to be prepared for 25.11.2014

Exercise 29. Let $I \subseteq K[x_1, \ldots, x_n]$ be an ideal and G a Gröbner basis for I. Let $g, h \in G$ with $g \neq h$. Prove the following statements.

- 1. If lpp(g)|lpp(h) then $G \setminus \{h\}$ is a Gröbner basis for I.
- 2. If $h \longrightarrow_{g} h'$ then $(G \setminus \{h\}) \cup \{h'\}$ is a Gröbner basis for I.

Exercise 30. Prove that the set of polynomials p(x, y) vanishing on a set $S \subseteq \mathbb{R}^2$ form an ideal in $\mathbb{R}[x, y]$. Do the polynomials NOT vanishing on (0, 0) form an ideal?

Exercise 31. Consider linear polynomials in $K[x_1, \ldots, x_n]$

$$f_i = a_{i1}x_1 + \dots + a_{in}x_n \qquad 1 \le i \le n$$

and let $A = (a_{ij})$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_1, \ldots, g_r be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_1 > \cdots > x_n$ and show that g_1, \ldots, g_r form the reduced Groebner basis of $\langle f_1, \ldots, f_m \rangle$.

Exercise 32. Use Gröbner bases to find the implicit representation of the parametrized surface

$$\begin{array}{rcl} x & = & 1+s+t+st\\ y & = & 2+s+st+t^2\\ z & = & s+t+s^2 \end{array}$$