to be prepared for 25.11 .2014

Exercise 29. Let $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and G a Gröbner basis for I. Let $g, h \in G$ with $g \neq h$. Prove the following statements.

1. If $\operatorname{lpp}(g) \mid \operatorname{lpp}(h)$ then $G \backslash\{h\}$ is a Gröbner basis for I.
2. If $h \longrightarrow_{g} h^{\prime}$ then $(G \backslash\{h\}) \cup\left\{h^{\prime}\right\}$ is a Gröbner basis for I.

Exercise 30. Prove that the set of polynomials $p(x, y)$ vanishing on a set $S \subseteq$ \mathbb{R}^{2} form an ideal in $\mathbb{R}[x, y]$. Do the polynomials NOT vanishing on $(0,0)$ form an ideal?

Exercise 31. Consider linear polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad 1 \leq i \leq m
$$

and let $A=\left(a_{i j}\right)$ be the $m \times n$ matrix of their coefficients. Let B be the reduced row echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials coming from the nonzero rows of B. Use lex order with $x_{1}>\cdots>x_{n}$ and show that g_{1}, \ldots, g_{r} form the reduced Groebner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Exercise 32. Use Gröbner bases to find the implicit representation of the parametrized surface

$$
\begin{aligned}
& x=1+s+t+s t \\
& y=2+s+s t+t^{2} \\
& z=s+t+s^{2}
\end{aligned}
$$

