to be prepared for 21.10.2014

Exercise 5. Consider the integers $a=215712, b=739914$. Determine the gcd of a and b and integers s, t such that $\operatorname{gcd}(a, b)=s a+t b$.

Exercise 6. Consider the polynomials

$$
\begin{aligned}
& f=x^{6}-2 x^{5}-x^{4}-4 x^{3}-5 x^{2}-2 x-3 \\
& g=3 x^{6}-x^{5}+4 x^{4}-2 x^{3}+2 x^{2}-x+1
\end{aligned}
$$

f and g are elements of the ring $\mathbb{Z}[x]$. Apply the extended Euclidean algorithm in $\mathbb{Q}[x]$ to compute $\operatorname{gcd}(f, g)$ as a linear combination of f and g. Use a computeralgebra system of your choice.

Exercise 7. Use Gröbner bases for solving over \mathbb{C} :

$$
\begin{aligned}
& f_{1}(x, y, z)=x z-x y^{2}-4 x^{2}-\frac{1}{4}=0 \\
& f_{2}(x, y, z)=y^{2} z+2 x+\frac{1}{2}=0 \\
& f_{3}(x, y, z)=x^{2} z+y^{2}+\frac{1}{2} x=0
\end{aligned}
$$

Exercise 8.

1. Explain why the Euclidean algorithm can be considered as a special case of Gröbner base algorithm.
2. Considering a system of linear equations in indeterminates x_{1}, \ldots, x_{n}, discuss the relation between Gauss elimination and Gröbner bases.

Exercise 9. Consider the polynomials

$$
\begin{aligned}
& f_{1}(x, y)=x^{2} y+x y+1 \\
& f_{2}(x, y)=y^{2}+x+y
\end{aligned}
$$

in $\mathbb{Z}_{3}[x, y]$. Compute a Gröbner basis for the ideal $\left\langle f_{1}, f_{2}\right\rangle$ w.r.t. the graduated lexicographical ordering with $x<y$. Show intermediate results.

