
Information Systems
Relational Databases

Nikolaj Popov

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

popov@risc.uni-linz.ac.at

Outline

The Relational Model (Continues from the Previous Lecture)
Data Structure. Types and Relations
Data Manipulation. Relational Algebra

Outline

The Relational Model (Continues from the Previous Lecture)
Data Structure. Types and Relations
Data Manipulation. Relational Algebra

Relations

I Up to now we discussed type, values, and variables in
general.

I Now: Relations types, values, and variables in particular.
I Since relations are built out of tuples, we examine tuple

types, values, and variables.

Tuples

Tuple

I Given a collection of (not necessarily distinct) types
Ti ,1 ≤ i ≤ n, a tuple value (or tuple) t on those types is a
set of ordered triples of the form 〈Ai ,Ti , vi〉, where

I Ai is an attribute name, Ti is a type name, vi is a value of
type Ti .

I The value n is the degree or arity of t .
I The ordered triple 〈Ai ,Ti , vi〉 is a component of t .
I The ordered pair 〈Ai ,Ti〉 is an attribute of t and is uniquely

identified by Ai . (Ai ’s are all distinct.)
I vi is the attribute value for Ai .
I Ti is the attribute type for Ai .
I The complete set of attributes is the heading of t .
I The tuple type of t is determined by the heading of t . The

tuple type name is precisely
TUPLE { A1 T1,A2 T2, . . . ,An Tn }.

Tuple

Example
Sample tuple:

{〈MAJOR_P#, P#, P2〉, 〈MINOR_P#, P#, P4〉, 〈QTY, QTY, 7〉}

MAJOR_P# : P# MINOR_P# : P# QTY : QTY
P2 P4 7

I Attribute names: MAJOR_P#, MINOR_P#, QTY.
I The corresponding type names: P#, P#, and QTY.
I The corresponding values: P2, P4, 7.
I The degree of the tuple is three.
I The heading:

MAJOR_P# : P# MINOR_P# : P# QTY : QTY
I The type: TUPLE { MAJOR_P# P#, MINOR_P# P#, QTY QTY}

Tuple

I In informal contexts type names are often omitted from a
tuple heading, showing just the attribute names.

For instance, writing

MAJOR_P# MINOR_P# QTY
P2 P4 7

instead of

MAJOR_P# : P# MINOR_P# : P# QTY : QTY
P2 P4 7

Tuple Properties

I Every tuple contains exactly one value for each attribute.
I The order of components of a tuple does not matter.
I Every subset (including the empty subset) of a tuple is a

tuple.

Tuple Type Generators

I Example:
VAR ADDR TUPLE {

STREET CHAR,
CITY CHAR,
STATE CHAR,
ZIP CHAR } ;

I Defines the variable ADDR to be of type
TUPLE { STREET CHAR, CITY CHAR,

STATE CHAR, ZIP CHAR }
I Tuple selector operator:

TUPLE { STREET ’1600 Penn. Ave.’, CITY ’Washington’,
STATE ’DC’, ZIP ’20500’ }

Operations on Tuples

Tuple equality:
I Tuples t1 and t2 are equal (t1 = t2) iff

1. they have the same attributes Attr1, . . . ,Attrn, and
2. the value vi of Attr i in t1 is equal to the value vi of Attr i in t2.

Operations on Tuples

Assume the current value of the ADDR variable is
TUPLE { STREET ’1600 Penn. Ave.’, CITY ’Washington’,

STATE ’DC’, ZIP ’20500’ }
I Tuple projection: ADDR { CITY, ZIP } denotes the tuple

TUPLE { CITY ’Washington’, ZIP ’20500’ }.
I Extraction: ZIP FROM ADDR denotes ’20500’.
I Tuple type inference: Tuple type of the result of

ADDR { CITY, ZIP } is TUPLE { CITY CHAR, ZIP CHAR }.

Operations on Tuples
WRAP and UNWRAP:

I Consider the tuple types:
TT1: TUPLE { NAME NAME, ADDR TUPLE {

STREET CHAR, CITY CHAR,
STATE CHAR, ZIP CHAR } }.

TT2: TUPLE { NAME NAME,
STREET CHAR, CITY CHAR,
STATE CHAR, ZIP CHAR }.

I NADDR1, NADDR2: The variables of types TT1, TT2, resp.

I The expression
NADDR2 WRAP {STREET, CITY, STATE, ZIP} AS ADDR

takes the current value of NADDR2 and wraps STREET, CITY,
STATE, ZIP components into a single tuple-valued ADDR
component. The result is of of type TT1.

I The expression NADDR1 UNWRAP ADDR takes the current
value of NADDR1 and unwraps ADDR into four separate
components. The result is of type TT2.

Relations

Relation
I A relation value (or relation) r consists of a heading and a

body, where
I The heading of r is a tuple heading. Relation r has the

same attributes and the same degree as that heading does.
I The body of r is the set of tuples, all having that same

heading; the cardinality of that set is said to be the
cardinality of r .

Relation type

I A relation type of r is determined by the heading of r .
I It has the same attributes (and hence attribute names and

types) and degree as that heading does.
I The relation type name is

RELATION { A1 T1, . . . , An Tn }

Relations

Example
MAJOR_P# : P# MINOR_P# : P# QTY : QTY
P1 P2 5
P1 P3 3
P2 P3 2
P2 P4 7
P3 P5 4
P4 P6 8

Type:
RELATION { MAJOR_P# : P#, MINOR_P# : P#, QTY : QTY }

Relations

I n-ary relation: relation of degree n.
I Every subset of a heading is a heading.
I Every subset of a body is a body.

Relation Properties

Within the same relation
I every tuple contains exactly one value for each attribute,
I no left-to-right ordering to the attributes,
I no top-to-bottom ordering to the tuples,
I no duplicate tuples.

Relations with No Attributes

I Every relation has a set of attributes.
I This set, in particular, can be empty: No attributes at all.
I Does not mean the empty relation!
I Empty relation: relation with the empty body.
I Relation with no attributes: relation with the empty heading.

Relations with No Attributes

I Relation with no attributes can contain at most one tuple,
the 0-tuple.

I The 0-tuple contains no components.
I Hence, two relations of degree 0: one that contains just

one tuple, and one that contains no tuples at all.

Operators on Relations

Comparisons:
I =, 6=,⊆,⊂,⊇,⊃, IS_EMPTY.
I They can appear whenever a boolean expression is

expected.
I Example: S { CITY } = P { CITY }: Is the projection of

suppliers over CITY equal to the projection of parts over
city?

Operators on Relations

Other operators:
I Test whether the given tuple t appears in a given relation r :

t ∈ r .
I Extracting the single tuple from a relation of cardinality

one: TUPLE FROM r
I Other operators like join, restrict, project, etc. Considered

in the relational algebra part.

Operators on Relations

Relation type inference:
I Given the suppliers relvar S, the expression S { S#, CITY }

yields a relation whose type is
RELATION { S# S#, CITY CHAR }

Relation Variables

Example

Defining base relvars S, P, and SP:

VAR S BASE RELATION VAR P BASE RELATION
{ S# S#, { P# P#,

SNAME NAME, PNAME NAME,
STATUS INTEGER, COLOR COLOR,
CITY CHAR } WEIGHT WEIGHT,

PRIMARY KEY { S# } ; CITY CHAR }
PRIMARY KEY { P# } ;

VAR SP BASE RELATION
{ S# S#,

P# P#,
QTY QTY }

PRIMARY KEY { S#, P# }
FOREIGN KEY { S# } REFERENCES S
FOREIGN KEY { P# } REFERENCES P

Explanation

I The relation type of the relvar S is
RELATION {S# S#, SNAME NAME, STATUS INTEGER,

CITY CHAR }
I The terms heading, body, attributes, tuple, degree, etc. are

interpreted to apply to relvars.
I When a base relvar is defined, it is given an initial value

that is the empty relation of appropriate type.

Updating Relvars

I Assume S’ and SP’ are base relvars.
I The type of S’ is the same as the type of S.
I The type of SP’ is the same as the type of SP.
I Some valid examples of relation assignment:

1. S’ := S, SP’ := SP;
2. S’ := S WHERE CITY = ’London’
3. S’ := S WHERE NOT (CITY = ’Paris’)

I Each assignment
(a) retrieves the relation specified on the right hand side and
(b) updates the relvar specified on the left hand side.

Outline

The Relational Model (Continues from the Previous Lecture)
Data Structure. Types and Relations
Data Manipulation. Relational Algebra

Relational Algebra

I Theoretical basis for database query languages.
I Attracted attention after Edgar F. Codd introduced the

relational model in 1970-ies.
I Formal system for manipulating relations:

I Operands: relations.
I Operators: union, intersection, difference, Cartesian

product, restrict, project, join, divide, rename.
I Operations operate on relations and produce relations

(closure).

Rename

I Purpose: Rename attributes within a specified relation.
I Action: Takes a given relation and returns another one that

is identical to the given one except that one of its attributes
has a different name.

I Example:
S S# SNAME STATUS CITY

S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

S RENAME CITY AS SCITY

S# SNAME STATUS SCITY
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

Union

I Specification: Given two relations a and b of the same type,
a UNION b is a relation of the same type, with body consisting of
all tuples t such that t appears in a or in b or both.

I Example:
A S# SNAME STATUS CITY

S1 Smith 20 London
S4 Clark 20 London

B S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris

A UNION B

S# SNAME STATUS CITY
S1 Smith 20 London
S4 Clark 20 London
S2 Jones 10 Paris

Intersection

I Given two relations a and b of the same type, a INTERSECT b
is a relation of the same type, with body consisting of all tuples t
such that t appears in both a and b.

I Example:
A S# SNAME STATUS CITY

S1 Smith 20 London
S4 Clark 20 London

B S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris

A INTERSECT B

S# SNAME STATUS CITY
S1 Smith 20 London

Difference

I Given two relations a and b of the same type, a MINUS b is a
relation of the same type, with body consisting of all tuples t
such that t appears a and not in b.

I Example:
A S# SNAME STATUS CITY

S1 Smith 20 London
S4 Clark 20 London

B S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris

A MINUS B
S# SNAME STATUS CITY
S4 Clark 20 London

B MINUS A
S# SNAME STATUS CITY
S2 Jones 10 Paris

Cartesian Product

I Given two relations a and b without common attribute names,
a TIMES b is a relation with a heading that is the (set theoretic)
union of the heading of a and b and with the body consisting of
the set of all tuples t such that t is a (set theoretic) union of a
tuple appearing in a and a tuple appearing in b.

I Example:

A S# B P# A TIMES B S# P#
S1 P1 S1 P1
S2 P2 S1 P2

P3 S1 P3
S2 P1
S2 P2
S2 P3

Restriction
I Given a relation a with attributes X ,Y , . . . ,Z and a truth-valued

function p whose parameters are some subset of X ,Y , . . . ,Z ,
the restriction of a according to p, a WHERE p, is a relation with
the same heading as a and with body consisting of all those
tuples in a on which p evaluates to TRUE.

I Example:

S S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

S WHERE CITY = ’London’
S# SNAME STATUS CITY
S1 Smith 20 London

Restriction
I Given a relation a with attributes X ,Y , . . . ,Z and a truth-valued

function p whose parameters are some subset of X ,Y , . . . ,Z ,
the restriction of a according to p, a WHERE p, is a relation with
the same heading as a and with body consisting of all those
tuples in a on which p evaluates to TRUE.

I Example:

P P# PN COLOR WEIGHT CITY
P1 Nut Red 12.0 London
P2 Bolt Green 17.0 Paris
P3 Screw Blue 17.0 Oslo
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris

P WHERE WEIGHT < WEIGHT (14.0)

P# PN COLOR WEIGHT CITY
P1 Nut Red 12.0 London
P5 Cam Blue 12.0 Paris

Restriction
I Given a relation a with attributes X ,Y , . . . ,Z and a truth-valued

function p whose parameters are some subset of X ,Y , . . . ,Z ,
the restriction of a according to p, a WHERE p, is a relation with
the same heading as a and with body consisting of all those
tuples in a on which p evaluates to TRUE.

I Example:

SP S# P# QTY
S1 P1 300
S1 P2 200
S2 P1 400
S2 P2 100

SP WHERE S# = S# (’S3’) or P# = P# (’P4’)

S# P# QTY

Projection
I Given a relation a with attributes X ,Y , . . . ,Z , the projection of a

according on X ,Y , . . . ,Z , written a{X ,Y , . . . ,Z}, is a relation
with

I a heading derived from the heading of a by removing all
attributes that are not among X ,Y , . . . ,Z ;

I a body consisting of all tuples {X x ,Y y , . . . ,Z z} such that
the tuple appears in a with X value x , Y value y ,. . . , and Z
value z.

I Example:

S S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

S { CITY }

CITY
London
Paris

Projection
I Given a relation a with attributes X ,Y , . . . ,Z , the projection of a

according on X ,Y , . . . ,Z , written a{X ,Y , . . . ,Z}, is a relation
with

I a heading derived from the heading of a by removing all
attributes that are not among X ,Y , . . . ,Z ;

I a body consisting of all tuples {X x ,Y y , . . . ,Z z} such that
the tuple appears in a with X value x , Y value y ,. . . , and Z
value z.

I Example:

P P# PN COLOR WEIGHT CITY
P1 Nut Red 12.0 London
P2 Bolt Green 17.0 Paris
P3 Screw Blue 17.0 Oslo
P4 Screw Red 14.0 London

P {COLOR, CITY }

COLOR CITY
Red London
Green Paris
Blue Oslo

Projection
I Given a relation a with attributes X ,Y , . . . ,Z , the projection of a

according on X ,Y , . . . ,Z , written a{X ,Y , . . . ,Z}, is a relation
with

I a heading derived from the heading of a by removing all
attributes that are not among X ,Y , . . . ,Z ;

I a body consisting of all tuples {X x ,Y y , . . . ,Z z} such that
the tuple appears in a with X value x , Y value y ,. . . , and Z
value z.

I Example:

S S# SNAME STATUS CITY
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

(S WHERE CITY = ’Paris’) { S# }

S#
S2
S3

Join

I Let a relation a have attributes X1, . . . ,Xm,Y1, . . .Yn, and b
have the attributes Y1, . . .Yn,Z1, . . . ,Zp.

I The (natural) join of a and b, denoted a JOIN b is a relation
with heading X1, . . . ,Xm,Y1, . . . ,Yn,Z1, . . . ,Zp and body
consisting of all tuples
X1 x1, . . . ,Xm xm,Y1 y1, . . . ,Yn yn,Z1 z1, . . . ,Zp zp such that

I a tuple appears in a with Xi value xi , and Yj value yj for all
1 ≤ i ≤ m and 1 ≤ j ≤ n, and

I a tuple appears in b with Yj value yj and Zk value zk for all
1 ≤ j ≤ n and 1 ≤ k ≤ p.

Join. Example
S# SNAME ST CITY S
S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris

P# PN COLOR WGT CITY P
P1 Nut Red 12.0 London
P2 Bolt Green 17.0 Paris
P3 Screw Blue 17.0 Oslo
P4 Screw Red 14.0 London
P5 Cam Blue 12.0 Paris S JOIN P

S# SNAME ST CITY P# PN COLOR WGT
S1 Smith 20 London P1 Nut Red 12.0
S1 Smith 20 London P4 Screw Red 14.0
S2 Jones 10 Paris P2 Bolt Green 17.0
S2 Jones 10 Paris P5 Cam Blue 12.0
S3 Blake 30 Paris P2 Bolt Green 17.0
S3 Blake 30 Paris P5 Cam Blue 12.0

Examples. Supplier-and-Parts

I Get supplier names for suppliers who supply part P2.
I ((SP JOIN S) WHERE P# = P# (’P2’)) { SNAME }
I SP JOIN S extends each SP tuple with the corresponding

supplier information (SNAME, STATUS, CITY values). The
result is restricted to just those tuples for part P2. The
restriction is projected over SNAME

Examples. Supplier-and-Parts

I Get supplier names for suppliers who supply at least one
red part.

I (((P WHERE COLOR = COLOR(’Red’))
JOIN SP) { S# } JOIN S){ SNAME }

Examples. Supplier-and-Parts

I Get all pairs of supplier numbers such that the suppliers
are located in the same city.

I (((S RENAME S# AS SA) { SA, CITY } JOIN
(S RENAME S# AS SB) { SB, CITY })

WHERE SA < SB { SA, SB }

Examples. Supplier-and-Parts

I Get supplier names for suppliers who do not supply part
P2.

I ((S { S# } MINUS (SP WHERE P# = P# (’P2’)) {S#})
JOIN S){ SNAME }

