Computer Algebra, F.Winkler, WS 2014/15

3. Greatest common divisors of polynomials

Greatest common divisors of univariate polynomials f(x), g(x) over a field K can be
determined by a Grobner basis compuation; ged(f, g) is the sole element in a reduced
Grobner basis of the ideal generated by f and g. In fact, the Euclidean algorithm behaves
exactly in the same way as the Grobner basis algorithm would in this special case. Still,
in this chapter we will take a closer look at specialized algorithms for the determination
of greatest common divisors of polynomials.

3.1. Grobner bases and GCDs

Proofs of Theorem in this chapter can be found in [Winkler 1996], Chapter 4.

Definition 3.1.1. Let I be an integral domain, a(z),b(x) € I[z]. A polynomial g(z) €
I[x] is a greatest common divisor (gcd) of a and b, iff

(i) g divides (evenly) both a and b (i.e. g is a common divisor of a and b) and
(ii) every other common divisor h of a and b divides g. O
Theorem 3.1.2. The (extended) Euclidean algorithm GCD_EUCLID computes the gcd

g(x) of polynomials a(x),b(z) over a field K, and the Bézout cofactors s(z),t(x) s.t.
g=s-a+t-b:

GCD_EUCLID
for given non-zero polynomials a,b € K|z],
the greatest common divisior g and the Bézout cofactors s,t are computed
(1) (ro, 71, S0, S1,to, t1) := (a,b,1,0,0,1);
1:=1;
(2) while r; # 0 do
¢; := quotient of r;_; on division by r;;
(Tig1, Sig1s tig1) := (Tim1, Sic1, tim1) — @i - (74, 84, i)
1i=1+1
endwhile ;
(3) (g,s,t) := (ri_1, Si—1,ti—1) ; return

What will happen, if we apply the Grobner basis algorithm to univariate polynomials?
Example 3.1.3. We consider polynomials over Q. Starting from the polynomials

fi = a® + 25— 32* — 323 + 822 + 22 — 5,
fo = 3254 52t — 422 — 9z + 21,

43

the Euclidean algorithm (after clearing denominators in the remainders) generates the
sequence of remainders

f3 = 533‘4 — 1’2 + 3,

f1 = 132> + 252 — 49,

fs =4663x — 6150,

Jo =1

Now let us see what GROBNER_B would generate for the input {f1, fo}. In the univariate
case, there is only one admissible ordering of power products, namely the graduates
ordering 1 <z < 2% < ---.

spol(f1, fo) = 225 +5:p — 322 — 62+ 15 —>?f1’f2} Sat — 22 +3=:f3
spol(fa, f3) = 28x% — 2922 — 452 + 105 — 133:3 +25x — 49 =: [,
spol(f3, f1) = 12523 — 23222 — 39 — 1t} 4663:c — 6150 =: f5
spol(fa, f5) = 1965252 — 228487 — gy L

So we see that the Grobner basis algorithm produces exactly the same results (and also
subresults) as the Euclidean algorithm. m

Now let us investigate the computation of greatest common divisors of polynomials
with coefficients in a unique factorization domain (ufd), for instance in Z. Throughout
this section we let I be a unique factorization domain and K the quotient field of I.

Definition 3.1.4. A univariate polynomial f(z) over the ufd I is primitive iff there is no
prime in / which divides all the coefficients in f(x). i

Theorem 3.1.5. (Gauss’ Lemma) Let f, g be primitive polynomials over the ufd I. Then
also f - g is primitive.

Proof: Let f(z) =Y 1" aiz’, g(x) = > biz’. For an arbitrary prime p in I, let j and k
be the minimal indices such that p does not divide a; and by, respectively. Then p does
not divide the coefficient of z7+* in f - g. O

Corollary. gcd’s and factorization are basically the same over I and over K; more
precisely,

if f1, fo € I[z] are primitive and g is a ged of fi and fy in I]z|, then g is also a ged of f;
and fy in K|z].

Proof: Clearly every common divisor of f; and f; in [[z] is also a common divisor in
K[z]. Now let ¢’ be a common divisor of f; and f; in K[z]. Eliminating the common
denominator of coefficients in ¢’ and making the result primitive, we get basically the
same divisor. So w.l.o.g. we may assume that ¢’ is primitive in I[z]. For some primitive
hi,he € I[z], ai,as € K we can write f; = ay - hy - ¢, fo = as - ha - ¢'. Since, by Gauss’
Lemma, hig’ and hog’ are primitive, a; and a, have to be units in /. So ¢’ is also a
common divisor of f; and fy in I[z]. O

Definition 3.1.6. Up to multiplication by units we can decompose every polynomial
a(z) € I[z] uniquely into
a(x) = cont(a) - pp(a),

44

where cont(a) € I and pp(a) is a primitive polynomial in I[z]. cont(a) is the content of
a(x), pp(a) is the primitive part of a(z). m

Definition 3.1.7. Two non-zero polynomials a(x),b(x) € I[x] are similar iff there are
similarity coefficients o, f € I* such that « - a(x) = 5 - b(x). In this case we write
a(x) ~ b(x). Obviously a(z) ~ b(z) if and only if pp(a) = pp(b). =~ is an equivalence
relation preserving the degree.

In I[z] we might not be able to divide polynomials a(x), b(z) with quotient and remainder;
the problem is that the leading coefficients might not be divisible. But we can certainly
divide lc(b)™ ™" . a(z) by b(z), where m = deg(a),n = deg(b). The resulting quotient
and remainder are called pseudo-quotient and pseudo-remainder, written as pquot(a, b)
and prem(a, b). O

Definition 3.1.8. Let k& be a natural number greater than 1, and f1, fo, ..., fre1 poly-
nomials in I[z].
Then fi, fa, ..., fre1 is a polynomial remainder sequence (prs) iff

o deg(f1) > deg(f2),
.fZ#Oforlglgk and fk+1:O,

o fi~prem(fi o, fi_1) for3<i<k+1. O

Lemma 3.1.9. Let a,b,d',V € I[z]*, deg(a) > deg(b), and r ~ prem(a, b).
(a) If a >~ a' and b ~ ' then prem(a,b) ~ prem(a’, V).
(b) ged(a,b) ~ ged(b, 7).

Proof: Let aa = o'd’, b= f'V, and m = deg(a),n = deg(b). By Lemma 2.2.4 in [Winkler
1996] we get

g™ laprem(a,b) = prem(aa, 5b)
= prem(d’d’, f'0') = (B')" " 1a/prem(d’, v'). m

Therefore, if fi, fo,..., fx,0 is a prs, then

ged(f1, fo) = ged(f2, f3) = ... = ged(fe—1, f) = fr

If f; and f, are primitive, then by Gauss’ Lemma also their gcd must be primitive, i.e.
ged(f1, f2) = pp(fx). So the ged of polynomials over the ufd I can be computed by the
algorithm GCD_PRS.

These considerations lead to the following algorithm for computing the ged of polyno-
mials.

45

GCD_PRS (computation of ged by prs)
for given non-zero polynomials a,b € I[z],
their greatest common divisor g = ged(a, b) is computed
(1) if deg(a) > deg(b)
then f, := pp(a); f2 := pp(b)
else fi :=pp(b); fo := pp(a);
(2) d := ged(cont(a), cont(b));
(3) compute f3,..., fr, fre1 = 0 such that fi, fo,..., fx,0 is a prs;
(4) g:=d-pp(fr); return g O

Actually GCD_PRS is a family of algorithms, depending on how exactly we choose
the elements of the prs in step (3). Starting from primitive polynomials fi, fo, there are
various possibilities for this choice.

In the so-called generalized Euclidean algorithm we simply set
fi = prem(fi,g, fifl) for 3 < 1 < k+ 1.

This choice, however, leads to an enormous blow-up of coefficients, as can be seen in the
following example.

Example 3.1.10. We consider polynomials over Z. Starting from the primitive polyno-
mials (compare Example 3.1.3)

fi = 2%+ 25— 32* — 323 + 822 + 22 — 5,
fo = 3254 52t —42% — 9z + 21,

the generalized Fuclidean algorithm generates the prs

fs = —15z* + 322 — 9,

fi = 1579522 + 30375z — 59535,

fs = 1254542875143750x — 1654608338437500,
fe = 12593338795500743100931141992187500.

So the ged of f; and f5 is the primitive part of fg, i.e. 1. 0

Although the inputs and the output of the algorithm may have extremely short coef-
ficients, the coefficients in the intermediate results may be enormous. In particular, for
univariate polynomials over Z the length of the coefficients grows exponentially at each
step (see (Knuth 1981), Section 4.6.1). This effect of intermediate coefficient growth is
even more dramatic in the case of multivariate polynomials.

Another possible choice for computing the prs in GCD_PRS is to shorten the coeffi-
cients as much as possible, i.e. always eliminate the content of the intermediate results.

fi = pp(prem(fi_s, fi-1)).

We call such a prs a primitive prs.

46

Example 3.1.10.(continued) The primitive prs starting from fi, f5 is

fg = 5[L‘4 — $’2 + 3,

fi = 132% + 252 — 49,

fs = 4663x — 6150,

fe =1. O

Keeping the coefficients always in the shortest form carries a high price. For every
intermediate result we have to determine its content, which means doing a lot of ged
computations in the coefficient domain.

The goal, therefore, is to keep the coefficients as short as possible without actually
having to compute a lot of gcd’s in the coefficient domain. So we set

Bifi = prem(fi_2, fi-1),

where (3;, a factor of cont(prem(f;_s, fi_1)) needs to be determined. The best algorithm
of this form known is Collins’ subresultant prs algorithm (Collins 1967), (Brown,Traub

1971).

47

3.2. A modular gcd algorithm

For motivation let us once again look at the polynomials in Example 3.1.10,

fi =a®+ 25— 32* — 323 + 822 + 22 — 5,
fo =3x8+ b2t — 422 — 9z + 21.

If f; and f5 have a common factor h, then for some ¢, g2 we have

fi=aq-h, fa=¢q-h. (3.2.1)

These relations stay valid if we take every coefficient in (3.2.1) modulo 5. But modulo 5
we can compute the ged of f; and f5 in a very fast way, since all the coefficients that will
ever appear are bounded by 5. In fact the ged of f; and f; modulo 5 is 1. By comparing
the degrees on both sides of the equations in (3.2.1) we see that also over the integers
ged(f1, fo) = 1. In this section we want to generalize this approach and derive a modular
algorithm for computing the ged of polynomials over the integers.

Clearly the coefficients in the ged can be bigger than the coefficients in the inputs:

a =+ —z—-1 =(x+1)>3*(z—1),
b =i+ +rx+1 =(@+1)2%*2®—-z+1),
ged(a,b) =22 +2r+1 = (z+1)%

So how big can the coefficients in the ged be?

Theorem 3.2.1. (Landau-Mignotte-bound) Let a(z) = Y " a;x" and b(z) = > 1 b’
be polynomials over Z (a,, # 0 # b,) such that b divides a. Then

n . bn
Solbl < 2t
i=0 m

or |[blly < 2% [bn/aml - [la]]2: 0

Corollary. Let a(x) =Y " a;x" and b(x) = > 1 bz’ be polynomials over Z (a,, # 0 #
b,). Every coefficient of the ged of a and b in Z[z] is bounded in absolute value by

1 1
)
‘am|||a’||2 |bn||| ||2 o

2min(ms) o ed(dyy, by) - min(

The ged of a(z) mod p and b(z) mod p may not be the modular image of the integer

ged of a and b. An example for this is a(z) = x — 3,b(z) = = + 2. The ged over Z is 1,

but modulo 5 a and b are equal and their ged is x 4+ 2. But fortunately these situations
are rare.

So what we want from a prime p is the commutativity of the following diagram, where
¢, is the homomorphism from Z[z] to Z,[z] defined as ¢,(f(z)) = f(z) mod p.

Z[x] x Z]x] —%p Zy|x] X Zy[z]
ged in Zz] | 1 ged in Zy[z]
Zlz) —% L[]

48

This diagram commutes for all those primes p which do not divide a certain resultant.
We will discuss resultants in the next chapter.

Lemma 3.2.2. Let a,b € Z[x]*, p a prime number not dividing the leading coefficients
of both a and b. Let ag, and b, be the images of a and b modulo p, respectively. Let
¢ = ged(a, b) over Z.

(a) deg(ged(ag), b)) > deg(ged(a, b)).

(b) If p does not divide the resultant of a/c and b/c, then ged(ay), b)) = ¢ mod p.

Proof:

(a) ged(a,b) mod p divides both agy and by, so it divides ged(agy),bp)). Therefore
deg(ged(ag), bpy)) > deg(ged(a, b) mod p). But p does not divide the leading coefficient
of ged(a, b), so deg(ged(a,b) mod p) = deg(ged(a, b)).

(b) Let ¢(,) = cmod p. a/c and b/c are relatively prime. ¢, is non-zero. So

ged(aw), b)) = cp) - ged(aw)/cw)s b /cp))-

If ged(agy), b)) # c@p), then the ged of the right hand side must be nontrivial. Therefore
res(ap)/Cw), bp)/cpy) = 0. The resultant, however, is a sum of products of coefficients, so
p has to divide res(a/c,b/c). m

Of course, the ged of polynomials over Z, is determined only up to multiplication by
non-zero constants. So by “ged(a, b)) = ¢ mod p” we actually mean “c mod p is a ged
of ag), bg)”

From Lemma 3.2.2 we know that there are only finitely many primes p which do not
divide the leading coefficients of a and b but for which deg(gcd(a), b)) > deg(ged(a, b)).
When these degrees are equal we call p a lucky prime.

In the sequel we describe a modular algorithm that chooses several primes, computes
the ged modulo these primes, and finally combines these modular ged’s by an application
of the Chinese remainder algorithm. Since in Z,[z] the gcd is defined only up to multipli-
cation by constants, we are confronted with the so—called leading coefficient problem. The
reason for this problem is that over the integers the gcd will, in general, have a leading co-
efficient different from 1, whereas over Z, the leading coefficient can be chosen arbitrarily.
So before we can apply the Chinese remainder algorithm we have to normalize the leading
coefficient of ged(a(y), bp)). Let am, b, be the leading coefficients of a and b, respectively.
The leading coefficient of the ged divides the ged of a,, and b,. Thus, for primitive poly-
nomials we may normalize the leading coefficient of ged(ag), b)) to ged(am,, by) mod p
and in the end take the primitive part of the result. These considerations lead to the
following modular ged algorithm.

49

GCD_MOD (modular ged algorithm)
for given non-zero primitive polynomials a, b € Z[z]*,
their greatest common divisor g = ged(a, b) is computed.
Integers modulo m are represented as {k | —m/2 < k < m/2}.
(1) d := ged(le(a),lc(b));
M :=2-d - (Landau — Mignotte — bound for a, b);
[in fact any other bound for the size of the coefficients can be used]
(2) p := a new prime not dividing d;
Clp) = gcd(a(p), b(p)); [With IC(C(p)) = 1]
9ip) := (d mod p) - c(p);
(3) if deg(g(p)) = 0 then {g := 1; return};
P = p;
9 = 93
(4) while P < M do
p := a new prime not dividing d;
cp) = ged(ag), by); [with le(cq)) = 1]
9ip) = (d mod p) - cp);
if deg(g(p)) < deg(g) then goto (3);
if deg(g(y)) = deg(g)
then g := CRA(g, 9(»), P, p);
[actually CRA is applied to the coefficients of g and g()]
P=P-p
(5) g:=pp(9);
if g | @ and ¢ | b then return g ;
goto (2) i

In Step 4 we know the coefficients of a polynomial modulo P and p, and we want to
know them modulo P -p. So we have to solve a so-called Chinese remainder problem
(CRP) in Z:

given: ry,...,r, € Z (remainders)
mi,...,m, € Z* (moduli), pairwise relatively prime
find: r € Z, such that » = r; mod m; for 1 < i < n.
The following algorithm CRA (Chinese remainder algorithm) solves this problem. For
details see [Winkler 1996].

CRA (Chinese remainder algorithm)

for given remainders rq, 7o and moduli mq, mo

a solution r of the corresponding CRP is computed
(1) c:=m;" mod may;

(2) r} =1y mod my;

(3) 0 = (ro —ri)c mod mey;

(4) r:=r] 4+ om; return r O

Usually we do not need as many primes as the Landau-Mignotte-bound tells us for

20

determining the integer coefficients of the ged in GCD_MOD. Whenever g remains un-
changed for a series of iterations through the while—-loop, we might apply the test in step
(5) and exit if the outcome is positive.

Example 3.2.3. We apply GCD_MOD for computing the ged of

a =2x%—132° + 20x* + 122% — 202% — 152 — 18,
b =228 4 2% — 142* — 1123 + 2222 + 282 + 8.

d = 2. The bound in step (1) is
1 1
M=2.2-20.2. min (51666, 5\/1654) ~ 10412.

As the first prime we choose p = 5. g = (2mod 5)(2® + 2 + x + 1). So P = 5 and
g =223+ 2% + 21 + 2.

Now we choose p = 7. We get g7y = 22* + 32 + 22 + 3. Since the degree of g7 is higher
than the degree of the current g, the prime 7 is discarded.

Now we choose p = 11. We get g1y = 22° + 522 — 3. By an application of CRA_2 to the
coefficients of g and g(1) modulo 5 and 11, respectively, we get g = 2z% + 272 + 22z — 3.
P is set to 55.

Now we choose p = 13. We get g(13) = 202 — 2x — 4. All previous results are discarded,
we go back to step (3), and we set P = 13, g := 22% — 2z — 4.

Now we choose p = 17. We get g7y = 22 — 22 — 4. By an application of CRA_2 to the
coefficients of g and g7y modulo 13 and 17, respectively, we get g = 22% — 2z — 4. P'is
set to 221.

In general we would have to continue choosing primes. But following the suggestion above,
we apply the test in step (5) to our partial result and we see that pp(g) divides both a
and b. Thus, we get ged(a,b) = 22 — x — 2. i

o1

Multivariate polynomials

We generalize the modular approach for univariate polynomials over Z to multivariate

polynomials over Z. So the inputs are elements of Z[xy,...,x,_1][x,], where the coef-
ficients are in Z[xy,...,z, 1] and the main variable is x,. In this method we compute
modulo irreducible polynomials p(x) in Z[xy, ..., z,_1]. In fact we use linear polynomials

of the form p(z) = ,,—1 — r where r € Z. So reduction modulo p(z) is simply evaluation
at r.

For a polynomial a € Z[z1, ..., x,_2|[y][z] and r € Z we let a,_, stand for a mod y —r-.
Obviously the proof of Lemma 3.2.2 can be generalized to this situation.

Lemma 3.2.4. Let a,b € Z[x,. .., x, o][y][z]* and r € Z such that y —r does not divide
both lc,(a) and lc,(b). Let ¢ = ged(a, b).

(a) degm(g(}d<a’y*7’7 byfr)) Z deg:}:<ng<a7 b))
(b) Ify —r f resy(a/c,b/c) then ged(ay—r, by—,) = ¢y i
The analogue to the Landau-Mignotte bound is even easier to derive: let ¢ be a

factor of a in Z[zy, ..., z, »][y][z]. Then deg,(c) < deg,(a). This leads to an algorithm
GCD_MODm for modular computation of gcds of multivariate polynomials.

Example 3.2.5. We look at an example in Z[z,y]. Let

a(w,y) = 22%* —xy® + 2%y? + 20ty — 2Py — 6wy + 3y + 2° — 322,

b(z,y) =2xy®—y> — 2%y* + xy? — 23y + 4oy — 2y + 222
We get as a degree bound for the ged
M =1+ min(deg,(a),deg, (b)) = 4.
The algorithm proceeds as follows:
r=1: ged(az_1,b:-1) =y + 1.

r=2: ged(ag_2,b,—2) = 3y + 4. Now we use Newton interpolation to obtain g = (22 —
Ly + (3z —2).

r=3: ged(az_3,b,3) = 5y+9. Now by Newton interpolation we obtain g = (22— 1)y + 22
and this is the ged (the algorithm would actually take another step). |

D2

GCD_MODm (multivariate modular ged algorithm)
for given non-zero polynomials a,b € Z[xy, ..., z4|[z,] and 0 < s < n
the greatest common divisor ¢ = ged(a, b) is computed by evaluation of x.

(0)
(1)

if s =0 then g := gcd(cont(a), cont(b)) GCD_MOD(pp(a), pp(b)) ; return g ;
M := 1+ min(deg, (a),deg, (b));
a' = pp,,(a); U :=pp,, (b);
f := GCD_-MODm(cont,, (a), cont,, (b),s,s — 1);
d :== GCD_MODm(lc,, (a'),lcy, ('), s,s — 1);
r := an integer s.t. deg, (a) _,)=deg, (a') or deg, (U, _.) = deg, (b');
9(yy == GCD-MODm(a;, _,, b, ., n,s —1);
¢ = ey, (94))3
9ir) = (du—r - g(,y)/c (but if the division fails goto (2)) ;
m = 1;
9= 9@
while m < M do
r:= a new integer s.t. deg, (al, _,) = deg, (a') or deg, (b, _.) = deg, (b');
9(yy = GCD-MODm(a;, _,, b, ., n,s — 1) ;
¢ 1= ey, (gh);
9y = (do,—r - g(,y) /¢~ (but if the division fails continue) ;
if deg,, (9(,) < deg,,(g) then goto (3);
if deg,, (9(r) = deg(g)

then incorporate gy into g by Newton interpolation ; m :=m +1;
9:= [pp.,(9);
if g€ Z[xy,...,z[r,) and g | @ and g | b then return g ;
goto (2) m

For computing the ged of a,b € Zxy,...,x,], the algorithm is initially called as
GCD_MODm(a,b,n,n — 1).

23

3.3. Squarefree factorization

Definition 3.3.1. A polynomial a(xy,...,z,) in I[xy,...,z,] (I a ufd) is squarefree iff
every nontrivial factor b(x1, ..., z,) of a (i.e. b not similar to @ and not a constant) occurs
with multiplicity exactly 1 in a. O

Theorem 3.3.2. Let a(x) be a nonzero polynomial in K|[z|, where char(K) = 0 or
K =17, for a prime p. Then a(z) is squarefree if and only if ged(a(x),d'(z)) = 1. (d'(z)
is the derivative of a(x).)

Proof: 1f a(x) is not squarefree, i.e. for some non—constant b(z) we have a(z) = b(z)*-c(z),

then
d'(z) = 2b(x)V (z)c(x) + b*(z)c (z).

So a(z) and a'(x) have a non—trivial ged.
On the other hand, if a(z) is squarefree, i.e.

Now it is easy to see that none of the irreducible factors a;(x) is a divisor of a/(x). a;(z) di-
vides all the summands of a’(x) except the i-th. This finishes the proof for characteristic 0.
In Z,[x], a(z) cannot vanish, for otherwise we could write a;(z) = b(a?) = b(z)P for some
b(x), and this would violate our assumption of squarefreeness. Thus, ged(a(z),a’(x)) = 1.
|

The problem of squarefree factorization for a(z) € KJ[z| consists of determining the
squarefree pairwise relatively prime polynomials b;(x), ..., bs(x), such that

= Hbl-(x)i. (3.3.1)

The representation of a as in (3.3.1) is called the squarefree factorization of a.

In characteristic 0 (e.g. when a(x) € Z[z]), we can proceed as follows. We set a;(z) :=

a(x). We set

as(z) = ged(ay, af) Hb c1(x) = ay(z)/as(x Hb

c1(z) contains every squarefree factor exactly once. Now we set
az(z) := ged(ag, ab) Hb ca(x) == ag(x)/az(z) = Hb@(l’)

o4

c2(x) contains every squarefree factor of muliplicity > 2 exactly once. So

bi(x) = c1(z)/ca().

as(z) := ged(ag, ay) Hb c3(x) == az(x)/aqs(z) = Hb@(l’)
by(x) = ca(x)/cs(x).

Iteration this process until csyq(z) = 1, we ultimately get the desired squarefree factor-
ization of a(z).

SQFR_FACTOR
for a given non-zero primitive polynomial a in Z[z]
the list of squarefree factors [by(x),...,bs(z)] of a is computed.
(1) ap = a;
ay := ged(aq, al);
c1 = ay/asg;
az := ged(ag, ab);

¢y 1= ag/as;
b1 = Cl/CQ;
1:=2;

(2) while ¢; # 1 do
iy2 = gcd(aiq1, a§+1)5
Ci+1 ‘= ai+1/az’+2;
bi := ¢ifcita;
1i=1+1;

(3) return [by,...,b;_1] m

If the polynomial a(z) is in Z,[z], the situation is slightly more complicated. First we

determine
d(z) = ged(a(z),d (x)).

If d(z) = 1, then a(x) is squarefree and we can set a;(x) = a(x) and stop.

If d(x) # 1 and d(x) # a(z), then d(z) is a proper factor of a(x) and we can carry out
the process of squarefree factorization both for d(x) and a(x)/d(z).

Finally, if d(z) = a(z), then we must have a/(z) = 0, i.e. a(x) must contain only terms
whose exponents are a multiple of p. So we can write a(x) = b(z?) = b(x)? for some b(z),
and the problem is reduced to the squarefree factorization of b(x).

All this development can be carried over to the multivariate case rather easily. Propo-
sition 12 in Chapter 4.2 of [Cox,Little,0’Shea 1997] ! leads to the following theorem.

Theorem 3.3.3. Let a(xy,...,x,) € K[xy,...,x,] and char(K) = 0. Then a is square-
free if and only if ged(a, 0a/0xy, ..., 0a/0x,) = 1. i

ID.Cox, J.Little, D.O’Shea, Ideals, Varieties, and Algorithms, 2nd edition, Springer-Verlag (1997)

25

