
Formal Semantics of Programming Languages

Exercise 3 (January 12)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

November 30, 2006

The exercise is to be submitted by January 12 (hard deadline)

1. as a single PDF file sent to me per email, or

2. as a paper report (cover page with full name and Matrikelnummer, pages
stapled) handed out to me in class.

1 A Language with Heap Allocation

Extend the language of Figure 7.2 presented in class to include constructs for
the allocation and use of heap cells:

C ::= . . . | alloc I | ∗I := E
E ::= . . . | ∗I

The command “alloc I” allocates a cell on the heap and writes its location (a
“pointer”) into the variable I. The command “∗I = E” assigns a value to the
heap cell referenced by I; the expression “∗I” reads the content of this cell.

Please note that the command “I := . . . ” essentially retains its original meaning
(assigning a value to the variable I) as well as the expression “I” (reading the
content of the variable I). Thus, if J is a variable holding a pointer, the statement
“I := J” denotes the assignments of this pointer to I.

The heap can be represented as a fixed amount of memory before the bottom
of the stack. Thus use the initial memory location passed to the program for
reserving some memory for the heap. If the heap is full, the allocation of a new
memory cell triggers an error.

Variables can now hold either natural numbers (as in the original language) or
pointers, thus the domain Storable-value (introduced in Figure 5.5) has to be
appropriately extended and also the dynamic type checks have to be adapted.

1

