to be prepared for 09.12.2014

Exercise 33. Consider the two polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Compute $\operatorname{gcd}(f(x), g(x))$

1. by passing to the quotient field;
2. by a polynomial remainder sequence.

Exercise 34. Prove the following statement. Two nonzero polynomials $f(x)$ and $g(x)$ with coefficients in a unique factorization domain are similar iff they have equal primitive part.

Exercise 35. Compute the pseudo-quotient $q(x)$ and the pseudo-remainder $r(x)$ for the two integral polynomials

$$
\begin{aligned}
u(x) & =x^{6}+x^{5}-x^{4}+2 x^{3}+3 x^{2}-x+2 \quad \text { and } \\
v(x) & =2 x^{3}+2 x^{2}-x+3
\end{aligned}
$$

Exercise 36. Let R be an integral domain, $a, b \in R[x], b \neq 0, m=\operatorname{deg}(a) \geq$ $n=\operatorname{deg}(b), \alpha, \beta \in R$. Prove:

$$
\begin{aligned}
\operatorname{pquot}(\alpha a, \beta b) & =\beta^{m-n} \alpha \cdot \operatorname{pquot}(a, b) \text { and } \\
\operatorname{prem}(\alpha a, \beta b) & =\beta^{m-n+1} \alpha \cdot \operatorname{prem}(a, b) .
\end{aligned}
$$

Exercise 37. Consider the integer polynomials

$$
\begin{aligned}
& f_{1}=(x-5)(x-7)^{3}(x-10)\left(x^{4}-2 x^{3}+x^{2}-3 x+1\right) \\
& f_{2}=(x-5)(x+7)(x-8)\left(x^{5}+13 x^{3}-17 x+1\right)
\end{aligned}
$$

Use a primitive polynomial remainder sequence to compute the $G C D\left(f_{1}, f_{2}\right)$.
You definitely should use some computer algebra system.

