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4. Resultants

In this chapter we present resultants, another method of elimination theory. Resultants
are historically older than Gröbner bases. They are somehow easier to compute, but on
the other hand they do not generate as much information as a Gröbner basis.

Theorem 4.1. (B.L.van der Waerden, “Algebra, vol.I”, p.102)
Let a(x), b(x) be two non-constant polynomials in K[x], K a field. Then a and b have
a non-constant common factor (i.e. a common root over the algebraic closure of K) if
and only if there are polynomials p(x), q(x) ∈ K[x], not both equal to 0, with deg(p) <
deg(b), deg(q) < deg(a), such that

p(x)a(x) + q(x)b(x) = 0 . (∗)

Proof: If a and b have the non-constant common factor c, then obviously we can write

(b/c) · a− (a/c) · b = 0 .

On the other hand, assume (∗). So we have

p(x)a(x) = −q(x)b(x) . (∗∗)

We factor the left and right hand sides of (∗∗) into irreducible factors. All the irreducible
factors of a(x) must divide the right hand side at least as often as they divide a(x). Yet
they cannot divide q(x) as often as they do a(x) because of the degree restriction. Hence
at least one irreducible factor of a(x) occurs also in b(x).

How can we decide the existence of such polynomials p and q as in the previous
theorem?

Let m = deg(a), n = deg(b) and write

a(x) =
m∑
i=0

aix
i, b(x) =

n∑
i=0

bix
i .

Ansatz:

p(x) =
n−1∑
i=0

pix
i, q(x) =

m−1∑
i=0

qix
i .
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Then

p · a+ q · b = 0
⇐⇒
coeff(p · a, xi) + coeff(q · b, xi) = 0 ∀i
⇐⇒

pn−1am + qm−1bn = 0
...

p0a1 + p1a0 + q0b1 + q1b0 = 0
p0a0 + q0b0 = 0

⇐⇒

(pn−1, . . . , p0, qm−1, . . . , q0) ·



am · · · a0
. . . . . .

am · · · a0
bn · · · b0

. . . . . .

bn · · · b0


= (0, . . . , 0) .

So there is a non-trivial solution for p and q if and only if the matrix in this equation has
determinant 0.

Definition 4.2. Let

a(x) =
m∑
i=0

aix
i, b(x) =

n∑
i=0

bix
i

be non-constant polynomials in I[x] (I an integral domain) of degreem and n, respectively.
Let Sylx(a, b) be the Sylvester matrix of a and b, i.e.

Sylx(a, b) =



am am−1 · · · · · · a1 a0 0 · · · · · · 0
0 am am−1 · · · · · · a1 a0 0 · · · 0

...
0 · · · · · · 0 am am−1 · · · · · · a1 a0
− − − − − − − − − −
bn bn−1 · · · · · · b1 b0 0 · · · · · · 0
0 bn bn−1 · · · · · · b1 b0 0 · · · 0

...
0 · · · · · · 0 bn bn−1 · · · · · · b1 b0


.

The lines of Sylx(a, b) consist of the coefficients of the polynomials
xn−1a(x), . . . , xa(x), a(x) and xm−1b(x), . . . , xb(x), b(x), i.e. there are n lines of co-
efficients of a and m lines of coefficients of b. The resultant of a and b is the determinant
of Sylx(a, b); i.e.

resx(a, b) := det(Sylx(a, b) .

The resultant resx(f, g) of two univariate polynomials f(x), g(x) over an integral do-
main I is the determinant of the Sylvester matrix of f and g, consisting of shifted lines of
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coefficients of f and g. resx(f, g) is a constant in I. For m = deg(f), n = deg(g), we have
resx(f, g) = (−1)mnresx(g, f), i.e. the resultant is symmetric up to sign. If a1, . . . , am are
the roots of f , and b1, . . . , bn are the roots of g in their common splitting field, then

resx(f, g) = lc(f)nlc(g)m
m∏
i=1

n∏
j=1

(ai − bj).

The resultant has the important property that, for non–zero polynomials f and g,
resx(f, g) = 0 if and only if f and g have a common root, and in fact, f and g have a non-
constant common divisor in K[x], where K is the quotient field of I. If f and g have posi-
tive degrees, then there exist polynomials a(x), b(x) over I such that af + bg = resx(f, g).
The discriminant of f(x) is

discrx(f) = (−1)m(m−1)/2lc(f)2(m−1)
∏
i 6=j

(ai − aj).

We have the relation resx(f, f ′) = (−1)m(m−1)/2lc(f)discrx(f), where f ′ is the derivative
of f .

The resultant of f and g can be written as a linear combination of f and g. This
is proven in [CLO98] 1 for polynomials over a field. But the proof can be extended to
polynomials over integral domains.

Theorem 4.3. Given a, b ∈ I[x] of positive degree, where I is an integral domain. Then

resx(a, b) = p · a+ q · b
for some p(x), q(x) ∈ I[x]. So resx(a, b) is in the ideal generated by a and b in I[x].

Proof: Let m = deg(a), n = deg(b). The definition of resultant was based on the equation
p · a+ q · b = 0. In this proof, we will apply the same method to the equation

p̃ · a+ q̃b = 1 . (∗)

The theorem is trivially true if resx(a, b) = 0; simply choose p = q = 0.
So we may assume resx(a, b) 6= 0. Now let

a =
m∑
i=0

aix
i , b =

n∑
i=0

bix
i , p̃ =

n−1∑
i=0

p̃ix
i , q̃ =

m−1∑
i=0

q̃ix
i ,

where the coefficients of p̃ and q̃ are unknowns in I. If we substitute these formulas into
(∗) and compare coefficients of powers of x, then we get a system of linear equations
with coefficients ai, bi and with unknowns ci, di. These equations are the same as in the
derivation of the Sylvester matrix, except for 1 on the right hand side for the coefficient
of x0. So we have

Sylx(a, b)T ·



p̃n−1
...
p̃0
q̃m−1

...
q̃0


=


0
...
0
1


1Cox,Little,O’Shea, “Ideals, Varieties, and Algorithms”, 2nd ed., p.152
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Because the resultant is non-zero, this system has a unique solution. So we can use
Cramer’s rule to give a formula for the components of the solution. For example,

p̃n−1 =
det(M1)

resx(a, b)
,

where the matrix M1 is the result of replacing the first column in Sylx(a, b)T by the right
hand side (0 . . . 0 1)T . The numerator is an element in the integral domain I. We get
analogous expressions for the other unknowns. So we can write

p̃ =
1

resx(a, b)
· p , q̃ =

1

resx(a, b)
· q ,

where p and q are in I[x]. Since p̃ and q̃ safisfy p̃ · a+ q̃ · b = 1, we can multiply through
by resx(a, b) to obtain

p · a+ q · b = resx(a, b) .

So resx(a, b) is in the ideal generated by a and b in I[x].

For actually computing resultants, e.g. for polynomials in Z[x1, . . . , xn], one uses a
modular approach similar to the one for gcd computation. So some of the variables are
evaluated at several evaluation points and the finial result is then interpolated. We state
a crucial Lemma needed for this process.

Lemma 4.4. (Lemma 4.3.1 in Winkler, “Computer Algebra”)
Let I, J be integral domains, φ a homomorphism from I into J . The homomorphism from
I[x] into J [x] induced by φ will also be denoted φ, i.e. φ(

∑m
i=0 cix

i) =
∑m

i=0 φ(ci)x
i. Let

a(x), b(x) be polynomials in I[x]. If deg(φ(a)) = deg(a) and deg(φ(b)) = deg(b)− k, then
φ(resx(a, b)) = φ(lc(a))kresx(φ(a), φ(b)).

Proof: Let M be the Sylvester matrix of a and b, M∗ the Sylvester matrix of a∗ = φ(a)
and b∗ = φ(b). If k = 0, then clearly φ(resx(a, b)) = resx(a∗, b∗).
If k > 0 then M∗ can be obtained from φ(M) by deleting its first k rows and columns.
Since the first k columns of φ(M) contain φ(lc(a)) on the diagonal and are zero below the
diagonal, φ(resx(a, b)) = φ(det(M)) = det(φ(M)) = φ(lc(a))kresx(a∗, b∗).
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Solving systems of algebraic equations by resultants

Theorem 4.5. (Theorem 4.3.3 in Winkler, “Computer Algebra”)
Let K be an algebraically closed field, let

a(x1, . . . , xr) =
∑m

i=0 ai(x1, . . . , xr−1)x
i
r,

b(x1, . . . , xr) =
∑n

i=0 bi(x1, . . . , xr−1)x
i
r

be elements of K[x1, . . . , xr] of positive degrees m and n in xr, and let c(x1, . . . , xr−1) =
resxr(a, b). If (α1, . . . , αr) ∈ Kr is a common root of a and b, then c(α1, . . . , αr−1) = 0.
Conversely, if c(α1, . . . , αr−1) = 0, then one of the following holds:
(a) am(α1, . . . , αr−1) = bn(α1, . . . , αr−1) = 0,
(b) for some αr ∈ K, (α1, . . . , αr) is a common root of a and b.

Proof: By Theorem 4.3 we have c = ua+vb, for some u, v ∈ K[x1, . . . , xr]. If (α1, . . . , αr)
is a common root of a and b, then the evaluation of both sides of this equation immediately
yields c(α1, . . . , αr−1) = 0.

Now assume c(α1, . . . , αr−1) = 0. Suppose am(α1, . . . , αr−1) 6= 0, so we are not in case
(a). Let φ be the evaluation homomorphism x1 = α1, . . . , xr−1 = αr−1. Let k = deg(b)−
deg(φ(b)). By Lemma 4.4. we have 0 = c(α1, . . . , αr−1) = φ(c) = φ(resxr(a, b)) =
φ(am)kresxr(φ(a), φ(b)). Since φ(am) 6= 0, we have resxr(φ(a), φ(b)) = 0. Since the leading
term in φ(a) is non–zero, φ(a) and φ(b) must have a common non–constant factor, say
d(xr) (see (van der Waerden 1970), Sec. 5.8). Let αr be a root of d in K. Then (α1, . . . , αr)
is a common root of a and b. Analogously we can show that (b) holds if bn(α1, . . . , αr−1) 6=
0.

This theorem suggests a method for determining the solutions of a system of algebraic,
i.e. polynomial, equations over an algebraically closed field. Suppose, for example, that
a system of three algebraic equations is given as

a1(x, y, z) = a2(x, y, z) = a3(x, y, z) = 0.

Let, e.g.,
b(x) = resz(resy(a1, a2), resy(a1, a3)),
c(y) = resz(resx(a1, a2), resx(a1, a3)),
d(z) = resy(resx(a1, a2), resx(a1, a3)).

In fact, we might compute these resultants in any other order. By Theorem 4.5, all the
roots (α1, α2, α3) of the system satisfy b(α1) = c(α2) = d(α3) = 0. So if there are finitely
many solutions, we can check for all of the candidates whether they actually solve the
system.

Unfortunately, there might be solutions of b, c, or d, which cannot be extended to
solutions of the original system, as we can see from the following example.

Example 4.6. Consider the system of algebraic equations

a1(x, y, z) = 2xy + yz − 3z2 = 0,
a2(x, y, z) = x2 − xy + y2 − 1 = 0,
a3(x, y, z) = yz + x2 − 2z2 = 0.
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We compute

b(x) = resz(resy(a1, a3), resy(a2, a3))
= x6(x− 1)(x+ 1)(127x4 − 167x2 + 4),

c(y) = resz(resx(a1, a3), resx(a2, a3))
= (y − 1)3(y + 1)3(3y2 − 1)(127y4 − 216y2 + 81) · (457y4 − 486y2 + 81),

d(z) = resy(resx(a1, a2), resx(a1, a3))
= 5184z10(z − 1)(z + 1)(127z4 − 91z2 + 16).

All the solutions of the system, e.g. (1, 1, 1), have coordinates which are roots of b, c, d.
But there is no solution of the system having y–coordinate 1/

√
3. So not every root of

these resultants can be extended to a solution of the system.
The Göbner basis of the ideal generated by a1, a2, a3 w.r.t. lexicographic ordering with

z > x > y contains the univariate polynomial

g1(y) = (y − 1)(y + 1)(127y4 − 216y2 + 81) .

So no extraneous factors are generated. All solutions of g1(y) can be extended to solutions
of the whole system.

Example 4.7. According to Theorem 4.5(a), a partial solution (α1, . . . , αr−1) might not
be extendable to a full common solution of a and b, if it is a common root of the leading
coefficients of a and b. But in certain cases it might still be extendable. As an example
consider

a(x1, x2) = −x1x22 + x21x2 − 4x2 + x1 ,
b(x1, x2) = 2x1x

2
2 + x21x2 − 3x1x2 − 4x2 + x1 .

The resultant w.r.t. x2 is

c(x1) = resx2(a, b) = 9x31(x1 − 2)(x1 + 2) .

The leading coefficients of a and b w.r.t. x2 are −x1 and 2x1, respectively. They both
vanish at 0, but still (0, 0) is a common solution of a and b.

Example 4.8. Let C be the affine curve (node) defined by f(x, y) = x3 + x2 − y2 = 0.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5
x

C has a double point at the origin O = (0, 0). Intersecting C by the line L defined by
l(x, y) = y − tx = 0,

resy(f, l) = x2 · (x− t2 + 1) ,
resx(f, l) = y2 · (y − t3 + t) ,
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we get the additional intersection point (t2 − 1, t3 − t). So

x(t) = t2 − 1, y(t) = t3 − t

is a parametrization of C.
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