to be prepared for 16.12.2014

Exercise 38. Solve the Chinese remainder problem

$$
\begin{array}{ccc}
r \equiv & 62 & \bmod 79 \\
r \equiv & 66 & \bmod 83 \\
r \equiv & 72 & \bmod 89
\end{array}
$$

over the integers both by the Lagrange and by the Newton method.
Exercise 39. Let D be a Euclidean domain. Prove the following lemma.

1. Let $m_{1}, \ldots, m_{n} \in D^{\star}$ be pairwise relatively prime and let $M=\prod_{i=1}^{n-1} m_{i}$. Then m_{n} and M are relatively prime.
2. Let $r, r^{\prime} \in D$, and $m_{1}, m_{2} \in D^{\star}$ be relatively prime. Then $r \equiv r^{\prime} \bmod m_{1}$ and $r \equiv r^{\prime} \bmod m_{2}$ if and only if $r \equiv r^{\prime} \bmod m_{1} m_{2}$.

Exercise 40. Consider the two polynomials over \mathbb{Z}

$$
\begin{aligned}
& f(x)=6 x^{5}+2 x^{4}-19 x^{3}-6 x^{2}+15 x+9 \\
& g(x)=5 x^{4}-4 x^{3}+2 x^{2}-2 x-2 .
\end{aligned}
$$

Compute $\operatorname{gcd}(f(x), g(x))$ by the modular algorithm.
Exercise 41. Compute the squarefree factorization of

1. $f(x)=x^{6}-x^{5}+x^{3}-x^{2}$ over the field \mathbb{Z}_{3}.
2. $g(x)=x^{7}+x^{5}+x^{4}+x^{3}+x^{2}+1$ over $G F(9)$.

Exercise 42. Prove the following theorem ${ }^{1}$. Let K be a field of characteristic 0 , and $a\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots x_{n}\right]$. Then a is squarefree if and only if $\operatorname{gcd}\left(a, \frac{\partial a}{\partial x_{1}}, \ldots, \frac{\partial a}{\partial x_{n}}\right)=1$.

[^0]
[^0]: ${ }^{1}$ Theorem 4.4.2, F. Winkler, Polynomial Algorithms in Computer Algebra

