$27~\mathrm{Jan}~2017$

Name:

Studienkennzahl:

Matrikelnummer:

Final Exam / Klausur Computer Algebra (326.010) (no books / ohne Unterlagen)

You may give answers either in English or in German. Man kann auf Englisch oder Deutsch antworten.

Explain your answers. Simply giving the result or "yes/no" is not enough. Antworten sind zu begründen. Nur das Ergebnis oder "ja/nein" genügt nicht.

(1) Consider the following polynomials in $\mathbb{Z}_5[x]$:

$$a(x) = x^{5} + 2x^{3} + 4x^{2} + 3$$
, $b(x) = 2x^{4} + x^{3} + 2x + 2$.

- (a) Determine the greatest common divisor c of a and b.
- (b) What is the normed reduced Gröbner basis of the ideal $\langle a, b \rangle$?
- (2) Consider the following polynomials in $\mathbb{Q}[x]$ with undetermined coefficients:

 $a(x) = a_2 x^2 + a_1 x + a_0$, $b(x) = b_1 x + b_0$.

If a and b have a common solution, the coefficients of a and b have to satisfy a certain polynomial relation.

What is this polynomial relation? [Hint: think of the resultant]

(3) (a) Give a definition of the Chinese Remainder Problem (CRP) in Z.
(b) Solve the following CRP in Z:

 $r\equiv 1 \bmod 3$, $r\equiv 2 \bmod 5$, $r\equiv 3 \bmod 7$.

- (4) Let K be a field.
 - (a) Give a definition of an **ideal** in $K[x_1, \ldots, x_n]$, and of a **basis** of an ideal.
 - (b) Does every ideal in $K[x_1, \ldots, x_n]$ have a finite basis? Do you know the name of a theorem which answers this question?
 - (c) Give a definition of the **membership problem** for ideals in $K[x_1, \ldots, x_n]$.
- (5) Consider the polynomial ring $K[x_1, \ldots, x_n]$, K a field.
 - (a) Let G be a Gröbner basis w.r.t. < for the ideal I. Let g, h ∈ G such that g ≠ h. Prove:
 If the leading power product of g divides the leading power product of h,
 - then $G' = G \setminus \{h\}$ is also a Gröbner basis w.r.t. < of I.
 - (b) Give definitions of the following notions:
 - minimal Gröbner basis,
 - reduced Gröbner basis,
 - normed Gröbner basis.