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2.3. The notion of a Gröbner basis

Before we start with the technical details, let us briefly review the historical devel-
opment leading to the concept of Gröbner bases. In his seminal paper of 1890 David
Hilbert 1 gave a proof of his famous Basis Theorem as well as of the structure and length
of the sequence of syzygy modules of a polynomial system. Implicitly he also showed
that the Hauptproblem (the main problem of the theory of polynomial ideals, according
to B.L. van der Waerden), i.e. the problem whether f ∈ I for a given polynomial f
and polynomial ideal I, can be solved effectively. Hilbert’s solution of the Hauptproblem
(and similar problems) was reinvestigated by G. Hermann 2 in 1926. She counted the
field operations required in this effective procedure and arrived at a double exponential
upper bound in the number of variables. In fact, Hermann’s, or for that matter Hilbert’s,
algorithm always actually achieves this worst case double exponential complexity. The
next important step came when B. Buchberger, in his doctoral thesis 3 of 1965 advised by
W. Gröbner, introduced the notion of a Gröbner basis (he did not call it that at this time)
and also gave an algorithm for computing it. Gröbner bases are very special and useful
bases for polynomial ideals. In subsequent publications Buchberger exhibited important
additional applications of his Gröbner bases method, e.g. to the solution of systems of
polynomial equations. In the worst case, Buchberger’s Gröbner bases algorithm is also
double exponential in the number of variables, but in practice there are many interesting
examples which can be solved in reasonable time. But still, in the worst case, the double
exponential behaviour is not avoided. And, in fact, it cannot be avoided by any algorithm
capable of solving the Hauptproblem, as was shown by E.W. Mayr and A.R. Meyer in
1982.

When we are solving systems of polynomial (algebraic) equations such as

f1(x1, . . . , xn) = 0 ,
...

fm(x1, . . . , xn) = 0 ,

the important parameters are the number of variables n and the degree d of the poly-
nomials f1, . . . , fm. The Buchberger algorithm for constructing Gröbner bases is at the
same time a generalization of Euclid’s algorithm for computing the greatest common di-
visor (GCD) of univariate polynomials (the case n = 1) and of Gauss’ triangularization
algorithm for linear systems (the case d = 1). Both these algorithms are concerned with
solving systems of polynomial equations, and they determine a canonical basis (either
the GCD of the inputs or a triangularized form of the system) for the given polynomial

1D.Hilbert, Über die Theorie der algebraischen Formen, Math. Annalen 36, 473–534 (1890)
2G.Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Annalen

95, 736–788 (1926)
3B.Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem

nulldimensionalen Polynomideal, Dissertation, Univ. Innsbruck (1965)
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system. Buchberger’s algorithm can be seen as a generalization to the case of arbitrary n
and d.

Definition 2.3.0. Let K be a field and K[X] = K[x1, . . . , xn] the polynomial ring in
n indeterminates over K. A subset I of K[X] is a (polynomial) ideal of K[X], iff it is
closed under the formation of linear combinations; i.e., for m ∈ N, f1, . . . , fm ∈ I and
p1, . . . , pm ∈ K[X], also

m∑
i=1

pifi ∈ I .

If F is any subset of K[X] we write 〈F 〉 or ideal(F ) for the ideal generated by F in K[X].

〈F 〉 = {
m∑
i=1

pifi | m ∈ N, fi ∈ F, pi ∈ K[X]}

i.e. 〈F 〉 consists of all linear combinations (also the empty linear combination 0 =∑0
i=1 pifi) of F over K[X].

F is called a basis or generating set of 〈F 〉.
By [X] we denote the monoid (under multiplication) of power products xi11 · · ·xinn in

x1, . . . , xn. 1 = x01 . . . x
0
n is the unit element in the monoid [X]. lcm(s, t) denotes the least

common multiple of the power products s, t.

Definition 2.3.1.

(i) A commutative ring with 1 in which the basis condition holds, i.e. in which every
ideal has a finite basis, is called a Noetherian ring.

(ii) Let � be a binary relation of the set M ; i.e. �⊆ M ×M . � is Noetherian or has
the termination property iff there is no infinite sequence of the form x1 � x2 � · · · .

Theorem 2.3.2.

(a) In a Noetherian ring there are no infinite properly ascending chains of ideals; and
vice versa.

(b) (Hilbert’s Basis Theorem) If R is a Noetherian ring then also the univariate poly-
nomial ring R[x] is Noetherian.

(c) If K is a field, then K[x1, . . . , xn] is a Noetherian ring.

Proof: (a) Suppose that R is Noetherian. Let

I0 ⊆ I1 ⊆ I2 ⊆ · · ·

be an ascending chain of ideals in R. Consider

I :=
∞⋃
i=0

Ii .
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I is an ideal in R, so it has a finite basis. This basis must be contained in some Ik; so

Ik = Ik+1 = · · · .

On the other hand, suppose that an ideal I in R does not have a finite basis.
Choose a non-zero element r0 ∈ I; then I0 := 〈r0〉 6= I.
Choose r1 ∈ I \ I0; then I1 := 〈r0, r1〉 6= I.
This process can be continued indefinitely, yielding an infinite properly ascending chain
of ideals in R.

(b) This is typically proven in a course on commutative algebra and algebraic geometry.

(c) A field K has only 2 ideals: 〈0〉 and 〈1〉. Both of them are finitely generated. So, by
a series of applications of (b) be get the desired result.

So every ideal I in K[X] has a finite basis, and if we are able to effectively compute
with finite bases then we are dealing with all the ideals in K[X].

Whenever a set M is equipped with a Noetherian relation � we can apply the Prin-
ciple of Noetherian Induction 4 for proving that a predicate P holds for all x ∈M :

if for all x ∈M [
∀y ∈M : (x � y) =⇒ P (y)

]
=⇒ P (x)

then
∀x ∈M : P (x) .

Typical examples of Noetherian Induction are the induction on natural numbers N
(with �=>) and induction on the term structure in term algebras (with s � t ⇐⇒ t is
a sub-term of s).

We will define a Gröbner basis of a polynomial ideal via a certain reduction relation
for polynomials. A Gröbner basis will be a basis with respect to which the corresponding
reduction relation is confluent. Before we can define the reduction relation on the polyno-
mial ring, we have to introduce an ordering of the power products with respect to which
the reduction relation should be decreasing.

Definition 2.3.3. Let < be a strict ordering on [X]; i.e. < is transitive and irreflexive.
So ≤ is an ordering. We call < an admissible ordering, if it is is compatible with the
monoid structure of [X]; i.e.

(i) 1 = x01 . . . x
0
n < t for all t ∈ [X] \ {1}, and

(ii) s < t =⇒ su < tu for all s, t, u ∈ [X].

Example 2.3.4. We give some examples of frequently used admissible orderings on [X].

4see P.M. Cohn, Algebra, Wiley, New York (1974)
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(a) The lexicographic ordering with xπ(1) > xπ(2) > . . . > xπ(n), π a permutation of
{1, . . . , n}:
xi11 . . . x

in
n <lex,π x

j1
1 . . . x

jn
n iff there exists a k ∈ {1, . . . , n} such that for all l < k

iπ(l) = jπ(l) and iπ(k) < jπ(k).
If π = id, we get the usual lexicographic ordering <lex.

(b) The graduated lexicographic ordering w.r.t. the permutation π and the weight func-
tion w : {1, . . . , n} → R+:
for s = xi11 . . . x

in
n , t = xj11 . . . x

jn
n we define s <glex,π,w t iff( n∑

k=1

w(k)ik <
n∑
k=1

w(k)jk

)
or

( n∑
k=1

w(k)ik =
n∑
k=1

w(k)jk and s <lex,π t
)
.

We get the usual graduated lexicographic ordering <glex by setting π = id and
w = 1const.

(c) The graduated reverse lexicographic ordering:
we define s <grlex t iff

deg(s) < deg(t) or

(deg(s) = deg(t) and t <lex,π s, where π(j) = n− j + 1).

(d) The product ordering w.r.t. i ∈ {1, . . . , n − 1} and the admissible orderings <1 on
X1 = [x1, . . . , xi] and <2 on X2 = [xi+1, . . . , xn]:
for s = s1s2, t = t1t2, where s1, t1 ∈ X1, s2, t2 ∈ X2, we define s <prod,i,<1,<2 t iff

s1 <1 t1 or (s1 = t1 and s2 <2 t2).

Lemma 2.3.5. Let < be an admissible ordering on [X].

(i) If s, t ∈ [X] and s divides t then s ≤ t.

(ii) < (or actually >) is Noetherian, i.e. there are no infinite chains of the form t0 >
t1 > t2 > . . ., and consequently every subset of [X] has a smallest element.

Proof:
(i) For some u we have su = t. By admissibility of < this yields s = 1s ≤ us = t.
(ii) Let s1 > s2 > · · · be a sequence of decreasing elements in [X]. Let K be any field. So

〈s1〉 ⊂ 〈s1, s2〉 ⊂ · · ·

is a properly ascending chain of ideals in K[X]. But K[X] being Noetherian, this chain
has to be finite

Throughout this chapter let R be a commutative ring with 1, K a field, X a set of
variables, and < an admissible ordering on [X].
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Definition 2.3.6. Let s be a power product in [X], f a non-zero polynomial in R[X], F
a subset of R[X].
By coeff(f, s) we denote the coefficient of s in f .
lpp(f) := max<{t ∈ [X] | coeff(f, t) 6= 0} (leading power product of f),
lc(f) := coeff(f, lpp(f)) (leading coefficient of f),
initial(f) := lc(f)lpp(f) (initial of f),
red(f) := f − initial(f) (reductum of f),
lpp(F ) := {lpp(f) | f ∈ F \ {0}},
lc(F ) := {lc(f) | f ∈ F \ {0}},
initial(F ) := {initial(f) | f ∈ F \ {0}},
red(F ) := {red(f) | f ∈ F \ {0}}.

If I is an ideal in R[X], then lc(I) ∪ {0} is an ideal in R. However, initial(I) ∪ {0} in
general is not an ideal in R[X].

Definition 2.3.7. Any admissible ordering < on [X] induces a strict partial ordering �
on R[X], the induced ordering, in the following way:

f � g iff f = 0 and g 6= 0 or
f 6= 0, g 6= 0 and lpp(f) < lpp(g) or
f 6= 0, g 6= 0,lpp(f)=lpp(g) and red(f)� red(g).

One of the central notions of the theory of Gröbner bases is the concept of polynomial
reduction.

Definition 2.3.8. Let f, g, h ∈ K[X], F ⊆ K[X]. We say that g reduces to h w.r.t.
f (g −→f h) iff there are power products s, t ∈ [X] such that s has a non–vanishing
coefficient c in g (coeff(g, s) = c 6= 0), s = lpp(f) · t, and

h = g − c

lc(f)
· t · f.

If we want to indicate which power product and coefficient are used in the reduction, we
write

g −→f,b,t h, where b =
c

lc(f)
.

We say that g reduces to h w.r.t. F (g −→F h) iff there is f ∈ F such that g −→f h.

Example 2.3.9. Let F = {. . . , f = x1x3 + x1x2 − 2x3, . . .} in Q[x1, x2, x3], and g =
x33 +2x1x2x3 +2x2−1. Let < be the graduated lexicographic ordering with x1 < x2 < x3.
Then g −→F x

3
3 − 2x1x

2
2 + 4x2x3 + 2x2 − 1 =: h, and in fact g −→f,2,x2 h.

Lemma 2.3.10. For a given admissible ordering < on [X] and a subset F of K[X] let
� be the induced ordering on K[X] and −→F the reduction w.r.t. F .

(i) � (or actually �) is a Noetherian strict partial ordering on K[X].

(ii) −→F is a Noetherian strict partial ordering on K[X].
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Proof: (i) We have to show that every sequence f1 � f2 � . . . is finite. This is achieved
by Noetherian induction on lpp(f1) w.r.t. >.
Noetherian induction on lpp(h) w.r.t. >:
Induction hypothesis:

∀s : t > s =⇒ sequence g1 � g2 � · · · with lpp(g1) = s is finite.

show: sequence h1 � h2 � · · · with lpp(h1) = t is finite.
Let ti := lpp(hi) (if some hi = 0, then the sequence is obviously finite). Then we have
t = t1 ≥ t2 ≥ · · · . If all ti are equal, then we have (by definition of �)

red(h1)� red(h2)� · · ·

and this must be finite by the induction hypothesis. Otherwise let j be such that t > tj.
Then

hj � hj+1 � · · ·

is finite by the induction hypothesis. So the original sequence is also finite.
(ii) −→F is a partial ordering on K[X], which is contained in �.

Definition 2.3.11. Let −→ be a reduction relation, i.e. a binary relation, on a set M .

• x −→ means x is reducible, i.e. x −→ y for some y;

• x−→ means x is irreducible or in normal form w.r.t. −→. We omit mentioning the
reduction relation if it is clear from the context;

• x ↓ y means that x and y have a common successor, i.e. x −→ z ←− y for some z;

• x ↑ y means that x and y have a common predecessor, i.e. x ←− z −→ y for some
z;

• by ←− we mean the inverse relation, by ←→ the symmetric closure, and by −→∗
the reflexive-transitive closure; so,←→∗ is the symmetric-reflexive-transitive closure
of −→;

• x is a −→–normal form of y iff y −→∗ x.

Definition 2.3.12. A reduction relation can have the following important properties.

(a) −→ is Church–Rosser or has the Church–Rosser property iff a←→∗ b implies a ↓∗ b.

(b) −→ is confluent iff x ↑∗ y implies x ↓∗ y, or graphically every diamond of the
following form can be completed:

u
↙∗ ↘∗
x y
↘∗ ↙∗
v
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(c) −→ is locally confluent iff x ↑ y implies x ↓∗ y, or graphically every diamond of the
following form can be completed:

u
↙ ↘

x y
↘∗ ↙∗
v

As a consequence of the Noetherianity of admissible orderings we get that −→F is
Noetherian for any set of polynomials F ⊂ K[X]. So, in contrast to the general theory
of rewriting, termination is not a problem for polynomial reductions. But we still have to
worry about the Church-Rosser property.

Theorem 2.3.13. These crucial properties of reduction relations are closely related.

(a) −→ is Church–Rosser if and only if −→ is confluent.

(b) (Newman Lemma) Let −→ be Noetherian. Then −→ is confluent if and only if −→
is locally confluent.

(c) (Refined Newman Lemma) Let −→ be a reduction on M and < a partial Noetherian
ordering on M s.t. −→⊆>. Then −→ is confluent if and only if for all x, y, z ∈M :

x←− z −→ y implies x←→∗(<z) y

i.e. all intermediate elements w in the chain x ←→∗ y satisfy w < z. In this case
we say x and y are connected w.r.t. −→ below z.

Proof: For (a) and (b) see Theorem 8.1.2 in [Winkler 1996].
For (c) see Theorem 8.1.3 in [Winkler 1996].

As an immediate consequence of the previous definitions we get that the reduction
relation −→ is (nearly) compatible with the operations in the polynomial ring. Moreover,
the reflexive–transitive–symmetric closure of the reduction relation −→F is equal to the
congruence modulo the ideal generated by F .

Lemma 2.3.14. Let a ∈ K∗, s ∈ [X], F ⊆ K[X], g1, g2, h ∈ K[X].

(a) −→F⊆�,

(b) −→F is Noetherian,

(c) if g1 −→F g2 then a · s · g1 −→F a · s · g2,

(d) if g1 −→F g2 then g1 + h ↓∗F g2 + h.

Proof: [Winkler 1996] Exercise 8.2(2).
(a), (b), (c) are obvious.
(d) Let s be the power product in g1 that is reduced by f ∈ F , i.e. s = u · lpp(f) for
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some u ∈ [X]. If coeff(h, s) = 0 then g1 + h −→f g2 + h. If coeff(h, s) = −coeff(g1, s)
then g2 + h −→f g1 + h. Otherwise

g1 +h −→f g1 +h− coeff(g1 + h, s)

lc(f)
·u ·f = g2 +h− coeff(g2 + h, s)

lc(f)
·u ·f ←−f g2 +h .

So in any case we have g1 + h ↓∗F g2 + h.

Theorem 2.3.15. Let F ⊆ K[X]. The ideal congruence modulo 〈F 〉 equals the reflexive–
transitive–symmetric closure of −→F , i.e. ≡〈F 〉=←→∗F .

Proof: [Winkler 1996] Exercise 8.2(3).
←→∗F is the smallest equivalence relation containing −→F . If g −→F h then, by the
definition of the reduction relation, g − h ∈ 〈F 〉, i.e. g ≡〈F 〉 h. Because −→F⊆←→∗F and
≡〈F 〉 is an equivalence relation we have ←→∗F⊆≡〈F 〉.
On the other hand, let g ≡〈F 〉 h, i.e.

g = h+
m∑
j=1

cj · uj · fj, for cj ∈ K, uj ∈ [X], fj ∈ F.

If we can show g ←→∗F h for the case m = 1, then the statement follows by induction on
m. f1 −→F 0. So by Lemma 2.3.14 g = h+ c1 · u1 · f1 ↓∗F h, and therefore g ←→∗F h.

So the congruence ≡〈F 〉 can be decided if −→F has the Church–Rosser property. Of
course, this is not the case for an arbitrary set F . Such distinguished sets (bases for
polynomial ideals) are called Gröbner bases.

Definition 2.3.16. A subset F of K[X] is a Gröbner basis (for 〈F 〉) iff −→F is Church–
Rosser.

A Gröbner basis of an ideal I in K[X] is by no means uniquely defined. In fact,
whenever F is a Gröbner basis for I and f ∈ I, then also F ∪ {f} is a Gröbner basis for
I.

For testing whether a given basis F of an ideal I is a Gröbner basis it suffices to test for
local confluence of the reduction relation −→F . This, however, does not yield a decision
procedure, since there are infinitely many situations f ↑F g. However, Buchberger has
been able to reduce this test for local confluence to just testing a finite number of sitations
f ↑F g. For that purpose he has introduced the notion of subtraction polynomials, or
S–polynomials for short.

Definition 2.3.17. Let f, g ∈ K[X]∗, t = lcm(lpp(f), lpp(g)). Then

cp(f, g) =
(
t− 1

lc(f)
· t

lpp(f)
· f, t− 1

lc(g)
· t

lpp(g)
· g
)

is the critical pair of f and g. The difference of the elements of cp(f, g) is the S–polynomial
spol(f, g) of f and g.

If cp(f, g) = (h1, h2) then we can depict the situation graphically in the following way:
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lcm(lpp(f), lpp(g))
•

↙f ↘g

• •
h1 h2

The critical pairs of elements of F describe exactly the essential branchings of the reduc-
tion relation −→F .

Theorem 2.3.18. (Buchberger’s Theorem) Let F be a subset of K[X].

(a) F is a Gröbner basis if and only if g1 ↓∗F g2 for all critical pairs (g1, g2) of elements
of F .

(b) F is a Gröbner basis if and only if spol(f, g) −→∗F 0 for all f, g ∈ F .

Proof: (see also [Winkler 1996] Theorem 8.3.1)
(a) Obviously, if F is a Gröbner basis then g1 ↓∗F g2 for all critical pairs (g1, g2) of F .

On the other hand, assume that g1 ↓∗F g2 for all critical pairs (g1, g2). By the Refined
Newman Lemma (Theorem 2.3.13(c) ) it suffices to show h1←→∗F (�h)h2 for all h, h1, h2
such that h1 ←−F h −→F h2.
Let s1, s2 be the power products that are eliminated in the reductions of h to h1 and
h2, respectively. I.e. there are polynomials f1, f2 ∈ F , coefficients c1 = coeff(h, s1) 6= 0,
c2 = coeff(h, s2) 6= 0, and power products t1, t2 such that

s1 = t1lpp(f1), h1 = h− c1
lc(f1)

t1f1 and

s2 = t2lpp(f2), h2 = h− c2
lc(f2)

t2f2.

We distinguish two cases, depending on whether or not s1 = s2.
Case s1 6= s2: w.l.o.g. assume s1 > s2. Let a = coeff(− c1

lc(f1)
t1f1, s2). Then coeff(h1, s2) =

c2 + a and therefore (−→∗ if coefficient is 0)

h1 −→∗F h1 −
c2 + a

lc(f2)
t2f2 = h− c1

lc(f1)
t1f1 −

c2 + a

lc(f2)
t2f2.

On the other hand (−→∗ if coefficient is 0)

h2 −→F h2−
c1

lc(f1)
t1f1 −→∗F h2−

c1
lc(f1)

t1f1−
a

lc(f2)
t2f2 = h− c1

lc(f1)
t1f1−

c2 + a

lc(f2)
t2f2.

Thus, h1←→∗F (�h)h2, in fact h1 ↓∗F h2.
Case s1 = s2: let s = s1 = s2, c = coeff(h, s) and h′ = h− cs. So for some power product
t we have s = t · lcm(lpp(f1), lpp(f2)), and h1 = h′ + c · t · g1, h2 = h′ + c · t · g2, where
(g1, g2) = cp(f1, f2). By assumption g1 ↓∗F g2, i.e. there are p1, . . . , pk and q1, . . . , ql such
that

g1 = p1 −→F . . . −→F pk = ql ←−F . . .←−F q1 = g2.

So, by Lemma 2.3.14(c),

ctg1 = ctp1 −→F . . . −→F ctpk = ctql ←−F . . .←−F ctq1 = ctg2.
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Applying Lemma 2.3.14(d) we get

h1 = h′ + ctp1 ↓∗F . . . ↓∗F h′ + ctpk = h′ + ctql ↓∗F . . . ↓∗F h′ + ctq1 = h2.

All the intermediate polynomials in these reductions are less than h w.r.t. �. Thus,
h1←→∗F (�h)h2.

(b) Every S–polynomial is congruent to 0 modulo 〈F 〉. So by Theorem 2.3.15
spol(f, g)←→∗F 0. If F is a Gröbner basis, this implies spol(f, g) −→∗F 0.

On the other hand assume that spol(f, g) −→∗F 0 for all f, g ∈ F . We use the same
notation as in (a). In fact, the whole proof is analogous to the one for (a), except for the
case s1 = s2 = s. So for h1 = h′ + ctg1 ←−F h −→F h′ + ctg2 = h2 we have to show
h1←→∗F (�h)h2.
g1−g2 is the S–polynomial of f1, f2 ∈ F , so by the assumption g1−g2 −→∗F 0. By Lemma
2.3.14 also h1 − h2 = ct(g1 − g2) −→∗F 0, i.e. for some p1, . . . , pk we have

h1 − h2 = p1 −→F . . . −→F pk = 0.

Again by Lemma 2.3.14 we get

h1 = p1 + h2 ↓∗F . . . ↓∗F pk + h2 = h2,

and therefore h1←→∗F (�h)h2.

Buchberger’s theorem suggests an algorithm for checking whether a given finite basis
is a Gröbner basis: reduce all the S–polynomials to normal forms and check whether they
are all 0. In fact, by a simple extension we get an algorithm for constructing Gröbner
bases.

GRÖBNER B(Buchberger algorithm for computing Gröbner bases)
for a given finite subset F of K[X]∗ and admissible ordering > on [X],
a finite subset G of K[X]∗ is computed,
such that 〈G〉 = 〈F 〉 and G is a Gröbner basis w.r.t. >.
G := F
C := {{g1, g2} | g1, g2 ∈ G, g1 6= g2}
while not all pairs {g1, g2} ∈ C are marked do

choose an unmarked pair {g1, g2}
mark {g1, g2}
h := normal form of spol(g1, g2) w.r.t. −→G

if h 6= 0 then
{C := C ∪ {{g, h} | g ∈ G}
G := G ∪ {h} }

return G

Every polynomial h constructed in GRÖBNER B is in 〈F 〉, so 〈G〉 = 〈F 〉 throughout
GRÖBNER B. Thus, by Theorem 1.8 GRÖBNER B yields a correct result if it stops. The
termination of GRÖBNER B is a consequence of Dickson’s Lemma which implies that in
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[X] there is no infinite chain of elements s1, s2, . . . such that si 6 | sj for all 1 ≤ i < j. The
leading power products of the polynomials added to the basis form such a sequence in
[X], so this sequence must be finite.

Theorem 2.3.19. (Dickson’s Lemma) Every A ⊆ [X] contains a finite subset B, such
that every t ∈ A is a multiple of some s ∈ B.

Proof: [Winkler 1996] 8.3.2.

The termination of GRÖBNER B also follows from Hilbert’s Basis Theorem applied to
the initial ideals of the sets G constructed in the course of the algorithm, i.e. 〈initial(G)〉.

The algorithm GRÖBNER B provides a constructive proof of the following theorem.

Theorem 2.3.20. Every ideal I in K[X] has a finite Gröbner basis.

Example 2.3.21. Let F = {f1, f2}, with f1 = x2y2 + y − 1, f2 = x2y + x. We compute
a Gröbner basis of 〈F 〉 in Q[x, y] w.r.t. the graduated lexicographic ordering with x < y.
The following describes one way in which the algorithm GRÖBNER B could execute
(recall that there is a free choice of pairs in the loop):

spol(f1, f2) = f1 − yf2 = −xy + y − 1 =: f3 is irreducible, so G := {f1, f2, f3};

spol(f2, f3) = f2 + xf3 = xy −→f3 y − 1 =: f4, so G := {f1, f2, f3, f4};

spol(f3, f4) = f3 + xf4 = y − x− 1 −→f4 −x =: f5, so G := {f1, . . . , f5}.

All the other S–polynomials now reduce to 0, so GRÖBNER B terminates with

G = {x2y2 + y − 1, x2y + x,−xy + y − 1, y − 1,−x}.

In addition to the original definition and the ones given in Theorem 2.3.18, there are
many other characterizations of Gröbner bases. We list only a few of them.

Theorem 2.3.22. Let I be an ideal in K[X], F ⊆ K[X], and 〈F 〉 = I. Then the
following are equivalent.

(a) F is a Gröbner basis for I (w.r.t. >).

(b) f −→∗F 0 for every f ∈ I.

(c) f −→F for every f ∈ I \ {0}.

(d) For all g ∈ I, h ∈ K[X]: if g −→∗F h then h = 0.

(e) For all g, h1, h2 ∈ K[X]: if g −→∗F h1 and g −→∗F h2 then h1 = h2.

(f) 〈initial(F )〉 = 〈initial(I)〉.

(g) Every h ∈ I can be written as a bounded linear combination of elements in F ; i.e.
there are fi ∈ F , hi ∈ K[X], s.t. h =

∑n
i=1 hifi with lpp(hifi) ≤ lpp(h) for all i.
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Proof: For the equivalence of (a) – (f) see [Winkler 1996] Theorem 8.3.4.
Now for (g): If F is a Gröbner basis w.r.t >, then every h ∈ I can be reduced to 0
modulo F ; this leads to a bounded linear combination of elements of F representing h.
On the other hand, if every h ∈ I is a bounded linear combination, then there cannot be
cancellation of highest power products in such a linear combination; so every h ∈ I can
be reduced modulo F ; this is obviously equivalent to (c).

The Gröbner basis G computed in Example 2.3.21 is much too complicated. In fact,
{y − 1, x} is a Gröbner basis for the ideal. There is a general procedure for simplifying
Gröbner bases.

Theorem 2.3.23. Let G be a Gröbner basis for an ideal I in K[X]. Let g, h ∈ G and
g 6= h.

(a) If lpp(g) | lpp(h) then G′ = G \ {h} is also a Gröbner basis for I.

(b) If h −→g h
′ then G′ = (G \ {h}) ∪ {h′} is also a Gröbner basis for I.

Proof: [Winkler 1996] Theorem 8.3.5.

Observe that the elimination of basis polynomials described in Theorem 2.3.23(a) is
only possible if G is a Gröbner basis. In particular, we are not allowed to do this during a
Gröbner basis computation. Based on Theorem 2.3.23 we can show that every ideal has
a unique Gröbner basis after suitable pruning and normalization.

Definition 2.3.24. Let G be a Gröbner basis in K[X].
G is minimal iff lpp(g) 6 | lpp(h) for all g, h ∈ G with g 6= h.
G is reduced iff for all g, h ∈ G with g 6= h we cannot reduce h by g.
G is normed iff lc(g) = 1 for all g ∈ G.

From Theorem 2.3.23 we obviously get an algorithm for transforming any Gröbner
basis for an ideal I into a normed reduced Gröbner basis for I. No matter from which
Gröbner basis of I we start and which path we take in this transformation process, we
always reach the same uniquely defined normed reduced Gröbner basis of I.

Theorem 2.3.25. Every ideal in K[X] has a unique finite normed reduced Gröbner
basis.

Proof: [Winkler 1996] Theorem 8.3.6.

Observe that the normed reduced Gröbner basis of an ideal I depends, of course, on
the admissible ordering <. Different orderings can give rise to different Gröbner bases.
However, if we decompose the set of all admissible orderings into sets which induce the
same normed reduced Gröbner basis of a fixed ideal I, then this decomposition is finite.
This leads to the consideration of universal Gröbner bases. A universal Gröbner basis for
I is a basis for I which is a Gröbner basis w.r.t. any admissible ordering of the power
products.

If we have a Gröbner basis G for an ideal I, then we can compute in the vector space
K[X]/I over K. The irreducible power products (with coefficient 1) modulo G form a
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basis of K[X]/I . We get that dim(K[X]/I) is the number of irreducible power products
modulo G. Thus, this number is independent of the particular admissible ordering.

Example 2.3.26. Let I = 〈x3y − 2y2 − 1, x2y2 + x + y〉 in Q[x, y]. Let < be the
graduated lexicographic ordering with x > y. Then the normed reduced Gröbner basis of
I has leading power products x4, x3y, x2y2, y3. So there are 9 irreducible power products.

If < is the lexicographic ordering with x > y, then the normed reduced Gröbner basis
of I has leading power products x and y9. So again there are 9 irreducible power products.

In fact, dim(Q[x, y]/I) = 9.

An inconstructive proof of the existence of Gröbner bases

The existence of a Gröbner basis for any given ideal I (in K[x1, . . . , xn]) and admis-
sible ordering < can be proven without introducing reduction and S-polynomials. In the
following we give an outline of such an inconstructive proof.

Definition 2.3.27. An ideal I in K[x1, . . . , xn] is a monomial ideal iff it has a monomial
basis, i.e. a basis B s.t. every f ∈ B is a monomial axj11 · · ·xjnn , a ∈ K.

Theorem 2.3.28. Let I be an ideal in K[x1, . . . , xn]. Then the following are equivalent:

(i) I is a monomial ideal.

(ii) If f ∈ I and m is a monomial occurring in f , then m ∈ I.

(iii) I is generated by a finite monomial basis.

Proof: (i) =⇒ (ii): By definition, for every f ∈ I there exist finitely many monomials
m1, . . . ,mr in a monomial basis B such that

f = h1m1 + · · ·+ hrmr

for some h1, . . . , hr ∈ K[x1, . . . , xn]. Hence, every monomial in f is divisible by one of the
mi and therefore in I.
(ii) =⇒ (iii): By Hilbert’s Basis Theorem (Theorem 2.3.2(c)) the ideal I has a finite basis
B′. Then the set

B := { m | m occurs in some f ∈ B′ }

is a finite monomial basis of I.
(iii) =⇒ (i): Trivial.

We could have defined Gröbner bases in the following alternative way:

Definition 2.3.29. Let F be a basis of the ideal I. Then F is an initial Gröbner basis
for I iff 〈initial(F )〉 = 〈initial(I)〉.

Theorem 2.3.22 implies that

F is a Gröbner basis for I ⇐⇒ F is an initial Gröbner basis for I.
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Now we can prove the existence of (initial) Gröbner bases in the following way:

Theorem 2.3.30. Every ideal I has a finite initial Gröbner basis.

Proof: Let G be a finite monomial basis for 〈initial(I)〉; which exists because of Theorem
2.3.28(c).
For every g ∈ G let fg be in I s.t. fg = c · g + red(fg), for a constant c ∈ K.
Let F := {fg | g ∈ G}.
Then clearly 〈initial(F )〉 = 〈initial(I)〉.
Furthermore, F is a basis for I: for an arbitrary f ∈ I there must be a g ∈ G s.t.
g | lpp(f). So, by subtracting a suitable multiple of fg from f , we generate h = f − c · fg
s.t. h ∈ I and lpp(h) < lpp(f). This process terminates because of the Noetherianity of
<, leading to a representation of f as a linear combination of the polynomials in F .
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