to be prepared for 14.10.2014

Exercise 1. Consider the polynom

$$
f=x^{5}-x^{4}+x^{3}-x^{2}+x-2 .
$$

Use a computer algebra system to perform the following tasks.

1. Compute the zeros of f numerically. You have influence on floating point precision, if you want to.
2. Generate a picture of the graph of the polynomial function $x \mapsto f(x)$ on an interval $[a, b]$. Choose a and b in such a way that you can 'see' the real zeros of f.
3. Compute the zeros of f symbolically. Which output comes from your computer algebra system?
4. Compute the zeros of the polynomial

$$
f=2 x^{2}+2 x^{3}+2 x^{4}+x^{5}-x^{6}+3 x+1
$$

Exercise 2. Given the matrix

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 3 & 4
\end{array}\right)
$$

Compute all solutions of the linear system $A\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T}=(1,2,3,4,5)^{T}$. Do it with the aid of a computer algebra system of your choice.

Exercise 3. In your favorite computer algebra system find out about possibilities for solving systems of polynomial equations.

1. Consider the system of equations

$$
\begin{aligned}
2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2} & =0 \\
4 x^{3}-3 x y & =0 \\
4 y^{3}-3 x^{2}-6 y^{2}+2 & =0 .
\end{aligned}
$$

Compute all solutions.
2. The same for

$$
\begin{aligned}
1+8 x y+2 y^{2}+8 x y^{3}+y^{4}-16 x^{2} & =0 \\
8 x+4 y+24 x y^{2}+4 y^{3} & =0 \\
8 y+8 y^{3}-32 x & =0 .
\end{aligned}
$$

Exercise 4. An integral domain is a commutative ring $D \neq\{0\}$ without zero divisors, that means, $r s=0 \Rightarrow r=0 \vee s=0(\forall r, s \in D)$. Give a proof for the following statement.

1. If D is an integral domain, then also the polynomial ring $D[x]$.
2. Derive from this that - for arbitrary fields k - the ring $k\left[x_{1}, \ldots, x_{n}\right]$ is an integral domain.
3. Give similar arguments for the ring $D[[x]]$ of formal power series.
