Name:

Studienkennzahl:

Matrikelnummer:

Final Exam Computer Algebra (326.010) (no books allowed)

(1) What is wrong with this attempt at a modular algorithm for computing the greatest common divisor of polynomials over \mathbb{Z} ?

algorithm GCD_MOD(in: a, b; out: q); $[a, b \in \mathbb{Z}[x]^*$ primitive, $g = \gcd(a, b)$. Integers modulo m are represented as $\{k \mid -m/2 < k \leq m/2\}$. (1) $M := 2 \cdot (\text{Landau} - \text{Mignotte} - \text{bound for } a, b);$ in fact any other bound for the size of the coefficients can be used (2) p := a new prime; $g_{(p)} := \gcd(a_{(p)}, b_{(p)});$ (3) if $\deg(g_{(p)}) = 0$ then $\{g := 1; \text{ return}\};$ P := p; $g := g_{(p)};$ (4) while $P \leq M$ do $\{p := a \text{ new prime};$ $g_{(p)} := \gcd(a_{(p)}, b_{(b)});$ if $\deg(g_{(p)}) < \deg(g)$ then goto (3); if $\deg(g_{(p)}) = \deg(g)$ then $\{g := CRA_2(g, g_{(p)}, P, p);$ [actually CRA_2 is applied to the coefficients of g and $g_{(p)}$] $P := P \cdot p \} \};$ (5) g := primitive part of g;

(2) Consider $a(x) = 6x^4 + 13x^3 + 14x^2 + 8x + 1$.

- (a) Is a squarefree in $\mathbb{Q}[x]$?
- (b) Is a squarefree in $\mathbb{Z}_5[x]$?
- (c) Are there finitely many or infinitely many primes p such that a is not squarefree in $\mathbb{Z}_p[x]$?
- (d) How can one determine those primes p for which a is not squarefree in $\mathbb{Z}_p[x]$?

(3) Factorization in $\mathbb{Z}_p[x]$, p a prime:

What are the main steps of the Berlekamp factorization algorithm? Explain these main steps of the Berlekamp factorization algorithm.

- (4) Prove or disprove the following statements:
 - (a) Let $f(x), g(x) \in K[x]$, K a field. Then $\{gcd(f,g)\}$ is a Gröbner basis for $\langle f, g \rangle$.
 - (b) Let $f(x, y), g(x, y) \in K[x, y]$, K a field. Then $\{\gcd(f, g)\}$ is a Gröbner basis for $\langle f, g \rangle$.
- (5) (a) Is $G = \{g_1, g_2\}$ a Gröbner basis for an ideal in $\mathbb{Q}[x, y]$ with respect to the lexicographic term ordering with x < y?

$$g_1 = y^2 + x^3 - 1, \qquad g_2 = x^4 + x^2 + 1$$

- (b) How many complex solutions (counting multiplicities) does the system of equations $g_1(x, y) = g_2(x, y) = 0$ have?
- (c) How would a Gröbner basis for an ideal in $\mathbb{Q}[x, y]$ have to look like, so that the corresponding system of equations has infinitely many complex solutions?