\qquad

Studienkennzahl: \qquad

Matrikelnummer: \qquad

Final Exam
Computer Algebra (326.010)
(no books allowed)
(1) What is wrong with this attempt at a modular algorithm for computing the greatest common divisor of polynomials over \mathbb{Z} ?
algorithm GCD_MOD(in: a, b; out: g);
$\left[a, b \in \mathbb{Z}[x]^{*}\right.$ primitive, $g=\operatorname{gcd}(a, b)$.
Integers modulo m are represented as $\{k \mid-m / 2<k \leq m / 2\}$.]
(1) $M:=2 \cdot($ Landau - Mignotte - bound for $a, b)$;
[in fact any other bound for the size of the coefficients can be used]
(2) $p:=$ a new prime;
$g_{(p)}:=\operatorname{gcd}\left(a_{(p)}, b_{(p)}\right) ;$
(3) if $\operatorname{deg}\left(g_{(p)}\right)=0$ then $\{g:=1$; return $\}$;
$P:=p ;$
$g:=g_{(p)} ;$
(4) while $P \leq M$ do
$\{p:=$ a new prime;
$g_{(p)}:=\operatorname{gcd}\left(a_{(p)}, b_{(b)}\right)$;
if $\operatorname{deg}\left(g_{(p)}\right)<\operatorname{deg}(g)$ then goto (3);
if $\operatorname{deg}\left(g_{(p)}\right)=\operatorname{deg}(g)$
then $\left\{g:=\right.$ CRA_2 $\left(g, g_{(p)}, P, p\right)$;
[actually CRA_2 is applied to the coefficients of g and $g_{(p)}$]
$P:=P \cdot p\}\} ;$
(5) $g:=$ primitive part of g;
(2) Consider $a(x)=6 x^{4}+13 x^{3}+14 x^{2}+8 x+1$.
(a) Is a squarefree in $\mathbb{Q}[x]$?
(b) Is a squarefree in $\mathbb{Z}_{5}[x]$?
(c) Are there finitely many or infinitely many primes p such that a is not squarefree in $\mathbb{Z}_{p}[x]$?
(d) How can one determine those primes p for which a is not squarefree in $\mathbb{Z}_{p}[x]$?
(3) Factorization in $\mathbb{Z}_{p}[x], p$ a prime:

What are the main steps of the Berlekamp factorization algorithm?
Explain these main steps of the Berlekamp factorization algorithm.
(4) Prove or disprove the following statements:
(a) Let $f(x), g(x) \in K[x], K$ a field. Then $\{\operatorname{gcd}(f, g)\}$ is a Gröbner basis for $\langle f, g\rangle$.
(b) Let $f(x, y), g(x, y) \in K[x, y], K$ a field. Then $\{\operatorname{gcd}(f, g)\}$ is a Gröbner basis for $\langle f, g\rangle$.
(5) (a) Is $G=\left\{g_{1}, g_{2}\right\}$ a Gröbner basis for an ideal in $\mathbb{Q}[x, y]$ with respect to the lexicographic term ordering with $x<y$?

$$
g_{1}=y^{2}+x^{3}-1, \quad g_{2}=x^{4}+x^{2}+1
$$

(b) How many complex solutions (counting multiplicities) does the system of equations $g_{1}(x, y)=g_{2}(x, y)=0$ have?
(c) How would a Gröbner basis for an ideal in $\mathbb{Q}[x, y]$ have to look like, so that the corresponding system of equations has infinitely many complex solutions?

