2.3. The notion of a Gröbner basis

Before we start with the technical details, let us briefly review the historical development leading to the concept of Gröbner bases. In his seminal paper of 1890 David Hilbert ${ }^{1}$ gave a proof of his famous Basis Theorem as well as of the structure and length of the sequence of syzygy modules of a polynomial system. Implicitly he also showed that the Hauptproblem (the main problem of the theory of polynomial ideals, according to B.L. van der Waerden), i.e. the problem whether $f \in I$ for a given polynomial f and polynomial ideal I, can be solved effectively. Hilbert's solution of the Hauptproblem (and similar problems) was reinvestigated by G. Hermann ${ }^{2}$ in 1926. She counted the field operations required in this effective procedure and arrived at a double exponential upper bound in the number of variables. In fact, Hermann's, or for that matter Hilbert's, algorithm always actually achieves this worst case double exponential complexity. The next important step came when B. Buchberger, in his doctoral thesis ${ }^{3}$ of 1965 advised by W. Gröbner, introduced the notion of a Gröbner basis (he did not call it that at this time) and also gave an algorithm for computing it. Gröbner bases are very special and useful bases for polynomial ideals. In subsequent publications Buchberger exhibited important additional applications of his Gröbner bases method, e.g. to the solution of systems of polynomial equations. In the worst case, Buchberger's Gröbner bases algorithm is also double exponential in the number of variables, but in practice there are many interesting examples which can be solved in reasonable time. But still, in the worst case, the double exponential behaviour is not avoided. And, in fact, it cannot be avoided by any algorithm capable of solving the Hauptproblem, as was shown by E.W. Mayr and A.R. Meyer in 1982.

When we are solving systems of polynomial (algebraic) equations such as

$$
\begin{aligned}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right) & =0,
\end{aligned}
$$

the important parameters are the number of variables n and the degree d of the polynomials f_{1}, \ldots, f_{m}. The Buchberger algorithm for constructing Gröbner bases is at the same time a generalization of Euclid's algorithm for computing the greatest common divisor (GCD) of univariate polynomials (the case $n=1$) and of Gauss' triangularization algorithm for linear systems (the case $d=1$). Both these algorithms are concerned with solving systems of polynomial equations, and they determine a canonical basis (either the GCD of the inputs or a triangularized form of the system) for the given polynomial

[^0]system. Buchberger's algorithm can be seen as a generalization to the case of arbitrary n and d.

Definition 2.3.0. Let K be a field and $K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in n indeterminates over K. A subset I of $K[X]$ is a (polynomial) ideal of $K[X]$, iff it is closed under the formation of linear combinations; i.e., for $m \in \mathbb{N}, f_{1}, \ldots, f_{m} \in I$ and $p_{1}, \ldots, p_{m} \in K[X]$, also

$$
\sum_{i=1}^{m} p_{i} f_{i} \in I
$$

If F is any subset of $K[X]$ we write $\langle F\rangle$ or ideal (F) for the ideal generated by F in $K[X]$.

$$
\langle F\rangle=\left\{\sum_{i=1}^{m} p_{i} f_{i} \mid m \in \mathbb{N}, f_{i} \in F, p_{i} \in K[X]\right\}
$$

i.e. $\langle F\rangle$ consists of all linear combinations (also the empty linear combination $0=$ $\sum_{i=1}^{0} p_{i} f_{i}$) of F over $K[X]$.
F is called a basis or generating set of $\langle F\rangle$.
By $[X]$ we denote the monoid (under multiplication) of power products $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ in $x_{1}, \ldots, x_{n} .1=x_{1}^{0} \ldots x_{n}^{0}$ is the unit element in the monoid $[X] . \operatorname{lcm}(s, t)$ denotes the least common multiple of the power products s, t.

Definition 2.3.1.

(i) A commutative ring with 1 in which the basis condition holds, i.e. in which every ideal has a finite basis, is called a Noetherian ring.
(ii) Let \succ be a binary relation of the set M; i.e. $\succ \subseteq M \times M$. \succ is Noetherian or has the termination property iff there is no infinite sequence of the form $x_{1} \succ x_{2} \succ \cdots$.

Theorem 2.3.2.

(a) In a Noetherian ring there are no infinite properly ascending chains of ideals; and vice versa.
(b) (Hilbert's Basis Theorem) If R is a Noetherian ring then also the univariate polynomial ring $R[x]$ is Noetherian.
(c) If K is a field, then $K\left[x_{1}, \ldots, x_{n}\right]$ is a Noetherian ring.

Proof: (a) Suppose that R is Noetherian. Let

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots
$$

be an ascending chain of ideals in R. Consider

$$
I:=\bigcup_{i=0}^{\infty} I_{i} .
$$

I is an ideal in R, so it has a finite basis. This basis must be contained in some I_{k}; so

$$
I_{k}=I_{k+1}=\cdots
$$

On the other hand, suppose that an ideal I in R does not have a finite basis.
Choose a non-zero element $r_{0} \in I$; then $I_{0}:=\left\langle r_{0}\right\rangle \neq I$.
Choose $r_{1} \in I \backslash I_{0}$; then $I_{1}:=\left\langle r_{0}, r_{1}\right\rangle \neq I$.
This process can be continued indefinitely, yielding an infinite properly ascending chain of ideals in R.
(b) This is typically proven in a course on commutative algebra and algebraic geometry.
(c) A field K has only 2 ideals: $\langle 0\rangle$ and $\langle 1\rangle$. Both of them are finitely generated. So, by a series of applications of (b) be get the desired result.

So every ideal I in $K[X]$ has a finite basis, and if we are able to effectively compute with finite bases then we are dealing with all the ideals in $K[X]$.

Whenever a set M is equipped with a Noetherian relation \succ we can apply the Principle of Noetherian Induction ${ }^{4}$ for proving that a predicate P holds for all $x \in M$:
if for all $x \in M$

$$
[\forall y \in M:(x \succ y) \Longrightarrow P(y)] \Longrightarrow P(x)
$$

then

$$
\forall x \in M: P(x) .
$$

Typical examples of Noetherian Induction are the induction on natural numbers \mathbb{N} (with $\succ=>$) and induction on the term structure in term algebras (with $s \succ t \Longleftrightarrow t$ is a sub-term of s).

We will define a Gröbner basis of a polynomial ideal via a certain reduction relation for polynomials. A Gröbner basis will be a basis with respect to which the corresponding reduction relation is confluent. Before we can define the reduction relation on the polynomial ring, we have to introduce an ordering of the power products with respect to which the reduction relation should be decreasing.

Definition 2.3.3. Let $<$ be a strict ordering on $[X]$; i.e. $<$ is transitive and irreflexive. So \leq is an ordering. We call $<$ an admissible ordering, if it is is compatible with the monoid structure of $[X]$; i.e.
(i) $1=x_{1}^{0} \ldots x_{n}^{0}<t$ for all $t \in[X] \backslash\{1\}$, and
(ii) $s<t \Longrightarrow s u<t u$ for all $s, t, u \in[X]$.

Example 2.3.4. We give some examples of frequently used admissible orderings on $[X]$.

[^1](a) The lexicographic ordering with $x_{\pi(1)}>x_{\pi(2)}>\ldots>x_{\pi(n)}, \pi$ a permutation of $\{1, \ldots, n\}$:
$x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}<l e x, \pi x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}$ iff there exists a $k \in\{1, \ldots, n\}$ such that for all $l<k$ $i_{\pi(l)}=j_{\pi(l)}$ and $i_{\pi(k)}<j_{\pi(k)}$.
If $\pi=\mathrm{id}$, we get the usual lexicographic ordering $<_{l e x}$.
(b) The graduated lexicographic ordering w.r.t. the permutation π and the weight function $w:\{1, \ldots, n\} \rightarrow \mathbb{R}^{+}$:
for $s=x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}, t=x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}$ we define $s<_{g l e x, \pi, w} t$ iff
\[

$$
\begin{aligned}
& \left(\sum_{k=1}^{n} w(k) i_{k}<\sum_{k=1}^{n} w(k) j_{k}\right) \quad \text { or } \\
& \left(\sum_{k=1}^{n} w(k) i_{k}=\sum_{k=1}^{n} w(k) j_{k} \text { and } s<_{l e x, \pi} t\right) .
\end{aligned}
$$
\]

We get the usual graduated lexicographic ordering $<_{\text {glex }}$ by setting $\pi=$ id and $w=1_{\text {const }}$.
(c) The graduated reverse lexicographic ordering:
we define $s<_{\text {grlex }} t$ iff

$$
\begin{gathered}
\operatorname{deg}(s)<\operatorname{deg}(t) \text { or } \\
\left(\operatorname{deg}(s)=\operatorname{deg}(t) \text { and } t<_{l e x, \pi} s, \text { where } \pi(j)=n-j+1\right) .
\end{gathered}
$$

(d) The product ordering w.r.t. $i \in\{1, \ldots, n-1\}$ and the admissible orderings $<_{1}$ on $X_{1}=\left[x_{1}, \ldots, x_{i}\right]$ and $<_{2}$ on $X_{2}=\left[x_{i+1}, \ldots, x_{n}\right]$: for $s=s_{1} s_{2}, t=t_{1} t_{2}$, where $s_{1}, t_{1} \in X_{1}, s_{2}, t_{2} \in X_{2}$, we define $s<_{p r o d, i,<_{1},<_{2}} t$ iff

$$
s_{1}<_{1} t_{1} \quad \text { or } \quad\left(s_{1}=t_{1} \text { and } s_{2}<_{2} t_{2}\right) .
$$

Lemma 2.3.5. Let $<$ be an admissible ordering on $[X]$.
(i) If $s, t \in[X]$ and s divides t then $s \leq t$.
(ii) $<$ (or actually $>$) is Noetherian, i.e. there are no infinite chains of the form $t_{0}>$ $t_{1}>t_{2}>\ldots$, and consequently every subset of $[X]$ has a smallest element.

Proof:

(i) For some u we have $s u=t$. By admissibility of $<$ this yields $s=1 s \leq u s=t$.
(ii) Let $s_{1}>s_{2}>\cdots$ be a sequence of decreasing elements in $[X]$. Let K be any field. So

$$
\left\langle s_{1}\right\rangle \subset\left\langle s_{1}, s_{2}\right\rangle \subset \cdots
$$

is a properly ascending chain of ideals in $K[X]$. But $K[X]$ being Noetherian, this chain has to be finite

Throughout this chapter let R be a commutative ring with $1, K$ a field, X a set of variables, and $<$ an admissible ordering on $[X]$.

Definition 2.3.6. Let s be a power product in $[X], f$ a non-zero polynomial in $R[X], F$ a subset of $R[X]$.
By coeff (f, s) we denote the coefficient of s in f.
$\operatorname{lpp}(f):=\max _{<}\{t \in[X] \mid \operatorname{coeff}(f, t) \neq 0\}$ (leading power product of f),
$\operatorname{lc}(f):=\operatorname{coeff}(f, \operatorname{lpp}(f))$ (leading coefficient of $f)$,
$\operatorname{initial}(f):=\operatorname{lc}(f) \operatorname{lpp}(f)($ initial of $f)$,
$\operatorname{red}(f):=f-\operatorname{initial}(f)($ reductum of $f)$,
$\operatorname{lpp}(F):=\{\operatorname{lpp}(f) \mid f \in F \backslash\{0\}\}$,
$\operatorname{lc}(F):=\{\operatorname{lc}(f) \mid f \in F \backslash\{0\}\}$,
$\operatorname{initial}(F):=\{\operatorname{initial}(f) \mid f \in F \backslash\{0\}\}$,
$\operatorname{red}(F):=\{\operatorname{red}(f) \mid f \in F \backslash\{0\}\}$.
If I is an ideal in $R[X]$, then $\operatorname{lc}(I) \cup\{0\}$ is an ideal in R. However, $\operatorname{initial}(I) \cup\{0\}$ in general is not an ideal in $R[X]$.

Definition 2.3.7. Any admissible ordering $<$ on $[X]$ induces a strict partial ordering \ll on $R[X]$, the induced ordering, in the following way:

$$
\begin{aligned}
f \ll g \quad \text { iff } & f=0 \text { and } g \neq 0 \text { or } \\
& f \neq 0, g \neq 0 \text { and } \operatorname{lpp}(f)<\operatorname{lpp}(g) \text { or } \\
& f \neq 0, g \neq 0, \operatorname{lpp}(\mathrm{f})=\operatorname{lpp}(\mathrm{g}) \text { and } \operatorname{red}(f) \ll \operatorname{red}(g) .
\end{aligned}
$$

One of the central notions of the theory of Gröbner bases is the concept of polynomial reduction.

Definition 2.3.8. Let $f, g, h \in K[X], F \subseteq K[X]$. We say that g reduces to h w.r.t. $f\left(g \longrightarrow_{f} h\right)$ iff there are power products $s, t \in[X]$ such that s has a non-vanishing coefficient c in $g(\operatorname{coeff}(g, s)=c \neq 0), s=\operatorname{lpp}(f) \cdot t$, and

$$
h=g-\frac{c}{\operatorname{lc}(f)} \cdot t \cdot f
$$

If we want to indicate which power product and coefficient are used in the reduction, we write

$$
g \longrightarrow_{f, b, t} h, \quad \text { where } b=\frac{c}{l c(f)} .
$$

We say that g reduces to h w.r.t. $F\left(g \longrightarrow_{F} h\right)$ iff there is $f \in F$ such that $g \longrightarrow_{f} h$.
Example 2.3.9. Let $F=\left\{\ldots, f=x_{1} x_{3}+x_{1} x_{2}-2 x_{3}, \ldots\right\}$ in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$, and $g=$ $x_{3}^{3}+2 x_{1} x_{2} x_{3}+2 x_{2}-1$. Let $<$ be the graduated lexicographic ordering with $x_{1}<x_{2}<x_{3}$. Then $g \longrightarrow_{F} x_{3}^{3}-2 x_{1} x_{2}^{2}+4 x_{2} x_{3}+2 x_{2}-1=: h$, and in fact $g \longrightarrow_{f, 2, x_{2}} h$.

Lemma 2.3.10. For a given admissible ordering $<$ on $[X]$ and a subset F of $K[X]$ let \ll be the induced ordering on $K[X]$ and \longrightarrow_{F} the reduction w.r.t. F.
(i) $\ll($ or actually $\gg)$ is a Noetherian strict partial ordering on $K[X]$.
(ii) \longrightarrow_{F} is a Noetherian strict partial ordering on $K[X]$.

Proof: (i) We have to show that every sequence $f_{1} \gg f_{2} \gg \ldots$ is finite. This is achieved by Noetherian induction on $\operatorname{lpp}\left(f_{1}\right)$ w.r.t. $>$.
Noetherian induction on $\operatorname{lpp}(h)$ w.r.t. $>$:
Induction hypothesis:

$$
\forall s: t>s \Longrightarrow \text { sequence } g_{1} \gg g_{2} \gg \cdots \text { with } \operatorname{lpp}\left(g_{1}\right)=s \text { is finite. }
$$

show: sequence $h_{1} \gg h_{2} \gg \cdots$ with $\operatorname{lpp}\left(h_{1}\right)=t$ is finite.
Let $t_{i}:=\operatorname{lpp}\left(h_{i}\right)$ (if some $h_{i}=0$, then the sequence is obviously finite). Then we have $t=t_{1} \geq t_{2} \geq \cdots$. If all t_{i} are equal, then we have (by definition of \ll)

$$
\operatorname{red}\left(h_{1}\right) \gg \operatorname{red}\left(h_{2}\right) \gg \cdots
$$

and this must be finite by the induction hypothesis. Otherwise let j be such that $t>t_{j}$. Then

$$
h_{j} \gg h_{j+1} \gg \cdots
$$

is finite by the induction hypothesis. So the original sequence is also finite.
(ii) \longrightarrow_{F} is a partial ordering on $K[X]$, which is contained in \gg.

Definition 2.3.11. Let \longrightarrow be a reduction relation, i.e. a binary relation, on a set M.

- $x \longrightarrow$ means x is reducible, i.e. $x \longrightarrow y$ for some y;
- $\underline{x}_{\longrightarrow}$ means x is irreducible or in normal form w.r.t. \longrightarrow. We omit mentioning the reduction relation if it is clear from the context;
- $x \downarrow y$ means that x and y have a common successor, i.e. $x \longrightarrow z \longleftarrow y$ for some z;
- $x \uparrow y$ means that x and y have a common predecessor, i.e. $x \longleftarrow z \longrightarrow y$ for some z;
- by \longleftarrow we mean the inverse relation, by \longleftrightarrow the symmetric closure, and by \longrightarrow^{*} the reflexive-transitive closure; so,$\longleftrightarrow{ }^{*}$ is the symmetric-reflexive-transitive closure of \longrightarrow;
- x is $a \longrightarrow$-normal form of y iff $y \longrightarrow{ }^{*} \underline{x}$.

Definition 2.3.12. A reduction relation can have the following important properties.
(a) \longrightarrow is Church-Rosser or has the Church-Rosser property iff $a \longleftrightarrow{ }^{*} b$ implies $a \downarrow_{*} b$.
(b) \longrightarrow is confluent iff $x \uparrow^{*} y$ implies $x \downarrow_{*} y$, or graphically every diamond of the following form can be completed:

(c) \longrightarrow is locally confluent iff $x \uparrow y$ implies $x \downarrow_{*} y$, or graphically every diamond of the following form can be completed:

As a consequence of the Noetherianity of admissible orderings we get that \longrightarrow_{F} is Noetherian for any set of polynomials $F \subset K[X]$. So, in contrast to the general theory of rewriting, termination is not a problem for polynomial reductions. But we still have to worry about the Church-Rosser property.

Theorem 2.3.13. These crucial properties of reduction relations are closely related.
$(\mathrm{a}) \longrightarrow$ is Church-Rosser if and only if \longrightarrow is confluent.
(b) (Newman Lemma) Let \longrightarrow be Noetherian. Then \longrightarrow is confluent if and only if \longrightarrow is locally confluent.
(c) (Refined Newman Lemma) Let \longrightarrow be a reduction on M and $<$ a partial Noetherian ordering on M s.t. $\longrightarrow \subseteq>$. Then \longrightarrow is confluent if and only if for all $x, y, z \in M$:

$$
x \longleftarrow z \longrightarrow y \quad \text { implies } \quad x \longleftrightarrow{ }_{(<z)}^{*} y
$$

i.e. all intermediate elements w in the chain $x \longleftrightarrow{ }^{*} y$ satisfy $w<z$. In this case we say x and y are connected w.r.t. \longrightarrow below z.

Proof: For (a) and (b) see Theorem 8.1.2 in [Winkler 1996]. For (c) see Theorem 8.1.3 in [Winkler 1996].

As an immediate consequence of the previous definitions we get that the reduction relation \longrightarrow is (nearly) compatible with the operations in the polynomial ring. Moreover, the reflexive-transitive-symmetric closure of the reduction relation \longrightarrow_{F} is equal to the congruence modulo the ideal generated by F.

Lemma 2.3.14. Let $a \in K^{*}, s \in[X], F \subseteq K[X], g_{1}, g_{2}, h \in K[X]$.
(a) $\longrightarrow_{F} \subseteq \gg$,
(b) \longrightarrow_{F} is Noetherian,
(c) if $g_{1} \longrightarrow_{F} g_{2}$ then $a \cdot s \cdot g_{1} \longrightarrow_{F} a \cdot s \cdot g_{2}$,
(d) if $g_{1} \longrightarrow_{F} g_{2}$ then $g_{1}+h \downarrow_{F}^{*} g_{2}+h$.

Proof: [Winkler 1996] Exercise 8.2(2).
(a), (b), (c) are obvious.
(d) Let s be the power product in g_{1} that is reduced by $f \in F$, i.e. $s=u \cdot \operatorname{lpp}(f)$ for
some $u \in[X]$. If coeff $(h, s)=0$ then $g_{1}+h \longrightarrow_{f} g_{2}+h$. If coeff $(h, s)=-\operatorname{coeff}\left(g_{1}, s\right)$ then $g_{2}+h \longrightarrow_{f} g_{1}+h$. Otherwise
$g_{1}+h \longrightarrow_{f} g_{1}+h-\frac{\operatorname{coeff}\left(g_{1}+h, s\right)}{\operatorname{lc}(f)} \cdot u \cdot f=g_{2}+h-\frac{\operatorname{coeff}\left(g_{2}+h, s\right)}{\operatorname{lc}(f)} \cdot u \cdot f \longleftarrow_{f} g_{2}+h$.
So in any case we have $g_{1}+h \downarrow_{F}^{*} g_{2}+h$.
Theorem 2.3.15. Let $F \subseteq K[X]$. The ideal congruence modulo $\langle F\rangle$ equals the reflexive-transitive-symmetric closure of \longrightarrow_{F}, i.e. $\equiv_{\langle F\rangle}=\longrightarrow_{F}^{*}$.
Proof: [Winkler 1996] Exercise 8.2(3).
$\longleftrightarrow{ }_{F}^{*}$ is the smallest equivalence relation containing \longrightarrow_{F}. If $g \longrightarrow_{F} h$ then, by the definition of the reduction relation, $g-h \in\langle F\rangle$, i.e. $g \equiv_{\langle F\rangle} h$. Because $\longrightarrow_{F} \subseteq \longleftrightarrow{ }_{F}^{*}$ and $\equiv_{\langle F\rangle}$ is an equivalence relation we have $\longleftrightarrow{ }_{F}^{*} \subseteq \equiv\langle F\rangle$.
On the other hand, let $g \equiv_{\langle F\rangle} h$, i.e.

$$
g=h+\sum_{j=1}^{m} c_{j} \cdot u_{j} \cdot f_{j}, \quad \text { for } c_{j} \in K, u_{j} \in[X], f_{j} \in F .
$$

If we can show $g \longleftrightarrow_{F}^{*} h$ for the case $m=1$, then the statement follows by induction on $m . f_{1} \longrightarrow_{F} 0$. So by Lemma 2.3.14 $g=h+c_{1} \cdot u_{1} \cdot f_{1} \downarrow_{F}^{*} h$, and therefore $g \longleftrightarrow{ }_{F}^{*} h$.

So the congruence $\equiv_{\langle F\rangle}$ can be decided if \longrightarrow_{F} has the Church-Rosser property. Of course, this is not the case for an arbitrary set F. Such distinguished sets (bases for polynomial ideals) are called Gröbner bases.

Definition 2.3.16. A subset F of $K[X]$ is a Gröbner basis (for $\langle F\rangle$) iff \longrightarrow_{F} is ChurchRosser.

A Gröbner basis of an ideal I in $K[X]$ is by no means uniquely defined. In fact, whenever F is a Gröbner basis for I and $f \in I$, then also $F \cup\{f\}$ is a Gröbner basis for I.

For testing whether a given basis F of an ideal I is a Gröbner basis it suffices to test for local confluence of the reduction relation \longrightarrow_{F}. This, however, does not yield a decision procedure, since there are infinitely many situations $f \uparrow_{F} g$. However, Buchberger has been able to reduce this test for local confluence to just testing a finite number of sitations $f \uparrow_{F} g$. For that purpose he has introduced the notion of subtraction polynomials, or S-polynomials for short.

Definition 2.3.17. Let $f, g \in K[X]^{*}, t=\operatorname{lcm}(\operatorname{lpp}(f), \operatorname{lpp}(g))$. Then

$$
\operatorname{cp}(f, g)=\left(t-\frac{1}{\operatorname{lc}(f)} \cdot \frac{t}{\operatorname{lpp}(f)} \cdot f, t-\frac{1}{\operatorname{lc}(g)} \cdot \frac{t}{\operatorname{lpp}(g)} \cdot g\right)
$$

is the critical pair of f and g. The difference of the elements of $\operatorname{cp}(f, g)$ is the S-polynomial $\operatorname{spol}(f, g)$ of f and g.

If $\operatorname{cp}(f, g)=\left(h_{1}, h_{2}\right)$ then we can depict the situation graphically in the following way:

The critical pairs of elements of F describe exactly the essential branchings of the reduction relation \longrightarrow_{F}.

Theorem 2.3.18. (Buchberger's Theorem) Let F be a subset of $K[X]$.
(a) F is a Gröbner basis if and only if $g_{1} \downarrow_{F}^{*} g_{2}$ for all critical pairs $\left(g_{1}, g_{2}\right)$ of elements of F.
(b) F is a Gröbner basis if and only if $\operatorname{spol}(f, g) \longrightarrow_{F}^{*} 0$ for all $f, g \in F$.

Proof: (see also [Winkler 1996] Theorem 8.3.1)
(a) Obviously, if F is a Gröbner basis then $g_{1} \downarrow_{F}^{*} g_{2}$ for all critical pairs $\left(g_{1}, g_{2}\right)$ of F.

On the other hand, assume that $g_{1} \downarrow_{F}^{*} g_{2}$ for all critical pairs $\left(g_{1}, g_{2}\right)$. By the Refined Newman Lemma (Theorem 2.3.13(c)) it suffices to show $h_{1} \longleftrightarrow_{F(\ll h)}^{*} h_{2}$ for all h, h_{1}, h_{2} such that $h_{1} \longleftarrow_{F} h \longrightarrow_{F} h_{2}$.
Let s_{1}, s_{2} be the power products that are eliminated in the reductions of h to h_{1} and h_{2}, respectively. I.e. there are polynomials $f_{1}, f_{2} \in F$, coefficients $c_{1}=\operatorname{coeff}\left(h, s_{1}\right) \neq 0$, $c_{2}=\operatorname{coeff}\left(h, s_{2}\right) \neq 0$, and power products t_{1}, t_{2} such that

$$
\begin{array}{ll}
s_{1}=t_{1} \operatorname{lpp}\left(f_{1}\right), & h_{1}=h-\frac{c_{1}}{\operatorname{lc}\left(f_{1}\right)} t_{1} f_{1} \quad \text { and } \\
s_{2}=t_{2} \operatorname{lpp}\left(f_{2}\right), & h_{2}=h-\frac{c_{2}}{\operatorname{lcc}\left(f_{2}\right)} t_{2} f_{2} .
\end{array}
$$

We distinguish two cases, depending on whether or not $s_{1}=s_{2}$.
Case $s_{1} \neq s_{2}$: w.l.o.g. assume $s_{1}>s_{2}$. Let $a=\operatorname{coeff}\left(-\frac{c_{1}}{\operatorname{lc}\left(f_{1}\right)} t_{1} f_{1}, s_{2}\right)$. Then coeff $\left(h_{1}, s_{2}\right)=$ $c_{2}+a$ and therefore $\left(\longrightarrow^{*}\right.$ if coefficient is 0$)$

$$
h_{1} \longrightarrow_{F}^{*} h_{1}-\frac{c_{2}+a}{\operatorname{lc}\left(f_{2}\right)} t_{2} f_{2}=h-\frac{c_{1}}{\operatorname{lc}\left(f_{1}\right)} t_{1} f_{1}-\frac{c_{2}+a}{\operatorname{lc}\left(f_{2}\right)} t_{2} f_{2} .
$$

On the other hand $\left(\longrightarrow^{*}\right.$ if coefficient is 0$)$
$h_{2} \longrightarrow_{F} h_{2}-\frac{c_{1}}{\operatorname{lc}\left(f_{1}\right)} t_{1} f_{1} \longrightarrow_{F}^{*} h_{2}-\frac{c_{1}}{\operatorname{lc}\left(f_{1}\right)} t_{1} f_{1}-\frac{a}{\operatorname{lc}\left(f_{2}\right)} t_{2} f_{2}=h-\frac{c_{1}}{\operatorname{lc}\left(f_{1}\right)} t_{1} f_{1}-\frac{c_{2}+a}{\operatorname{lc}\left(f_{2}\right)} t_{2} f_{2}$.
Thus, $h_{1} \longleftrightarrow{ }_{F(\ll h)}^{*} h_{2}$, in fact $h_{1} \downarrow_{F}^{*} h_{2}$.
Case $s_{1}=s_{2}$: let $s=s_{1}=s_{2}, c=\operatorname{coeff}(h, s)$ and $h^{\prime}=h-c s$. So for some power product t we have $s=t \cdot \operatorname{lcm}\left(\operatorname{lpp}\left(f_{1}\right), \operatorname{lpp}\left(f_{2}\right)\right)$, and $h_{1}=h^{\prime}+c \cdot t \cdot g_{1}, h_{2}=h^{\prime}+c \cdot t \cdot g_{2}$, where $\left(g_{1}, g_{2}\right)=\operatorname{cp}\left(f_{1}, f_{2}\right)$. By assumption $g_{1} \downarrow_{F}^{*} g_{2}$, i.e. there are p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{l} such that

$$
g_{1}=p_{1} \longrightarrow_{F} \ldots \longrightarrow_{F} p_{k}=q_{l} \longleftarrow_{F} \ldots \longleftarrow_{F} q_{1}=g_{2} .
$$

So, by Lemma 2.3.14(c),

$$
c t g_{1}=c t p_{1} \longrightarrow_{F} \ldots \longrightarrow_{F} c t p_{k}=c t q_{l} \longleftarrow_{F} \ldots \longleftarrow_{F} c t q_{1}=c t g_{2} .
$$

Applying Lemma 2.3.14(d) we get

$$
h_{1}=h^{\prime}+c t p_{1} \downarrow_{F}^{*} \ldots \downarrow_{F}^{*} h^{\prime}+c t p_{k}=h^{\prime}+c t q_{l} \downarrow_{F}^{*} \ldots \downarrow_{F}^{*} h^{\prime}+c t q_{1}=h_{2}
$$

All the intermediate polynomials in these reductions are less than h w.r.t. \ll. Thus, $h_{1} \longleftrightarrow{ }_{F(\ll h)}^{*} h_{2}$.
(b) Every S-polynomial is congruent to 0 modulo $\langle F\rangle$. So by Theorem 2.3.15 $\operatorname{spol}(f, g) \longleftrightarrow{ }_{F}^{*} 0$. If F is a Gröbner basis, this implies $\operatorname{spol}(f, g) \longrightarrow_{F}^{*} 0$.

On the other hand assume that $\operatorname{spol}(f, g) \longrightarrow_{F}^{*} 0$ for all $f, g \in F$. We use the same notation as in (a). In fact, the whole proof is analogous to the one for (a), except for the case $s_{1}=s_{2}=s$. So for $h_{1}=h^{\prime}+c t g_{1} \longleftarrow_{F} h \longrightarrow_{F} h^{\prime}+c t g_{2}=h_{2}$ we have to show $h_{1} \longleftrightarrow{ }_{F}^{*}(\ll h) h_{2}$.
$g_{1}-g_{2}$ is the S-polynomial of $f_{1}, f_{2} \in F$, so by the assumption $g_{1}-g_{2} \longrightarrow_{F}^{*} 0$. By Lemma 2.3.14 also $h_{1}-h_{2}=\operatorname{ct}\left(g_{1}-g_{2}\right) \longrightarrow_{F}^{*} 0$, i.e. for some p_{1}, \ldots, p_{k} we have

$$
h_{1}-h_{2}=p_{1} \longrightarrow_{F} \ldots \longrightarrow_{F} p_{k}=0 .
$$

Again by Lemma 2.3.14 we get

$$
h_{1}=p_{1}+h_{2} \downarrow_{F}^{*} \ldots \downarrow_{F}^{*} p_{k}+h_{2}=h_{2},
$$

and therefore $h_{1} \longleftrightarrow{ }_{F}^{*}(\ll h) h_{2}$.
Buchberger's theorem suggests an algorithm for checking whether a given finite basis is a Gröbner basis: reduce all the S-polynomials to normal forms and check whether they are all 0 . In fact, by a simple extension we get an algorithm for constructing Gröbner bases.

```
GRÖBNER_B(Buchberger algorithm for computing Gröbner bases)
for a given finite subset \(F\) of \(K[X]^{*}\) and admissible ordering \(>\) on \([X]\),
a finite subset \(G\) of \(K[X]^{*}\) is computed,
such that \(\langle G\rangle=\langle F\rangle\) and \(G\) is a Gröbner basis w.r.t. \(>\).
\(G:=F\)
\(C:=\left\{\left\{g_{1}, g_{2}\right\} \mid g_{1}, g_{2} \in G, g_{1} \neq g_{2}\right\}\)
while not all pairs \(\left\{g_{1}, g_{2}\right\} \in C\) are marked do
    choose an unmarked pair \(\left\{g_{1}, g_{2}\right\}\)
    mark \(\left\{g_{1}, g_{2}\right\}\)
    \(h:=\) normal form of \(\operatorname{spol}\left(g_{1}, g_{2}\right)\) w.r.t. \(\longrightarrow_{G}\)
    if \(h \neq 0\) then
        \(\{C:=C \cup\{\{g, h\} \mid g \in G\}\)
        \(G:=G \cup\{h\}\}\)
return \(G\)
```

Every polynomial h constructed in GRÖBNER_B is in $\langle F\rangle$, so $\langle G\rangle=\langle F\rangle$ throughout GRÖBNER_B. Thus, by Theorem 1.8 GRÖBNER_B yields a correct result if it stops. The termination of GRÖBNER_B is a consequence of Dickson's Lemma which implies that in
$[X]$ there is no infinite chain of elements s_{1}, s_{2}, \ldots such that $s_{i} \nmid s_{j}$ for all $1 \leq i<j$. The leading power products of the polynomials added to the basis form such a sequence in $[X]$, so this sequence must be finite.

Theorem 2.3.19. (Dickson's Lemma) Every $A \subseteq[X]$ contains a finite subset B, such that every $t \in A$ is a multiple of some $s \in B$.

Proof: [Winkler 1996] 8.3.2.
The termination of GRÖBNER_B also follows from Hilbert's Basis Theorem applied to the initial ideals of the sets G constructed in the course of the algorithm, i.e. 〈initial $(G)\rangle$.

The algorithm GRÖBNER_B provides a constructive proof of the following theorem.
Theorem 2.3.20. Every ideal I in $K[X]$ has a finite Gröbner basis.
Example 2.3.21. Let $F=\left\{f_{1}, f_{2}\right\}$, with $f_{1}=x^{2} y^{2}+y-1, f_{2}=x^{2} y+x$. We compute a Gröbner basis of $\langle F\rangle$ in $\mathbb{Q}[x, y]$ w.r.t. the graduated lexicographic ordering with $x<y$. The following describes one way in which the algorithm GRÖBNER_B could execute (recall that there is a free choice of pairs in the loop):

$$
\begin{aligned}
& \operatorname{spol}\left(f_{1}, f_{2}\right)=f_{1}-y f_{2}=-x y+y-1=: f_{3} \text { is irreducible, so } G:=\left\{f_{1}, f_{2}, f_{3}\right\} ; \\
& \operatorname{spol}\left(f_{2}, f_{3}\right)=f_{2}+x f_{3}=x y \longrightarrow f_{3} y-1=: f_{4}, \text { so } G:=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\} \\
& \operatorname{spol}\left(f_{3}, f_{4}\right)=f_{3}+x f_{4}=y-x-1 \longrightarrow f_{4}-x=: f_{5}, \text { so } G:=\left\{f_{1}, \ldots, f_{5}\right\}
\end{aligned}
$$

All the other S-polynomials now reduce to 0 , so GRÖBNER_B terminates with

$$
G=\left\{x^{2} y^{2}+y-1, x^{2} y+x,-x y+y-1, y-1,-x\right\} .
$$

In addition to the original definition and the ones given in Theorem 2.3.18, there are many other characterizations of Gröbner bases. We list only a few of them.

Theorem 2.3.22. Let I be an ideal in $K[X], F \subseteq K[X]$, and $\langle F\rangle=I$. Then the following are equivalent.
(a) F is a Gröbner basis for I (w.r.t. >).
(b) $f \longrightarrow_{F}^{*} 0$ for every $f \in I$.
(c) $f \longrightarrow_{F}$ for every $f \in I \backslash\{0\}$.
(d) For all $g \in I, h \in K[X]:$ if $g \longrightarrow_{F}^{*} \underline{h}$ then $h=0$.
(e) For all $g, h_{1}, h_{2} \in K[X]:$ if $g \longrightarrow_{F}^{*} \underline{h_{1}}$ and $g \longrightarrow_{F}^{*} \underline{h_{2}}$ then $h_{1}=h_{2}$.
(f) $\langle\operatorname{initial}(F)\rangle=\langle\operatorname{initial}(I)\rangle$.
(g) Every $h \in I$ can be written as a bounded linear combination of elements in F; i.e. there are $f_{i} \in F, h_{i} \in K[X]$, s.t. $h=\sum_{i=1}^{n} h_{i} f_{i}$ with $\operatorname{lpp}\left(h_{i} f_{i}\right) \leq \operatorname{lpp}(h)$ for all i.

Proof: For the equivalence of (a) - (f) see [Winkler 1996] Theorem 8.3.4.
Now for (g): If F is a Gröbner basis w.r.t $>$, then every $h \in I$ can be reduced to 0 modulo F; this leads to a bounded linear combination of elements of F representing h. On the other hand, if every $h \in I$ is a bounded linear combination, then there cannot be cancellation of highest power products in such a linear combination; so every $h \in I$ can be reduced modulo F; this is obviously equivalent to (c).

The Gröbner basis G computed in Example 2.3.21 is much too complicated. In fact, $\{y-1, x\}$ is a Gröbner basis for the ideal. There is a general procedure for simplifying Gröbner bases.

Theorem 2.3.23. Let G be a Gröbner basis for an ideal I in $K[X]$. Let $g, h \in G$ and $g \neq h$.
(a) If $\operatorname{lpp}(g) \mid \operatorname{lpp}(h)$ then $G^{\prime}=G \backslash\{h\}$ is also a Gröbner basis for I.
(b) If $h \longrightarrow_{g} h^{\prime}$ then $G^{\prime}=(G \backslash\{h\}) \cup\left\{h^{\prime}\right\}$ is also a Gröbner basis for I.

Proof: [Winkler 1996] Theorem 8.3.5.
Observe that the elimination of basis polynomials described in Theorem 2.3.23(a) is only possible if G is a Gröbner basis. In particular, we are not allowed to do this during a Gröbner basis computation. Based on Theorem 2.3.23 we can show that every ideal has a unique Gröbner basis after suitable pruning and normalization.

Definition 2.3.24. Let G be a Gröbner basis in $K[X]$.
G is minimal iff $\operatorname{lpp}(g) \nmid \operatorname{lpp}(h)$ for all $g, h \in G$ with $g \neq h$.
G is reduced iff for all $g, h \in G$ with $g \neq h$ we cannot reduce h by g.
G is normed iff $\operatorname{lc}(g)=1$ for all $g \in G$.
From Theorem 2.3.23 we obviously get an algorithm for transforming any Gröbner basis for an ideal I into a normed reduced Gröbner basis for I. No matter from which Gröbner basis of I we start and which path we take in this transformation process, we always reach the same uniquely defined normed reduced Gröbner basis of I.

Theorem 2.3.25. Every ideal in $K[X]$ has a unique finite normed reduced Gröbner basis.

Proof: [Winkler 1996] Theorem 8.3.6.
Observe that the normed reduced Gröbner basis of an ideal I depends, of course, on the admissible ordering $<$. Different orderings can give rise to different Gröbner bases. However, if we decompose the set of all admissible orderings into sets which induce the same normed reduced Gröbner basis of a fixed ideal I, then this decomposition is finite. This leads to the consideration of universal Gröbner bases. A universal Gröbner basis for I is a basis for I which is a Gröbner basis w.r.t. any admissible ordering of the power products.

If we have a Gröbner basis G for an ideal I, then we can compute in the vector space $K[X]_{/ I}$ over K. The irreducible power products (with coefficient 1) modulo G form a
basis of $K[X]_{/ I}$. We get that $\operatorname{dim}\left(K[X]_{/ I}\right)$ is the number of irreducible power products modulo G. Thus, this number is independent of the particular admissible ordering.

Example 2.3.26. Let $I=\left\langle x^{3} y-2 y^{2}-1, x^{2} y^{2}+x+y\right\rangle$ in $\mathbb{Q}[x, y]$. Let $<$ be the graduated lexicographic ordering with $x>y$. Then the normed reduced Gröbner basis of I has leading power products $x^{4}, x^{3} y, x^{2} y^{2}, y^{3}$. So there are 9 irreducible power products.

If $<$ is the lexicographic ordering with $x>y$, then the normed reduced Gröbner basis of I has leading power products x and y^{9}. So again there are 9 irreducible power products. In fact, $\operatorname{dim}\left(\mathbb{Q}[x, y]_{/ I}\right)=9$.

An inconstructive proof of the existence of Gröbner bases
The existence of a Gröbner basis for any given ideal I (in $K\left[x_{1}, \ldots, x_{n}\right]$) and admissible ordering < can be proven without introducing reduction and S-polynomials. In the following we give an outline of such an inconstructive proof.

Definition 2.3.27. An ideal I in $K\left[x_{1}, \ldots, x_{n}\right]$ is a monomial ideal iff it has a monomial basis, i.e. a basis B s.t. every $f \in B$ is a monomial $a x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}, a \in K$.

Theorem 2.3.28. Let I be an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$. Then the following are equivalent:
(i) I is a monomial ideal.
(ii) If $f \in I$ and m is a monomial occurring in f, then $m \in I$.
(iii) I is generated by a finite monomial basis.

Proof: (i) \Longrightarrow (ii): By definition, for every $f \in I$ there exist finitely many monomials m_{1}, \ldots, m_{r} in a monomial basis B such that

$$
f=h_{1} m_{1}+\cdots+h_{r} m_{r}
$$

for some $h_{1}, \ldots, h_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$. Hence, every monomial in f is divisible by one of the m_{i} and therefore in I.
(ii) \Longrightarrow (iii): By Hilbert's Basis Theorem (Theorem 2.3.2(c)) the ideal I has a finite basis B^{\prime}. Then the set

$$
B:=\left\{m \mid m \text { occurs in some } f \in B^{\prime}\right\}
$$

is a finite monomial basis of I.
(iii) \Longrightarrow (i): Trivial.

We could have defined Gröbner bases in the following alternative way:
Definition 2.3.29. Let F be a basis of the ideal I. Then F is an initial Gröbner basis for I iff $\langle\operatorname{initial}(F)\rangle=\langle\operatorname{initial}(I)\rangle$.

Theorem 2.3.22 implies that
F is a Gröbner basis for $I \Longleftrightarrow F$ is an initial Gröbner basis for I.

Now we can prove the existence of (initial) Gröbner bases in the following way:
Theorem 2.3.30. Every ideal I has a finite initial Gröbner basis.
Proof: Let G be a finite monomial basis for $\langle\operatorname{initial}(I)\rangle$; which exists because of Theorem 2.3.28(c).

For every $g \in G$ let f_{g} be in I s.t. $f_{g}=c \cdot g+\operatorname{red}\left(f_{g}\right)$, for a constant $c \in K$.
Let $F:=\left\{f_{g} \mid g \in G\right\}$.
Then clearly $\langle\operatorname{initial}(F)\rangle=\langle\operatorname{initial}(I)\rangle$.
Furthermore, F is a basis for I : for an arbitrary $f \in I$ there must be a $g \in G$ s.t. $g \mid \operatorname{lpp}(f)$. So, by subtracting a suitable multiple of f_{g} from f, we generate $h=f-c \cdot f_{g}$ s.t. $h \in I$ and $\operatorname{lpp}(h)<\operatorname{lpp}(f)$. This process terminates because of the Noetherianity of $<$, leading to a representation of f as a linear combination of the polynomials in F.

[^0]: ${ }^{1}$ D.Hilbert, Über die Theorie der algebraischen Formen, Math. Annalen 36, 473-534 (1890)
 ${ }^{2}$ G.Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Annalen 95, 736-788 (1926)
 ${ }^{3}$ B.Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Dissertation, Univ. Innsbruck (1965)

[^1]: ${ }^{4}$ see P.M. Cohn, Algebra, Wiley, New York (1974)

