\qquad

Studienkennzahl: \qquad

Matrikelnummer: \qquad

Final Exam / Klausur
Computer Algebra (326.010)
(no books / ohne Unterlagen)

You may give answers either in English or in German. Man kann auf Englisch oder Deutsch antworten.

Explain your answers. Simply giving the result or "yes/no" is not enough.
Antworten sind zu begründen. Nur das Ergebnis oder "ja/nein" genügt nicht.
(1) Consider the following polynomials in $\mathbb{Z}_{5}[x]$:

$$
a(x)=x^{5}+2 x^{3}+4 x^{2}+3, \quad b(x)=2 x^{4}+x^{3}+2 x+2 .
$$

(a) Determine the greatest common divisor c of a and b.
(b) What is the normed reduced Gröbner basis of the ideal $\langle a, b\rangle$?
(2) Consider the following polynomials in $\mathbb{Q}[x]$ with undetermined coefficients:

$$
a(x)=a_{2} x^{2}+a_{1} x+a_{0}, \quad b(x)=b_{1} x+b_{0} .
$$

If a and b have a common solution, the coefficients of a and b have to satisfy a certain polynomial relation.
What is this polynomial relation?
[Hint: think of the resultant]
(3) (a) Give a definition of the Chinese Remainder Problem (CRP) in \mathbb{Z}.
(b) Solve the following CRP in \mathbb{Z} :

$$
r \equiv 1 \bmod 3, r \equiv 2 \bmod 5, r \equiv 3 \bmod 7
$$

(4) Let K be a field.
(a) Give a definition of an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$, and of a basis of an ideal.
(b) Does every ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ have a finite basis? Do you know the name of a theorem which answers this question?
(c) Give a definition of the membership problem for ideals in $K\left[x_{1}, \ldots, x_{n}\right]$.
(5) Consider the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right], K$ a field.
(a) Let G be a Gröbner basis w.r.t. $<$ for the ideal I. Let $g, h \in G$ such that $g \neq h$. Prove:
If the leading power product of g divides the leading power product of h, then $G^{\prime}=G \backslash\{h\}$ is also a Gröbner basis w.r.t. $<$ of I.
(b) Give definitions of the following notions:

- minimal Gröbner basis,
- reduced Gröbner basis,
- normed Gröbner basis.

