to be prepared for 11.11.2014

Exercise 19. Consider the polynomial ring K[x, y]. Can you give admissible orderings so that different terms in the polynomial $2xy^2 - xy + x^3$ become the highest term w.r.t. this ordering?

Exercise 20. Fix an admissible ordering and consider an ideal $I \subseteq K[x_1, \ldots, x_n]$. Suppose that $f \in K[x_1, \ldots, x_n]$.

- 1. Show that f can be written in the form f = g + r with $g \in I$ and no term of r is divisible by any element of lpp(I).
- 2. Given two expressions f = g + r = g' + r' as in part 1, prove that g = g' and r = r'.

Exercise 21. Prove the following theorem (Theorem 2.3.14):

Let
$$c \in K \setminus 0$$
, $s \in [X]$, $F \subseteq K[X]$, $g_1, g_2, h \in K[X]$.

- (a) $\longrightarrow_F \subseteq >>$,
- (b) \longrightarrow_F is Noetherian,
- (c) if $g_1 \longrightarrow_F g_2$ then $csg_1 \longrightarrow_F csg_2$,
- (d) if $g_1 \longrightarrow_F g_2$ then $g_1 + h \downarrow_F^* g_2 + h$.

Exercise 22. Prove the following theorem.

Let $F \subseteq k[x_1, \ldots, x_n]$. The ideal congruence modulo $\langle F \rangle$ equals the reflexivetransitive-symmetric closure of the reduction relation \longrightarrow_F , i.e., $\equiv_{\langle F \rangle} = \longleftrightarrow_F^*$.

Exercise 23. Let $I = \langle f_1, \ldots, f_r \rangle$ and $J = \langle g_1, \ldots, g_s \rangle$ be ideals in $K[x_1, \ldots, x_n]$. Prove the following statements.

- 1. $I + J = \langle f_1, \ldots, f_r, g_1, \ldots, g_s \rangle.$
- 2. $I \cdot J = \langle f_i g_j \mid 1 \leq i \leq r, \ 1 \leq j \leq s \rangle.$