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Problem 1: Recover an Object from Images

I object: unknown, typically in R3

I object set: set of possible objects

I image: known, typically in R2

I image set: set of possible images



Equivalent Objects/Images

Two images in the image set (objects in the object set) are
equivalent if there is a transformation from one to the other.

Equivalent images give the equal information about the object.

We can hope to determine the object up to equivalence.

Possible transformation groups: Euclidean similarities or projective
transformations



Invariant Theory

The quotient set of equivalence classes of objects/images modulo
a group of transformations is called object (image) moduli space.
By classical invariant theory, we can construct quotient varieties.

Example 1: If the image set is (P1)4, and the transformation
group G is the projective group, then the class is determined by
the cross ratio. The quotient variety is P1.
The point (0 : 1) in the quotient variety corresponds to two
equivalence classes, one with p1 = p2 and the second with
p3 = p4. (similarily the points (1 : 0) and (1 : 1)).



Invariant Theory

Example 2: If the image set is (P1)6, and the transformation
group G is the projective group, then the quotient variety M6 has
dimension 3 and can be embedded into P4 as a cubic hypersurface.
It has 10 singular points and 15 planes.

The planes correspond to 6-tuples with coincident points.
The singular points correspond to 6-tuples (p1, . . . , p6) such that
either p1 = p2 = p3 or p4 = p5 = p6, possible after some
permutation (10 cases).



Cameras

Abstractly, we may describe a camera as a function

F : (object space× R3)→ image moduli space

If objects O1 and O2 are equivalent by a transformation T , then

F (O1, p) = F (O2,T (p)).



The Profile

For a fixed object O, the profile is defined as {F (O, p) | p ∈ R3}.
It has the parametrization p 7→ F (O, p) =: FO(p).

Exercise 1: Prove that equivalent objects have the same profile.

Problem 1 can be decomposed into two subproblem:

1. Given a (finite) set of points in the profile, compute the
profile.

2. Given the profile, compute the object (up to equivalence).



Planar Surveying

transformations:

Object set: (R2)4 Euclidean similarities
Image set: (S1)4 rotations

The image moduli space can be defined as
{(z1 : z2 : z3 : z4) ∈ P3(C) | |z1| = |z2| = |z3| = |z4|}, the set of
“equiabsolute” points.



Planar Surveying

Theorem 1. For general 4-tuples (the 4 points should not be
collinear), the profile is a the set of equiabsolute points of the
quadric surface passing through the 5 points (1 : 0 : 0 : 0),
(0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (1 : 1 : 1 : 1).

Corollary. Given 4 images, subproblem 1 can be solved by
interpolating a quadric equation through nine points in P3.



Planar Surveying

By [Aström, Oskarsson 2000], subproblem 2 has in general 2
solutions.



6 Points in the Plane

transformations:

Object set: (P2)6 projective
Image set: (P1)6 projective

If among the 6 points in P2 there are the two cyclic points
(0 : 1 : ±i), then we get planar surveying.



6 Points in the Plane

The image is a set of 6 points in P1, or its equivalence class up to
projective transformations. Hence the image modulo space is the
Segre cubic M6.

Theorem 2. For general 6-tuple in P2, the profile is a hyperplane
section (cubic surface). 15 of its 27 lines are intersections with the
15 planes.

Corollary. Given 4 images, subproblem 1 can be solved by passing
a hyperplane to 4 points in P4.



6 Points in the Plane

Subproblem 2 can be solved by parametrizing the cubic surface by
a cubic parametrization. There are 72 such parametrization (up to
reparametrizing by projective linear transformations). There are 2
among them that do not blow down any of the 15 “good” lines.
Then the 6-tuple object consists of the 6 base points of the
parametrization.



6 Points in Space

transformations:

Object set: (P3)6 projective
Image set: (P2)6 projective

The image moduli space is a double cover of P4 branched over a
quartic hypersurface I4, known as the Igusa quartic. The
ramification points correspond to 6-tuples of points lying on a
plane conic.



6 Points in Space

For 6 general points in P3, there exists a unique cubic space curve
C passing through them. If the camera is located on C , then the 6
points of the image lie on a conic. Any two such images are
equivalent.

Apart from contracting C to a point, the profile parametrization
map is injective.



6 Points in Space
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Theorem 3. For a general 6-tuple of points in P3, the profile is
the double cover of a hyperplane in P4 that is tangential to I4. The
tangential point is the image of the contracted curve C .

Corollary. Given 3 images, subproblem 1 amounts to finding a
tangent hyperplane passing through 3 points; or dually, finding a
point on the dual hypersurface lying on a known line. Since the
dual hypersurface has degree 3 (again the Segre cubic), there are
in general 3 solutions.



The Möbius Camera

Here the camera model is a projection followed by a Möbius
transformation (group generated by even products of inversions on
circles and Euclidean reflections). The image of a line is a line or a
circle or a point. The contour of a sphere is a circle.



The Möbius Camera

transformations:

Object set: (R3)6 Euclidean
Image set: (P1(C))6 complex projective

The image module space M6(C) has dimension 6, but it is also a
complex variety of dimension 3.



The Möbius Camera

The profiles are varieties of dimension 3, which cannot have a
complex structure. So we define a restricted profile, where the
camera is constrained to a fixed plane. In order to preserve object
equivalence, we choose the plane at infinity, which means parallel
projections.



The Möbius Camera

Theorem 4. Let (p1, . . . , p6) ∈ (R3)6 be a 6-tuple of point such
that no 4 are collinear and not all 6 are coplanar. Then the
restricted profile is a rational sextic complex algebraic curve in
M6(C) defined by real equations. Its nonsingular points come in
conjugate pairs which differ by reflection (or inversion).
Moreover, the restricted profile parametrization

FO : S2 → M6(C)

assigning each unit vector u the Möbius class of the image by
projections orthogonal to u is holomorphic, when we identify S2
with the Riemann sphere P1(C).



The Möbius camera

In order to solve subproblem 2, we get a complex parametrization
of the restricted profile curve

φ : P1(C)→ X ⊂ M6(C)

mapping antipodal points to conjugated points. Algebraically, this
is a birational map

{(x : y : z) ∈ P2(C) | x2 + y2 + z2 = 0} → X

defined over the real numbers. Such a parametrization always
exists and is unique up reparametrization by special orthogonal
linear maps.



The Möbius camera
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Let E12, . . . ,E56 ⊂ M6(C) be the planes corresponding to 6-tuples
with coinciding points. Then φ−1(Eij) ∈ S2 is the pair of two
antipodal points in the direction of the line Lij through p1, p2. This
allows to reconstruct p1, . . . , p6 up to similarity.



The Möbius camera

Corollary. If the profiles of two 6-tuples have infinitely many
common points, then the restricted profiles are equal and the
6-tuples are equivalent up to Euclidean similarity.

Using intersection theory, one can show that the number of
common points of two rational sextics in M6(C) is at most 14. For
a general rational sextic C1, there is a unique sextic C2 intersecting
C1 in 14 points.



Hexapods

A hexapod consists of two rigid bodies (platform and base),
connected by legs. The legs have fixed length and are anchored at
platform/base spherical joints.



Movable Hexapods

Butterfly Linkage Bricard-Borel Linkage

General hexapods have 40 (not necessarily real) configurations.
Special hexapods have infinitely many configurations. Several
families (described as irreducible algebraic varieties in parameter
space) are known. One would like to know how many maximal
families exist, and to have a precise description of each maximal
family.



Mobile Hexapods and Möbius Photogrammetry

In the following theorem, we assume: no 4 base points, no 4
platform points are collinear, not all base points are coplanar, not
all platform points are collinear.

Theorem 5. If a hexapod is movable, then the restricted profile
XB of the base points and the restricted profile XP of the platform
points have common points. The number of common points is
bigger than or equal to the degree of the motion as a curve in P3

embedded by the Euler parameters.



Mobile Hexapods and Möbius Photogrammetry

Example 1. If p1, p2, p3 are collinear, or p4, p5, p6 are collinear,
then the profile contains one of the 10 singular points of M6. This
is the single common point of the profiles of base and platform of
the Butterfly Linkage. The motion is a rotation, of degree 1 in the
Euler parameters.



Mobile Hexapods and Möbius Photogrammetry

Example 2. In a Bricard-Borel Linkage, the projections of base
and platform along the rotation axes are related by an inversion.
Therefore the profiles have two common points which are
conjugate to each other. The rotational part of the motion is again
a rotation of degree 1. There is an algebraic explanation for the
number of common images being 2, not 1: the map from the
motion to its Euler parameters is 2:1.



Mobile Hexapods and Möbius Photogrammetry

Corollary. The degree of a motion of a mobile hexapod is at most
14.

Corollary. If a non-planar hexapod has a two-dimensional mobility,
then base and platform are similar.



Mobile Hexapods and Möbius Photogrammetry

For a general 6-tuple of base points, we think that there exist
mobile hexapods with a motion of maximal degree 14. Here is a
construction which worked for every example tested so far.

1. Compute the restricted profile X of the base.

2. Compute the unique sextic rational curve X ′ intersecting X in
14 points.

3. Use Möbius photogrammetry to recover the platform points
up to similarity, from X ′.

4. Compute the similarity factor (solution is unique in all tested
cases).

5. Compute leg lengths (three-dimensional set of solutions in all
tested cases).



Known Families Mobile Hexapods

family found by degree profile

planar a. s. Duporcq 1898 20 5
butterfly 1 1
Schönflies Bricard 1906, Borel 1906 1 2

Husty/Zs.-Murray 1994
translational Nawratil 2012 0 2
flexible octahedra Bricard 1897 6 6
planar affine Karger 2002

Nawratil 2010
number theory Geis/Schreyer 2009 6
leg surgery Nawratil 2011
point symmetric Dietmaier, Nawratil 2013 12 12
this talk Gallet/Nawratil/S 2015 14 14



Conclusion

I Profiles can be a useful stepping stone in photogrammetry
problem.

I Möbius photogrammetry is a powerful technique for
constructing mobile hexapods.

I The reason behind the success of this technique is the
unexpected appearance of complex structures. They allow
“dimension halfing”.
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