is bound in the formula F if there is an occurrence of x in
the scope of a binding quantifier V or 3.
X X

A variable x is free in the formula F if there is an occurrence of x that is
not bound by any quantifier.

Examples: Identify constants, variables (free, bound), quantifiers,
functions, predicates, atoms, terms, formulas from the bellow

1. Vx+1=x
2. - (é Eo, f[x]])
3.7 3(El. A1) A Y (Elz fIX] = Ely.2))



Outline

Semantics



Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:



Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

> to each constant we assign an element in D



Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

> to each constant we assign an element in D

» to each function symbol we assign a mapping from D" to D



Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

> to each constant we assign an element in D
» to each function symbol we assign a mapping from D" to D

> to each predicate symbol we assign a mapping from D" to {T,F}.



Semantics

An interpretation | of a formula F in FOL consists of a nonempty domain
D and an assignment of values to each constant, function, symbol and
predicate symbol occurring in F as follows:

> to each constant we assign an element in D
» to each function symbol we assign a mapping from D" to D

> to each predicate symbol we assign a mapping from D" to {T,F}.

Then the semantics of the formula F is a function f : Z — {T,F}, where
| € T and 7 is the set of all interpretations of the formula F.



Semantics (cont’d)

Example: Find the truth value of the formulas:

D ={0,1}
<= <z
D= {07 1}
C = 0
+1 =tz
> — >y
> F5:<= VY (P[x] = Q|[f[x], a]), where

X

> F i< VYV x<y, where I:{
Xy

> Fobi<= VI x+y>c, where [:
Xy

D ={1,2}
3/21
fi:D—=D Z%E};l
I
P[] =T

P, : D — {T,F} P:H:F

. QL1]=T Q[1,2]=F
Q: D? = {T,F} QR=F QPR2=T



Outline

(Un)Satisfiability & (In)Validity



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to IF in /.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to IF in /.

A formula F is valid iff for all interpretations /, F is evaluated to T in /.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to IF in /.

A formula F is valid iff for all interpretations /, F is evaluated to T in /.

A formula F is invalid iff there exists an interpretation /, such that F is
evaluated to IF in /.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to F in /.

A formula F is valid iff for all interpretations /, F is evaluated to T in /.

A formula F is invalid iff there exists an interpretation /, such that F is
evaluated to IF in /.

A formula G is a logical consequence of formulas Fy, Fp, ..., F, iff for
every interpretation /, if F; A F, A ... A F,istruein /, G is also true
in /.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to IF in /.

A formula F is valid iff for all interpretations /, F is evaluated to T in /.

A formula F is invalid iff there exists an interpretation /, such that F is
evaluated to FF in /.

A formula G is a logical consequence of formulas Fy, Fp, ..., F, iff for
every interpretation /, if F; A Fo A ... A F,istruein /|, G is also true
in /.

Note that validity and satisfiability applies to closed formulas.



(Un)Satisfiability & (In)Validity

A formula F is satisfiable (consistent) iff there exists an interpretation /
such that F is evaluated to T in /.

A formula F is unsatisfiable (inconsistent) iff for all interpretations /, F is
evaluated to IF in /.

A formula F is valid iff for all interpretations /, F is evaluated to T in /.

A formula F is invalid iff there exists an interpretation /, such that F is
evaluated to FF in /.

A formula G is a logical consequence of formulas Fy, Fp, ..., F, iff for
every interpretation /, if F; A Fo A ... A F,istruein /|, G is also true
in /.

Note that validity and satisfiability applies to closed formulas.
Examples: Prove that
» VYP[x] A 3=P[y] is inconsistent.
x y



Outline

Equivalences of Formulas



Equivalences of Formulas
Two formulas F and G are equivalent iff the truth values of F and G are
the same under any interpretation.



Equivalences of Formulas

(F=G)AN(G=F)

)

FVv(GVH)
(FV G)A(FVH)

~(-F
ﬁEF\/)G) = -FA-G
(X)FX]VG = (Qx)(F[x]V G)
ﬂYF[x] = g—\F[X]

VEI v YGHd # V(FI v GIX)
%F[X]V;'G[X] = 3(F[x]V G[x])

X

FAG = GAF

(FAGYAH = FA(GAH)
FA(GVH) = (FAG)V(FAH)
FAT = F

FAF = F

FA-F = F

“(FAG) = =FV-G
(AX)FIX]NG = (Qx)(F[x] A G)
S@OFR = Y-FI
YF[X]/\‘)V(’G[X] = Y(F[X]/\G[Xl)

SFIX A 36K £ I(FI A Gl



Equivalences of Formulas

(F=G)AN(G=F)
F=G =
FVvG = GVF
(FVG)VH =
FV(GAH) =
FVT = T
FVF = F
FV—F
- (=F)
-~(FVG) = -FA-G
(X)FX]VG = (Qx)(F[x]V G)
ﬂYF[x] = )E(l—\F[X]

VFIX] vV VGIx] # VY(F[X] v G[x])
)E(”:[X]\/;'G[X] = )E<|(F[X]\/G[X])

FVv(GVH)
(FV G)A(FVH)

T
F

FAG = GAF

(FAGYAH = FA(GAH)
FA(GVH) = (FAG)V(FAH)
FAT = F

FAF = F

FA-F = F

“(FAG) = =FV-G
(AX)FIX]NG = (Qx)(F[x] A G)
S@F = V-F[
YF[X]/\‘)V(’G[X] = Y(F[X]/\G[Xl)

SFIX A 36K £ I(FI A Gl

Which implications do not hold in the # above?



Equivalences of Formulas

F—< G = (F=G)A(G=F)
F=G = —-FVG
FVG = GVF FAG = GAF
(FVG)VH = FV(GVH) (FAGYAH = FA(GAH)
FV(GAH) = (FVG)A(FVH) FA(GVH) = (FAG)V(FAH)
FvVT = T FAT = F
FVF = F FAF = F
Fv-F = T FA-F = F
—\(—|F) = F
-~(FVG) = -FA-G “(FAG) = =FV-G
(X)FX]VG = (Qx)(F[x]V G) (AX)FIX]NG = (Qx)(F[x] A G)
ﬂYF[x] = )E(l—\F[X] —\(>E(|X)F[X] = YﬂF[x]
VFIx] v VGIx] £ V(F[x] v G[x]) || VFIX]AVGIX] = V(F[x]AGIX])
)E(”:[X]\/;'G[X] = é(F[x]\/G[x]) )EJF[X] A )EJG[X] e g(F[X] A G[x])
Which implications do not hold in the # above?

~ z

4= —



Equivalences of Formulas (cont’d)

Note that
YF[X]\/YG[X] = YF[X]\/YG[)/] = XVyF[X]\/G[y]
SFIX A 361 = 3FI A6 = ’XayF[x]AG[y]



Outline

Normal Forms



Normal Forms

Normal forms:



Normal Forms

Normal forms:

1. CNF



Normal Forms

Normal forms:

1. CNF
2. DNF



Normal Forms

Normal forms:
1. CNF
2. DNF
3. negation normal form (NNF)



Normal Forms

Normal forms:

1.

CNF

2. DNF
3.
4

. prenex normal form (PNF)

negation normal form (NNF)



Normal Forms

Normal forms:

1.

LA

CNF

DNF

negation normal form (NNF)
prenex normal form (PNF)

Skolem standard form



Normal Forms

Normal forms:

1. CNF
DNF
negation normal form (NNF)

prenex normal form (PNF)

LA

Skolem standard form

Negation normal form (NNF) requires that =, A, and V to be the only
logical connectives and that negations appear only in literals.



Normal Forms

Normal forms:

1.

LA

CNF

DNF

negation normal form (NNF)
prenex normal form (PNF)

Skolem standard form

Negation normal form (NNF) requires that =, A, and V to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Qix1)...(Qnxs) M, where Q; € {V,3} and M is
quantifier-free.



Normal Forms

Normal forms:
1. CNF
DNF
negation normal form (NNF)

prenex normal form (PNF)

LA

Skolem standard form

Negation normal form (NNF) requires that =, A, and V to be the only
logical connectives and that negations appear only in literals.

A formula F in FOL is said to be in prenex normal form (PNF) iff the
formula is in the form (Qix1)...(Qnxs) M, where Q; € {V,3} and M is
quantifier-free.

A FOL formula is in Skolem standard form if it is of the form V M,

X1yee+5Xn

where M is a quantifier-free formula in CNF.



Normal Forms (cont’d)

Examples:



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form

(YP[X]) =Q = 3(PK= Q).



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form

(YP[X]) =Q = 3(PK= Q).

2. Bring the following formulas into Skolem standard form



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form

(YP[X]) =Q = 3(PK= Q).

2. Bring the following formulas into Skolem standard form

>

¥ 3 ((<Pley] A Qlxz)) v Rlxy.2)



Normal Forms (cont’d)

Examples:

1. Prove the following by bringing the formulas into conjunctive normal
form

(YP[X]) =Q = 3(PK= Q).

2. Bring the following formulas into Skolem standard form

>

¥ 3 ((<Pley] A Qlxz)) v Rlxy.2)

Y (3P[x,z]/\P[y,z]) = 3Q[x,y, u]
X,y \z u



Outline

Formula Clausification



Formula Clausification
A clause is a disjunction of literals.



Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]



Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.



Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.

Example: Let

" 1((ﬂp[x,y] A Qlx,z]) V R[x,y,z])

xy

The standard form of the formula above, that is

V(=P fIXIl vV RIx flx],glx]]) A (Q(xglx]) v Rlx, f[x],g[x]]))
can be represented by the following set of clauses

{=Plx flIx]I vV RIx, fx], g[x]], Q(x,g[x]) v RIx, f[x], g[x]]}



Formula Clausification
A clause is a disjunction of literals.
Examples: =P[x] V Q[y, f[x]], P[x]
A set of clauses S is regarded as a conjunction of all clauses in S, where
every variable in S is considered governed by a universal quantifier.

Example: Let

" 1((ﬂp[x,y] A Qlx,z]) V R[x,y,z])

xy

The standard form of the formula above, that is

V(=P fIXIl vV RIx flx],glx]]) A (Q(xglx]) v Rlx, f[x],g[x]]))
can be represented by the following set of clauses

{=Plx flIx]I vV RIx, fx], g[x]], Q(x,g[x]) v RIx, f[x], g[x]]}

Note that, if S is a set of clauses that represents a standard form of a
formula F, then F is inconsistent iff S is inconsistent.



Formulas Clausification (cont’d)

Example :
Transform the formulas Fi, F>,F3,F4, and =G into a set of clauses, where

Fll

le

F4Z

vV 3P[x,y, Z]
X,y z

v ((P[x,y,u] N Ply,z,v] A Plu,z,w]) = Px,v,w])

xX,y,Z,u,v,w
N
v (P[x,y,ul A (Ply,z,v] A Plx,v,w]) = Plu,z,w])

X,y,Z,Uu,v,w

VP[x,e,x] A VP[e, x, x]
VP[x,i[x], e] A VP[i[x], x, €]

(YP[X,X, e]) = u,Y,w(P[u’ v,w] = Plv,u,w])



Outline

Substitution



Substitution



Substitution

Example: Let
G P[x] vV Q[x]
G =P[f[x]] V R[]



Substitution

Example: Let
G P[x] Vv Q[x]
G:  P[f[x] vV R[x]

Let x — f[a] in Ci, x = ain G,.



Substitution
Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[x]

Let x — f[a] in Ci, x = ain G,.

We have
q P[fla]] v Q[f[a]]
G =P[f[a]] V R[a]



Substitution

Example: Let
G P[x] v Q[x]
G: —P[f[x]] V R[x]
Let x — f[a] in Ci, x = ain G,.
We have
q P[fla]] v Q[f[a]]
G =P[f[a]] V R[a]

C{ and Cj are ground instances.



Substitution

Example: Let
G P[x] v Q[x]
G =P[f[x]] V R[x]
Let x — f[a] in Ci, x = ain G,.
We have
q P[fla]] v Q[f[a]]
G =P[f[a]] V R[a]

C{ and Cj are ground instances.
A resolvent of C{ and C} is

G Q[f[a]] V Rla]



Substitution

Example: Let
G P[x] vV Q[x]
G =P[f[x]] V R[]

Let x — f[x] in C;. We have



Substitution

Example: Let
Cl .
C2 .
Let x — f[x] in C;. We have

G

C} is an instance of .

Pix] Vv QIx]
=P[f[x]] V R[x]

PIFX] v QIf[X]]



Substitution

Example: Let
G P[x] vV Q[x]
G:  ~P[fIx] vV R[x]

Let x — f[x] in C;. We have

(G Plf[x]] vV Q[f[x]]

C} is an instance of .

A resolvent of
G -P[f[x]] V R[x]

(G Pf[x]] vV QI[f[x]]



Substitution

Example: Let
Cl .
C2 .

Let x — f[x] in C;. We have
G

C} is an instance of .

A resolvent of
C2 .
G

C3:

Pix] Vv QIx]
=P[f[x]] V R[x]

PIFX] v QIf[X]]

-P[f[x]] V R[x]

PIFIX] v QIf[X]]

QX v R



Substitution

Example: Let

G Plx] Vv Q[x]

G : =P[f[x]] V R[]
Let x — f[x] in C;. We have

(G Plf[x]] vV Q[f[x]]

C} is an instance of .

A resolvent of

G -P[f[x]] V R[x]
(G Pf[x]] vV QI[f[x]]
G : Q[f[x]] V R[x]

(4 is an instance of G;. G is the most general clause.



Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.



Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.

Let o be defined as above and E be an expression. Then Eo is an
expression obtained from E by replacing simultaneously each occurrence
of v; in E by the term t;



Substitution (cont’d)

A substitution o is a finite set of the form {v; — t1,..., v, — t,} where
every t; is a term different from v; and no two elements in the set have
the same variable v;.

Let o be defined as above and E be an expression. Then Eo is an
expression obtained from E by replacing simultaneously each occurrence
of v; in E by the term t;

Example: Let 0 = {x = z,z — h[a,y]} and E = f[z,a,g[x],y]. Then
Eo = f[hla,y], 2. g[2], y].



Substitution (cont’d)

Let

0= {Xl — 1, .. Xp — t,,}
A={y1 = U1, ... Yo — Un}

Then the composition of § and A (6 o A) is obtained from the set
{x1 = B oy Xp = ta\ Y1 = U1, ey Yo —> Un}

by deleting any element x; — t;A for which x; = t;A and any element
¥i — u; such that y; is among {xi, ..., X, }.



Substitution (cont’d)
Example 1:

0=1{x—flyly =z}
A={x—ay—bz—y}



Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then

Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}



Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then
Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}
Example 2:

bp={x—=ay—flz],z—=y}
O ={x—=> by —z,z— g[x]}



Substitution (cont’d)
Example 1:

0={x—flyl,y = z}
A={x—ay—bz—y}

Then
Ood={x—flbl,y > y,x = a,y = bz—y}
={x—f[b,z—=y}
Example 2:

bp={x—=ay—flz],z—=y}
O ={x—=> by —z,z— g[x]}

Then
f100, ={x — a,y = flg[x]l,z = z,x = b,y = z,z — g[x]}
={x—=ay— flg[x]]}



	Syntax
	Semantics
	(Un)Satisfiability & (In)Validity
	Equivalences of Formulas
	Normal Forms
	Formula Clausification
	Substitution

