
Focus Windows:

A New Technique  for Proof Presentation

F. Piroi, B. Buchberger

RISC-Linz

Research Institute for Symbolic Computation

A-4232  Hagenberg, Austria

{Florina.Piroi, Bruno.Buchberger}@risc.uni-linz.ac.at

1 Introduction

The idea of focus windows as a technique for proof presentation was introduced in

[Buchberger  2000].  The  present  paper  describes  the  implementation  of  the  technique

in  the  frame  of  the  Theorema  system  [Buchberger  et  al.  2000].  The  implementation

was done by the first author under the guidance of the second author.

Proofs  in  mathematical  publications  are  linear  texts.  In  each  proof  step,  a  new

formula  is  derived  from  formulae  appearing  in  earlier  portions  of  the  text  using  an

inference  rule.  Typically,  in  long  proofs,  the  formulae  used  in  a  proof  steps  occur  a

couple of lines,  paragraphs,  or  even pages distant from the place in the text at  which

the  proof  step  occurs.  Reference  to  these  formulae  is  usually  done  by  labels  and  the

reader has to jump back and forth between the formulae referenced and the proof step

in which they are needed. This is unpleasant and makes understanding of proofs quite

difficult even if the proofs are nicely structured and well presented. 

Most  automated  theorem  provers  do  not  put   emphasis  on  producing  proofs  that

are easy to read and understand. (A very telling illustration of this is provided by the

collection of proofs produced for the irrationality of 
r���

2  by 15 different current prover

in [Weijdeck 2001].) However, even those that provide tools for studying proofs have

the  problem  described  above.  This  is  even  true  for  natural  deduction  provers  as,  for

example,  the  Omega system [Omega],   that  display the  entire  proof  tree  in  tree  form

and not  in linearized presentation: Still,  when studying one particular proof step,  one

may have to jump to various formulae in the tree for being able to check or understand

the validity of the particular step.



From the outset, in Theorema  we tried to emphasize attractive proof presentation.

Theorema  proofs  are  designed  to  resemble  proofs  generated  by  humans,  i.e.they

contain  formulae  and  explanatory  text  in  English.  In  addition,  Theorema  provides

various tools for helping the reader to browse the proofs: links to labeled formulae are

realized as hyperlinks that display the formula referenced in a small auxiliary window;

nested brackets at the right-hand margin make it possible to contract entire sub-proofs

to  just  one  line;  various  color  codes  distinguish  the  (temporary)  proof  goals  from

formulae  in  the  (temporary)  knowledge  base;  etc.  Still,  reading  and  understanding

linear proofs is difficult even for proofs generated by the typical Theorema provers.

Focus windows provide a means to overcome this difficulty. The technique could

be implemented for most every proving system,  even for systems that do not actually

generate proofs automatically but restrict automation to checking proofs generated by

humans (proof  checkers  like  HOL [Hol],  MIZAR [Mizar]).  The only prerequisite  for

applying the focus windows technique is  that the results  of the provers in the system

must  be  formal  proof  objects  that  contain,  for  each  proof  step,  the  information  on

which formulae are used and which formulae are produced in the given step. The idea

of the focus windows technique is simple but helpful: Starting from the proof objects,

one  analyzes,  in  each  proof  step,  which  formulae  are  used  and  which  ones  are

produced  in  the  given  step.  One  then  composes  a  window  containing  exactly  these

formulae  for  each  proof  step.  The  windows  also  contain  a  button  for  moving  to  the

next  window  in  the  proof.  In  proof  situations  that  branch  to  two  or  more  proof

situations the  subsequent  windows are  displayed in  contracted form and the  user can

decide  which  one  to  open  next.  In  addition,  each  focus  window  contains  a  small

simplified image of the entire proof tree so that the user can also jump to a randomly

chosen proof situation in the proof tree if he wants to interrupt the sequence of proof

steps suggested by the system.

In  more  detail,  a  proof  situation  in  a  proof  generated  by  one  of  the  Theorema

provers (and also the provers in most other proving system) consists of 

Ë the current proof goal and

Ë the  current  knowledge  base  (definitions,  axioms,  known  theorems,  and

temporary assumptions).

In one proof step, using only a few formulae in the knowledge base, which we call

here the "relevant formulae", by applying one of the inference techniques of the prover

a  new  goal  or  new  formulae  in  the  knowledge  base  or  both  are  generated.  In  the

corresponding focus window we display

Ë the current proof goal and

Ë the relevant formulae

2 Focus Window: A New Technique for Proof Presentation



and then, upon clicking, we display in  addition the new goal and /  or the new

formulae in the knowledge base. When clicking the next button, we then display the

focus window for the next proof situation.

Another way of  describing the focus window technique is to think about a long

proof written on a sequence of blackboards. Now, for reading and understanding the

proof, you equip the reader with  a magic glass (a "focus glass") that, in  each proof

step, concentrates all the relevant formulae on one blackboard and erases all the other

formulae so that the reader, in each proof step, has all the relevant information in front

of his eyes and is not distracted by any irrelevant material.

Note that this technique is applicable for both general and special inference rules:

For example, if  polynomial simplification or even advanced techniques like cylindric

algebraic decomposition or symbolic summation are black-box inference rules in the

prover  applied  to  a  particular  proof  problem  then,  for  each proof  step,  the

corresponding focus window will  only show the proof goal and the relevant formulae

before applying the special inference rule and the formulae produced by this inference

rule and will  not show any internal details of the execution of the inference rule.

The focus windows method is most easily understood by looking to the examples

in  the appendix. Appendix 2  shows the linear proof text generated by  the current

version of  the Theorema  system in  an automatic post-processing step applied to the

abstract proof  object  automatically generated by  one of  the  Theorema  provers.

Appendix 3, in comparison, shows the sequence of focus windows generated, again in

an automatic post-processing step applied to the abstract proof object.

In Section 2 we will  give some comments on the focus windows appearing in the

example in Appendix 3 in comparison to the proof shown in Appendix 2. In Section 3,

we  will  then give  some comments on  the implementation of  the focus windows

technique in Theorema.

2 Using Focus Windows

The example used to explain the focus windows technique is part of a Theorema

case study that  covers the  theory  of  equivalence relations, equivalence classes,

partitions and induced relations,  [Windsteiger 2001b]. All  notions are defined in

terms of set theory. Appendix 2 presents the output of a Prove call of Theorema   that

generates the proof of a simple theorem on equivalences and partitions automatically. 

We do not go here into  the details of  the  Theorema  language. The formulae

should be self–explanatory. All  the knowledge the user has to type in order to obtain a

successful proof is presented in Appendix 1.

Focus Window: A New Technique for Proof Presentation 3



A  typical call for  starting a Theorema  prover to work on a proof problem looks

like this:

Prove #Lemma#"Lemma"', using� KnowledgeBase,
by � SomeProver, ProverOptions� �optionsfor theprover�,
showBy � SomeDisplayer '

The user of  Theorema  can control both the work of  SomeProver by setting the

ProverOptions and also the way the proof is presented by setting the showBy options.

By  default, Theorema  will  present the proof in  a new Mathematica  notebook as a

linear  proof  text.   By  setting  showBy�FocusWindow  the focus window  display

method will  be invoked, which is the topic of this paper. (For a complete description

of  the  options of  the  Prove command  and other  details about Theorema  see

[Windsteiger 2001a], [Vasaru 2000]).

For example, the following command generates the linear text proof presented in

Appendix 2

Prove#Lemma#"Lemma"', using�

;Definition#"factorset"', Definition#"is all nonempty"', Definition#"class"',

Definition#"is reflexive"', Definition#"is relation"', Definition#"is subsetset"'?,

by � SetTheoryPCSProver+
 , otheroptions
/',

and the following command generates the focus window presentation of the same

proof:

Prove#Lemma#"Lemma"', using�

;Definition#"factorset"', Definition#"is all nonempty"', Definition#"class"',
Definition#"is reflexive"', Definition#"is relation"', Definition#"is subsetset"'?,

by � SetTheoryPCSProver, showBy � FocusWindow +
 , otheroptions
/',

As mentioned earlier in this paper, the focus window method presents proofs in a

step–wise manner. Each step of the proof will  be shown to the user in two phases: the

attention phase and the transformation phase with a corresponding Attention Window

and a Transformation Window. Each of these windows has

Ë  a "goal area" in which the current goals are shown, 

Ë an "assumptions area" in which the "relevant" assumptions are shown, 

Ë a "proof tree area" in which the entire proof tree is displayed in a schematic,

simplified form,

Ë an  area that  presents all  the  assumptions that  are  available (the  "all

assumptions area"), 

Ë and a "navigation area" that helps the user navigate in the proof by clicking

on various buttons.

4 Focus Window: A New Technique for Proof Presentation



As a concrete example, the goal area of the Attention Window 5 (Figure 1) shows

us the current goal formula (2.1) and the assumption area shows the definitions of the

functions  'class' and  'factor–set'  and  the  predicate 'is–all–nonempty'. The  area

containing the schematic representation of  the proof tree and the area containing all

the assumptions that are currently available are shown in  closed cells. If  the user is

interested to see the contents of these cells it has to double–click on the respective cell

brackets. (The  organization of  notebooks using cells  is  a  standard Mathematica

feature, see [Wolfram 96]). Note that, following  the basic philosophy of  the focus

windows technique, the user will  normally not want to see all assumptions but only the

ones that are relevant for the current proof step, which are exactly the ones shown in

the assumptions area. 

Figure 1

A  click on the 'Next' button will  bring up the Transformation Window 5 (Figure

2). The inference step applied in the current proof step rewrote the goal using the three

definitions in the assumptions area - and no other formulae of the current knowledge

base! The result of  rewriting the goal is  now displayed as formula (3)  under the

heading 'New goal:'. Formula (2.1) is now an 'Old goal'. No new assumptions were

inferred in this step. Therefore, in this example, the assumptions area does not contain

any new formulae. (In  contrast, in  the Attention and Transformation Window 2  –

Appendix 3 –, new assumptions are generated, which are displayed under the heading

'New assumptions:'.)

Focus Window: A New Technique for Proof Presentation 5



Figure 2

Pressing the 'Previous' button now will  take the user back to the Attention Window

5. Clicking 'Previous' again, the user will  see the Transformation Window 4. One may

go back and forth as many times as it  needs to  understand the proof completely.

(Here, "understanding" means "verifying  the correctness" of  each proof  step and

"verifying the completeness of the sequence of proof steps". In this paper, we cannot

go into the discussion of various notions of "understanding mathematical proofs".)

Now let us look closer at the Attention Window 4 (Figure 3). The current goal –

formula (2) – is a conjunction of  two statements, each of  them needs to be proved.

Therefore, the proof will  split into two branches.  The Transformation Window that

comes up after clicking 'Next' (Figure 4) contains now two closed cells, one for each

sub–proof. Each of the cells contains its goal area, assumption area, navigation button

area and all–assumption area. The user can continue on the branch it wishes to see by

clicking on the 'Next' button of the corresponding branch. There is, however, only one

proof tree area in this window. 

6 Focus Window: A New Technique for Proof Presentation



Figure 3

Figure 4 – the cell corresponding to the first branch is opened.

The simplified proof representation in the proof tree area is not only a graphical

representation but it  also has some functionality. The nodes of  the simplified tree

representation are in one–to–one correspondence with the nodes of the proof object.

The node corresponding to the proof step that is currently seen in either the Attention

or the Transformation Window is high–lighted. Also, clicking any of these nodes will

Focus Window: A New Technique for Proof Presentation 7



cause the corresponding focus window to be displayed, allowing the user to read the

proof in the order it prefers. (In contrast, using the buttons in the navigation, the proof

can be read "forward" and "backward" in the sequence suggested by the prover.)

3 Implementation of Focus Windows

The proof presentation technique explained in  the section above should not be

difficult  to implement in any existing automated prover. The main pre–requisite is that

the  data structure for  the  proof  object, for  each proof  step, contains sufficient

information for  extracting the formulae used and inferred in  the particular step. The

Focus Windows technique can then be described, roughly, by the following pseudo-

algorithm:

Step 1: phase = initial;

current_position = root_position;

ShowWindow[phase, current_position, proof_object];

Step 2: while user_action is not done

   if  phase is initial or transformation

   then phase = attention;

   else phase = transformation;

   end if;

   current_position = 

   DetermineCurrentPosition[current_position,

   user_action, proof_object];

   ShowWindow[phase, current_position, proof_object];

end while;

Step 3: stop.

Note that the value of 'proof_object' does not change during the execution of the

algorithm: The proof object is  the essential input parameter of  the algorithm. The

variables  used  in  this  pseudo–algorithm  are  'phase',  'current_position' and

'user_action'. The  variable  'phase' may  have  the  values 'initial',  'attention',  or

'transformation'.  The 'current_position' points to the current proof step in  the proof

object is. The values 'current_position' may take depend on the exact data structure of

the proof objects. We assume here that the proof object is in a tree–like form but the

algorithm may be easily adapted to any other data structure. The 'user_action' variable

is needed to take in the user actions (button clicks, keys on the keyboard, words typed

in at the prompter, etc.). The constants appearing in the algorithm are in italics. 

The core of the algorithm is the ShowWindow function. At  the very beginning, it

is called with the initializing parameters initial and root_position. In the initial phase,

8 Focus Window: A New Technique for Proof Presentation



we generate the initial  focus window that contains the goal that has to be proved and

the available knowledge (axioms, definitions, lemmata, temporary assumptions, etc.).

When the user takes an action three main steps are executed: 

Ë Depending on the actual phase, the type of the next phase is set. 

Ë Depending on  the  'current_position' and  the  'user_action', the  algorithm

determines the position in the proof object of the next proof step on which we

want to focus on (DetermineCurrentPosition).

Ë The focus window corresponding to the new 'current_position' and 'phase' is

shown.

We implemented the focus window method in Mathematica [Wolfram 96], which

is  also the language we  chose for  the implementation of  Theorema.  In  fact,  the

implementation was quite easy because of two reasons:

Ë From the outset, the data structure of  Theorema  proof objects was carefully

designed in order to give easy access to the formulae relevant in each proof

step. Also, the data structure for  Theorema  proof objects leaves some slots

open for  adding additional information which is  relevant for  certain prove

methods or certain proof presentation methods.

Ë The front  end of  Mathematica  provides convenient programming tools for

active  objects  that,  basically,  allow  to  apply  the  usual  Mathematica

programming style also for  programming man–machine interfaces. We use

this  facility  for  entering the  information in  the  action  buttons and the

schematic proof tree representation into the ShowWindow function. We give

some more details about this below.

The user actions are taken in  via the buttons 'Next', 'Previous' and 'Done' in  the

navigation area and the schematic proof tree presentation whose nodes are, in  fact,

also realized as buttons. The schematic proof tree representation is a static object in

the  sense that  the  data attached to  its  node buttons do  not  change during  the

presentation of the proof by the focus window viewer.  In contrast, the buttons 'Next'

and 'Previous' are dynamic objects, whose information is used in the following way:

Ë Suppose that the focus window is presenting the Attention Window of some

node n  of the proof tree. Then the data attached to the 'Previous' button is a

link to the parent node of n. The data attached to the 'Next' button is a link to

the node n because when pressing it  we want to bring up the Transformation

Window of the same node n. 

Ë Suppose that the focus window is presenting the Transformation Window of

some node n  of  the proof tree.  Note that such a window may have several

branches. Then the data attached to  the 'Previous' button in  each of  the

Focus Window: A New Technique for Proof Presentation 9



branches is a link to the node n because when pressing it we want to bring up

the Attention Window of  the same node n.  The data attached to the 'Next'

button in each of the branches is a link to the corresponding child node of n.

4 Conclusion

We presented a new method for  presenting mathematical proofs that could be

applied, in  principle, to both proofs generated by humans and proofs generated by

algorithms. The essence of the method is that we present, in each proof step, exactly

the formulae that are relevant for the particular proof step and we put these formulae

into our focus.  If  proofs are printed on paper or written on other passive media like

blackboards, this operation of focusing  cannot be executed automatically (but is done

"in  the head of  the person who  studies a  proof").  In  contrast, in  the context of

automated theorem proving, when proofs are naturally available as processable data

objects (the "proof objects") this focusing operation can be described by an algorithm

and can be made available for the users of automated theorem proving systems. We

described an implementation of this new tool in the frame of the Theorema project.

Note that the focus windows tool starts from proof objects and just implements a

particular way of  presenting  proof objects. The focus window tool is not  a prove

method!

Note  also that  the focus windows tool  is  applicable for  any type  of  prover

including special provers that have powerful special proof rules that apply only for

certain mathematical theories. For example, simplification modulo an AC-theory may

be a black–box proof rule in  a predicate logic natural deduction prover. Thus, the

focus windows technique does not  assert that each of  the proof  steps should be

"easily" verifiable but, rather, it  just gives a method to  keep track of  the relevant

information used in each proof step the particular prover generates. 

When  comparing the  linear  proof  presentation and the  focus window  proof

presentation of one and the same proof one may make the following observations:

Ë  In  short proofs, the focus windows presentation may generate presentation

overhead that will  distract the reader rather than help him.

Ë  In  proofs that are more than one or  two  pages long, the focus window

presentation may increase the possibility of verifying proofs drastically. 

Ë Linear presentations are helpful for obtaining a quick overview on the overall

flow of the proof whereas focus window presentations support the process of

verifying proofs.

10 Focus Window: A New Technique for Proof Presentation



Ë Most probably, browsing a proof in linear representation and, then, verifying

the  details  of  the  proof  in  focus  window presentation  is  the  most  reasonable

and efficient way of studying proofs.

The  proof  given  as  an  example  in  the  appendices  is  just  borderline:  The  positive

effect  of  the  focus  window  presentation  on  verifiability  is  noticeable  but  not  yet

drastic. However, by space limitation, it is not possible to present longer proofs in this

paper. Thus, we encourage the reader to experiment with the Theorema system and its

linear and focus windows proof presentation tools.

After  having  implemented  the  focus  window  technique  in  Theorema,  we  also

made  another,  interesting  and  unexpected,  experience:  The  tool  can  of  course  be

applied also to wrong proofs. In particular it can be used to check the proofs generated

by  theorem  provers  that  are  under  construction  and  not  yet  fully  tested.  Here  we

noticed that checking the proofs by the focus window technique makes it much easier

to  detect  errors  in  the  provers.  Thus,  the  focus  window  tool  may  also  be  a  useful

research  instrument  for  people  working  in  the  design  and  implementation  of

automated theorem provers.

In  the  next  version  of  our  focus  window  tool,we  intend  to  add  a  couple  of

improvements:

Ë The  size  of  the  font  of  the  formulae  in  a  focus  window  will  be  adjusted  in

such  a  way that,  always ,the  entire  focus  window will  fit  into  the screen  for

facilitating having the overview on the current proof situation.

Ë A  standard  text  will  appear  in  each  focus  window  that  indicates  the  proof

technique  used  for  going  from  the  formulae  in  the  attention  window  to  the

formulae  in  the  transformation  window.  This  text  will  be  a  hyperlink  that

leads the reader,if it wants,to a detailed explanation of the proof technique.

Ë The  focus  window  will  be  an  option  that  can  be  clicked  when  studying  a

proof  in  linear  notation.In  other  words,when  clicking  into  a  proof  goal  in  a

linear proof text,the corresponding focus window (attention window and then

transformation  window)  should  appear  that  contains  exactly  the  formulae

relevant  in  the  current  proof  situation.  Maybe,  this  way  of  using  focus

windows  will  be  the  most  attractive  combination  of  tranditional  linear

presentation and the new focus window technique.

References

[Buchberger  2000]    Focus  Windows  Presentation:  A  New  Approach  to  Presenting

Mathematical  Proofs  (in  Automated  Theorem  Proving  Systems).  Theorema  Technical  Report,

2000-01-30, RISC, http://www.risc.uni-linz.ac.at/people/buchberg/downloads.html

Focus Window: A New Technique for Proof Presentation 11



[Buchberger et al. 2000] B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K.  Nakagawa, D.

Vasaru, W. Windsteiger. The Theorema Project: A Progress Report. In: Symbolic Computation

and  Automated Reasoning (Proceedings of  CALCULEMUS  2000,  Symposium on  the

Integration of  Symbolic Computation and Mechanized Reasoning,  August 6-7,  2000, St.

Andrews, Scotland, M. Kerber and M. Kohlhase eds.), A.K.  Peters, Natick, Massachusetts, pp.

98-113. ISBN 1-56881-145-4. 

[Hol]  The  HOL  System.  Developed at the University of  Cambridge, directed by  R. Milner.

http://www.cl.cam.ac.uk/Research/HVG/HOL/.

[Mizar]  Mizar  System.  Developed at  the University of  Warsaw, directed by  A.  Trybulec.

http://mizar.uwb.edu.pl/system/.

[Omega] Omega System. Developed at the University of Saarbrücken, directed by J. Siekmann.

http://www.ags.uni-sb.de/~omega/intro.html.

[Vasaru 2000] D. Vasaru–Dupré, Automated Theorem Proving by Integrating Proving, Solving

and Computing. RISC Institute, May 2000, RISC report 00–19. PhD Thesis.

[Windsteiger 2001a] W.Windsteiger, A  Set  Theory  Prover  in  Theorema:  Implementation  and

Practical Applications, RISC Institute, May 2001, RISC report 01–03. PhD Thesis.

[Windsteiger 2001b] W. Windsteiger, Exploring Equivalence Relations and Partitions using the

Theorema Set Theory Prover, Technical Report, RISC Institute, Mai 2001.

[Wolfram 96] S.Wolfram. The  Mathematica  Book,  Wolfram Media and Cambridge University

Press, 1996.

12 Focus Window: A New Technique for Proof Presentation



Appendices

Appendix 1

Loading up the Theorema system is done by evaluating the following command:

Needs#"Theorema"̀';

The notion of "relation" is introduced as a subset of a binary cartesian product (X

being a constant):

Definition#"is relation", any#R', is–relation#R' :x R ° XlX'
Definition$"is reflexive", any#R', is–reflexive#R' :x �

x±X
;x, x? ± R(

Other definitions needed:

Definition#"class", any#x, R', class#R, x' : �a « ;a, x? ± R�'
Definition$"factorset", any#R', factor–set#R' : �class#R, x' «

x
 (

Definition$"is subsetset", any#P', is–subset–set#P' :x �
p±P

p° X(

Definition$"is all nonempty", any#P', is–all–nonempty#P' :x L
N
MM �

p±P
p� ��\

^
]](

The lemma we want to prove:

Lemma#"Lemma", any#R', +is–relation#R' Â is–reflexive#R'/Á
+is–all–nonempty#factor–set#R'' Â is–subset–set#factor–set#R''/'

The  proof  presented in  Appendix 2  is  obtained by  evaluating the  following

command:

Prove#Lemma#"Lemma"', using� ;Definition#"factorset"',
Definition#"class"', Definition#"is relation"', Definition#"is reflexive"',
Definition#"is subsetset"', Definition#"is all nonempty"'?,

by� SetTheoryPCSProver, showBy� FocusWindow,
transformBy� ProofSimplifier, TransformerOptions� �branches� Proved, steps� Useful�,

ProverOptions� �GRWTarget� �"goal", "kb"�, UseCyclicRules� True,

RWExistentialGoal� True, DisableProver� �STC, PND��, SearchDepth� 50'

Focus Window: A New Technique for Proof Presentation 13



Appendix 2

Prove:

(Lemma) �
R

+is–relation#R' Â is–reflexive#R' Á
is–all–nonempty#factor–set#R'' Â is–subset–set#factor–set#R''/

,

under the assumptions:

(Definition (factor set)) �
R

L
N
MMfactor–set#R' : �class#R, x' «

x
x ± X \^

]],

(Definition (class)) �
R,x

L
N
MMclass#R, x' : �a «

a
a ± X Â ;a, x? ± R \^

]],

(Definition (is relation)) �
R

+is–relation#R' :x R ° XlX/,
(Definition (is reflexive)) �

R
-is–reflexive#R' :x �

x
+x ± X Á ;x, x? ± R/1,

(Definition (is subset set)) �
P

L
N
MMis–subset–set#P' :x �

p
+p ± P Á p ° X/\^

]],

(Definition (is all non empty)) �
P

L
N
MMis–all–nonempty#P' :x �

p
+p ± P Á +p � ��//\^

]].
We assume

(1) is–relation#R0' Â is–reflexive#R0',
and show

(2) is–all–nonempty#factor–set#R0'' Â is–subset–set#factor–set#R0''.
We prove the individual conjunctive parts of (2):

Proof of (2.1) is–all–nonempty#factor–set#R0'':
Formula (2.1), using (Definition (factor set)), is implied by:

is–all–nonempty$�class#R0, x' «
x

x ± X (,
which, using (Definition (class)), is implied by:

is–all–nonempty$��a «
a

a ± X Â ;a, x? ± R0 «
x

x ± X (,
which, using (Definition (is all non empty)), is implied by:

(3) �
p

L
N
MMp ± ��a «

a
a ± X Â ;a, x? ± R0 «

x
x ± X Á +p � ��/\^

]].
We assume

(4) p0 ± ��a «
a

a ± X Â ;a, x? ± R0 «
x

x ± X ,
and show

(5) p0 � ��.
From what we already know follows:

From (4) we know by definition of �Tx «
x

P  that we can choose an appropriate value such that

(6) a10 ± X,

(7) p0  �a «
a

a ± X Â ;a, a10? ± R0 .

14 Focus Window: A New Technique for Proof Presentation



Formula (5) means that we have to show that

(13) �
p1

+p1 ± p0/.

Formula (13), using (7), is implied by:

(14) �
p1

L
N
MMp1 ± �a «

a
a ± X Â ;a, a10? ± R0 

\
^
]].

In order to prove (14) we have to show:

(15) �
p1

+p1 ± X Â ;p1, a10? ± R0/.

Now, let p1 : a10. Thus, for proving (15) it is sufficient to prove:

(16) a10 ± X Â ;a10, a10? ± R0.

We prove the individual conjunctive parts of (16):

Proof of (16.1) a10 ± X:

Formula (16.1) is true because it is identical to (6).

Proof of (16.2) ;a10, a10? ± R0:

Formula (1.2), by (Definition (is reflexive)), implies:

(26) �
x

+x ± X Á ;x, x? ± R0/.

Formula (16.2), using (26), is implied by:

(27) a10 ± X.

Formula (27) is true because it is identical to (6).

Proof of (2.2) is–subset–set#factor–set#R0'':
Formula (2.2), using (Definition (factor set)), is implied by:

is–subset–set$�class#R0, x' «
x

x ± X (,

which, using (Definition (class)), is implied by:

is–subset–set$��a «
a

a ± X Â ;a, x? ± R0 «
x

x ± X (,

which, using (Definition (is subset set)), is implied by:

(28) �
p

L
N
MMp ± ��a «

a
a ± X Â ;a, x? ± R0 «

x
x ± X Á p ° X\

^
]].

We assume

(29) p1 ± ��a «
a

a ± X Â ;a, x? ± R0 «
x

x ± X ,

and show

(30) p1 ° X.

From what we already know follows:

From (29) we know by definition of �Tx «
x

P  that we can choose an appropriate value such that

(31) a80 ± X,

(32) p1  �a «
a

a ± X Â ;a, a80? ± R0 .

For proving (30) we choose

Focus Window: A New Technique for Proof Presentation 15



(38) p20 ± p1,

and show:

(39) p20 ± X.

Formula (38), by (32), implies:

(42) p20 ± �a «
a

a ± X Â ;a, a80? ± R0 .

From what we already know follows:

From (42) we can infer

(43) p20 ± X Ï ;p20, a80? ± R0.

Formula (39) is true because it is identical to (43.1).

16 Focus Window: A New Technique for Proof Presentation



Appendix 3

Appendix three presents the sequence of the focus windows, as they appear in the

order proposed by the prover that generated the proof:

Window 1: Initial Proof Situation

Focus Window: A New Technique for Proof Presentation 17



Attention Window 2

Transformation Window 2

18 Focus Window: A New Technique for Proof Presentation



Attention Window 3

Transformation Window 3

Focus Window: A New Technique for Proof Presentation 19



Attention Window 4

Transformation Window 4

20 Focus Window: A New Technique for Proof Presentation



Attention Window 5

Transformation Window 5

Focus Window: A New Technique for Proof Presentation 21



Attention Window 6

Transformation Window 6

22 Focus Window: A New Technique for Proof Presentation



Attention Window 7

Transformation Window 7

Focus Window: A New Technique for Proof Presentation 23



Attention Window 8

Transformation Window 8

24 Focus Window: A New Technique for Proof Presentation



Attention Window 9 - All assumption area opened

Focus Window: A New Technique for Proof Presentation 25



Attention Window 9 - All assumption area closed

Transformation Window 9

26 Focus Window: A New Technique for Proof Presentation



Attention Window 10

Transformation Window 10

Focus Window: A New Technique for Proof Presentation 27



Attention Window 11

Transformation Window 11

28 Focus Window: A New Technique for Proof Presentation



Attention Window 12

Transformation Window 12

Focus Window: A New Technique for Proof Presentation 29



Attention Window 13

Transformation Window 13

30 Focus Window: A New Technique for Proof Presentation



Attention Window 14

Transformation Window 14

Focus Window: A New Technique for Proof Presentation 31



Attention Window 15

Transformation Window 15

32 Focus Window: A New Technique for Proof Presentation



Attention Window 16

Transformation Window 16

Focus Window: A New Technique for Proof Presentation 33



Attention Window 17

Transformation Window 17

34 Focus Window: A New Technique for Proof Presentation



Attention Window 18

Transformation Window 18

Focus Window: A New Technique for Proof Presentation 35



Attention Window 19

Transformation Window 19

36 Focus Window: A New Technique for Proof Presentation



Attention Window 20

Transformation Window 20

Focus Window: A New Technique for Proof Presentation 37



Attention Window 21

Transformation Window 21

38 Focus Window: A New Technique for Proof Presentation



Attention Window 22

Transformation Window 22

Focus Window: A New Technique for Proof Presentation 39



Attention Window 23

Transformation Window 23

40 Focus Window: A New Technique for Proof Presentation



Attention Window 24

Transformation Window 24

Focus Window: A New Technique for Proof Presentation 41


