to be prepared for 11.11.2014

Exercise 19. Consider the polynomial ring $K[x, y]$. Can you give admissible orderings so that different terms in the polynomial $2 x y^{2}-x y+x^{3}$ become the highest term w.r.t. this ordering?

Exercise 20. Fix an admissible ordering and consider an ideal $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$. Suppose that $f \in K\left[x_{1}, \ldots, x_{n}\right]$.

1. Show that f can be written in the form $f=g+r$ with $g \in I$ and no term of r is divisible by any element of $\operatorname{lpp}(I)$.
2. Given two expressions $f=g+r=g^{\prime}+r^{\prime}$ as in part 1, prove that $g=g^{\prime}$ and $r=r^{\prime}$.

Exercise 21. Prove the following theorem (Theorem 2.3.14):
Let $c \in K \backslash 0, s \in[X], F \subseteq K[X], g_{1}, g_{2}, h \in K[X]$.
(a) $\longrightarrow_{F} \subseteq \gg$,
(b) \longrightarrow_{F} is Noetherian,
(c) if $g_{1} \longrightarrow_{F} g_{2}$ then $\operatorname{csg}_{1} \longrightarrow_{F} \operatorname{csg}_{2}$,
(d) if $g_{1} \longrightarrow_{F} g_{2}$ then $g_{1}+h \downarrow_{F}^{*} g_{2}+h$.

Exercise 22. Prove the following theorem.
Let $F \subseteq k\left[x_{1}, \ldots, x_{n}\right]$. The ideal congruence modulo $\langle F\rangle$ equals the reflexive-transitive-symmetric closure of the reduction relation \longrightarrow_{F}, i.e., $\equiv\langle F\rangle=\longleftrightarrow{ }_{F}^{\star}$.

Exercise 23. Let $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ be ideals in $K\left[x_{1}, \ldots, x_{n}\right]$. Prove the following statements.

1. $I+J=\left\langle f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right\rangle$.
2. $I \cdot J=\left\langle f_{i} g_{j} \mid 1 \leq i \leq r, 1 \leq j \leq s\right\rangle$.
