
Notes on Chebyshev Series and Computer Algebra

Richard J. Fateman
Computer Science Division

Electrical Engineering and Computer Sciences
University of California at Berkeley

January 17, 2013

Abstract

A typical computer algebra system (CAS) represents formulas by (what amounts to) trees. By
approximating a more general function as a univariate polynomial, it can be represented as an array of
coefficients. Another common representation is as a set of values of the function at specified points. In
either case, one can compute in this realm of “functions” further by combining such arrays.

By taking advantage of the special properties of Chebyshev series, a number of facilities may be pro-
grammed especially neatly. These have been nicely pursued by the Chebfun project at Oxford University.
Combining these ideas and reimplementing with computer algebra systems, we gain additional facilities.

1 Introduction

It is the premise of computer algebra systems (CAS) that one can gain insight by dealing with mathemat-
ical functions by manipulating their formulas as data structures. In some circumstances this has decided
advantages over the traditional scientific computing model in which one uses formulas solely for evaluation
perhaps followed by plotting of graphs.

The usual CAS represents formulas by (what amounts to) expression trees, although it is easy enough to
represent the simple case of a univariate polynomial as an array of coefficients even in a numerical language
such as Matlab.

If an expression is not so simple as a polynomial it is plausible nevertheless to represent it via an
approximating polynomial. This can be done by storing its coefficients of {1, x, x2...} or using some other
set of basis functions. Another possibility is to store a set of values of the function at specified points. One
can, by interpolation, approximate values in-between those points.

One can compute further by combining such representations (e.g. arrays), and by translating from one
representation to the other, take advantage of particular properties that are most easily observed in each.
It is possible to differentiate, integrate, and perform other operations by composition, as well as arithmetic,
on these arrays. This kind of symbolic-numeric approximate algebraic computing has some of the flavor of
approximation by truncated Taylor or Laurent series, a popular feature in CAS.

By taking advantage of special features of a particular basis set, namely Chebyshev polynomials, a number
of facilities may be programmed especially neatly. We describe some of these features in this paper.

2 Inspiration

These notes were prompted by viewing a paper on the The Chebfun Project [2] headed by Nick Trefethen at
Oxford University. Partly to see what could be done with these ideas in the context of a computer algebra
system, and partly to have fun understanding the implementation decisions needed for Chebfun itself, we
implemented some of the basic features in Maxima (open-source Macsyma). Chebfun itself has moved on

1

to more elaborate features which we have not included. Should the initial work here engender interest, such
extensions may be added, especially those dealing with piecewise approximation.

3 The Chebfun Idea

The basic idea is to use an encoding of a mathematical function by a series of coefficients corresponding
to an expansion in orthonormal polynomials (Chebyshev series or for brevity, CS), and compute with that
sequence of coefficients as an approximate model for the function. The concept is probably comfortable to
anyone who has studied Chebyshev approximations, and this brief paper does not attempt to detail why this
is an especially apt choice. We point out (to persons familiar with computer algebra systems) that a CAS
typically supports an approximation expansion, but in another basis (the power basis) through truncated
power series. Chebyshev series have some key advantages which are exploited by the Chebfun Project.

The Chebfun project is philosophically interesting in that it transfers facilities built upon conventional
“numerical” computation and provides implementations of appropriate generalizations in a new space of
“functional” computation. This is somewhat akin to the leap from numeric to symbolic computing, but not
using algebraic trees; rather, it uses Chebyshev series.

Here are some of the Chebfun innovations.

(a) Starting from some other presentation of a formula, numerically approximating the coefficients of the
Chebyshev series by double-float numbers using fast and accurate methods related to the Fast Fourier
Transform (FFT).

(b) Applying some cleverness in truncating (probably) useless low-order terms so as to keep the series
compact, even though operation upon operation would ordinarily seem to make the series grow in
length.

(c) Building a nice user interface in a popular interactive computer system (Matlab),

(d) Demonstrating neat applications including solution of algebraic and differential equations, quadrature
and rootfinding.

In some sense, the process is analogous to floating-point arithmetic (FPA). Just as we can make great
use of FPA to approximate real numbers, but with a computationally more convenient finite-bit-length
approximation, we can make use of CS to approximate real functions of a single variable on a finite interval
by the use of a collection of floating-point coefficients. Just as we can accumulate large libraries of useful
functions based on FPA, we can hope to accumulate a set of tools for a variety of CS applications.

Our own interest in Chebyshev series goes back at least to 1989 [1], but we neglected all of (a)-(d), and
after writing that paper, set the related programs aside. Nevertheless we explained some cute methods for
computing Chebyshev series from different forms, using Macsyma or similar programs.

4 Enter, Computer Algebra

What can be done using the insights of the Chebfun Project and the tools in a computer algebra system?

4.1 Advantages for a CAS doing Chebfun-like computations

There are three obvious advantages for a CAS:

1. A CAS has a built-in symbolic representation for any algebraic expression (expressions including
trigonometric, logarithmic, components as well as polynomials and tables or lists of floating-point
numbers) and so they can be passed around, converted to Chebyshev form (tables) and converted
back, evaluated and manipulated. In some cases it is important that expressions be evaluated to
higher-than-normal precision. Arbitrary-precision numerical operations are generally supported by a
CAS, as are tables of high-precision numbers.

2

2. It is easy to provide alternative expansion tools for finding Chebyshev coefficients, including special
tricks (e.g. for polynomial denominators), a more general Taylor series method, exact integrals using
orthogonality properties, and evaluation at specified points. The last of these is the basic numerical
technique used in most situations.

3. Finally, arbitrary-precision software floating-point numbers are smoothly integrated into the system so
it is possible to request higher accuracy computations. This provides another avenue for exploration of
more precise representation, more bits rather than (or in addition to) more terms. Arbitrary-precision
arithmetic generally also banishes numerical exponent overflow. The tradeoff is for substantially slower
computing times. Many routines, not just basic arithmetic, may be available in arbitrary precision.
For instance, the underlying technique of computing the Discrete Cosine Transforms (DCT) maps to
a FFT. In our programs, a version of the FFT has, conveniently, been implemented to use arbitrary
precision arithmetic, if so requested.

4.2 Specialization or Generalization

Starting with a CAS, there is also a rather different perspective from the Chebfun Project. Since the original
Chebfun is implemented using Matlab (and does not use its symbolic toolkit), the notion of a “function
represented by a table which is its expansion in the Chebyshev basis” is an extension of the realm of objects
typically available to the Matlab user. For an example of a new operation in the extension in this new kind
of object, one can compute a derivative of a Chebfun.

Compare this to the CAS version, where a function can already be represented symbolically, perhaps
in several ways. Computing a derivative is already provided. The approximation into a set of Chebyshev
coefficients (or the equivalent) is, strictly speaking, a downgrading of the information: it is an approximation.
Furthermore, it works for functions of only a single real variable, and it works on a pre-set interval, initially
[-1,1]. While a CAS can combine its ordinary functions with abandon, one can add Chebfuns only if they
agree in various particulars: same sole variable, same range, continuous

The major positive side of using Chebfuns in a CAS is that the full formula for an arbitrary function in a
CAS can be costly to manipulate and evaluate, and to the extent that we need to make use of the behavior
of the function approximation on [-1,1], we can make great use of the Chebfun version. In the case where the
graph is rather smooth, the Chebyshev approximation will have only a few terms. By using a Chebfun version
we can quickly (say) plot the function, find zeros, and manipulate it in various ways to rather high accuracy.
There is no guarantee that we will always win with Chebfuns since we may encounter nasty functions (step
functions or perhaps something like x sin(1/x)) whose Chebyshev expansion will require many terms and/or
will ultimately not be very accurate somewhere. Functions which wiggle frantically cannot be accurately
represented with low-degree polynomials. Breaking such functions up into piecewise approximations can
overcome some problems of this nature. For example, a trick to ease zero-finding: if the Chebfun is of high
degree, split the interval into pieces and approximate each piece by a lower degree polynomial.

4.3 Generic arithmetic or not?

Since Chebyshev series are a new kind of mathematical object in a CAS, there are programming issues that
must be addressed. In this case there are a few roughly comparable choices for representation, any of which
would likely be feasible. but it remains to be decided what should be implemented as allowable operations.
Certainly anything that the Matlab system can do on Chebfuns is fair game. Using a design from the
Chebfun team simplifies the task considerably! An extension to the simplest form of data representation is
needed if piecewise functions are to be used.

At first glance, we can support a number of operations: For F,G each a CS of compatible variable
and length, we can more-or-less automatically compute F+G, F*G, F(0.5), F(G), i.e, composition, with
restrictions on the range and domain of G, as well as mixed forms, like F+1.

At second glance, we must figure out what, if anything, to do with other expressions that could easily be
typed in, such as F+x+y. This is either an error, or an expression which can be encapsulated and carried

3

around symbolically but not further simplified until (for example) values as constants or CS are given for x
and y.

Frankly, the CS context seems inappropriate for absorbing so much of the rest of a CAS: a numerical CS
is a univariate polynomial, and one limited1 in precision, degree, and domain.

Let’s re-examine a notion dropped casually into the discussion a few paragraphs back and consider
operator calculus such as composition. If F and G are each considered as functions mapping a domain [-1,1]
to a range [-1,1] then it may be useful to be able to compose them as F(G). In the same sense that one
can combine cos and cube-root one can combine Chebyshev series. They can be combined to form a new
function2 or operator lambda((x),cos(x^(1/3)), or a different operator, lambda((x),cos(x)*(x^(1/3)),
or yet a different operator, lambda((x),cos(x)^(1/3)).

Maxima does not currently have built-in tools to combine, in an operator sense, such functions defined as
lambda() expressions, though of course such facilities might be programmed in almost any symbolic system.

To restate this, if K is a CS, or alternatively an abstract function, lambda((x)...), K represents a
function of a single variable on a finite range. It may be sensible to “do symbolic arithmetic” and construct
expressions with parts that look like K(x)+K(y), or perhaps K(x)+K(y) with −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.
It does not make sense to add together K + x, except as a kind of mathematical pun where x is shorthand
for the function lambda((x), x).

Similarly we can arithmetically combine K with scalars, with 3 being a shorthand for lambda((x), 3).
then: 3 ∗K or 3 +K are new operators.

Ideally we can set a specification so a package can do such arithmetic on CS objects as makes sense, yet
avoiding nonsensical “extensions” to the approach.

5 Sidelight: Expressions or functions?

This is a topic of concern in the world of CAS building, and is a human-factors question regarding modes of
(human) thought: What makes people comfortable?

For example, we could talk about the function cos, and thus make sense of integral(cos,{-1,1}).
Alternatively we could introduce a dummy parameter and render the same computation on expressions:
integral(cos(t),{t,-1,1}). It may seem redundant to mention t twice, but it is not. This becomes more
revealing if the function has other parameters. For example, consider f(x):=exp(x^2/t). We can still talk
about integral(f,{-1,1}). But given an expression, are we dealing with the integral with respect to x or
t, or for that matter yet some other variable not even mentioned in the integrand? It seems that we need
the extra x in integral(exp(x^2/t), {x,-1,1}). (Or perhaps t.)

Sometimes it is convenient to “functionize” an expression, as we have done with the definition of f,
above, but without naming it. The lambda-expressions we’ve shown above have a long history in logic
(and in the Lisp programming language). In Lisp, a function we might define as f(x):=x*(x+1) can be
expressed without using up a name like “f”. In its parenthesized prefix notation Lisp would let you do this:
(lambda(x)(* x (+ x 1))). This can be said in Matlab as @(x)(x*(x+1)). It can be said in Mathematica
as Function[{x},x*(x+1)]. Also in Mathematica’s syntactic shorthand, #(#+1)&. Finally, in Maxima the
format is lambda([x],x*(x+1)).

What does this have to do with CS? Firstly, should a CS have within itself some variable name? [no, for
the moment] Or are we encoding a lambda-expression? [yes] If we compute a set of coefficents q based on,
say, an approximation to cosine, it seems natural to cheby_apply(q,1.0) and get 0.5403, about the same
as cos(1.0). In the example section we define syntax so that q@1.0 works. We do not (currently, at least)
allow q(1.0) or for that matter, q(z) where z is just a symbol, but q@z is fine, and we get some polynomial
in z.

1Except for the case of a CS representation of an exact polynomials —when rational arithmetic may be used for computing
coefficients—the approximation generally suffers from truncation error (finite number of terms) and roundoff error (in the
coefficient values).

2We use the lambda notation from logic (or Lisp) to denote the variable(s) in an expression to be “bound” when a functional
form is applied.

4

It also seems plausible to do a conversion to a CS this way: cheb(cos) or more explicitly, cheb(cos,n)
where n is some integer related to the number of terms desired. It is superfluous to indicate a “variable”
in the argument to cheb as in cheb(cos(x)) since the result simply has one anonymous variable and so
cheb(cos(x)) would be quite indistinguishable from cheb(cos(z))

The key to Chebfun efficiency is guessing how many terms are sufficient. For a nasty function like
f(x):=sin(1/x), there is no number of terms that will give a really good fit, since the computation of the
series coefficients is based on sampling of f . The precise values of f near zero are based on the happenstance
of evaluation of floating-point numbers, and so repeatedly doubling the number of sample points does not
converge to a smooth fit.

For nicer functions3 there is a kind of limit to the frequency of the signal, so to speak. cos(20x) will need
more terms than cos(10x), but computing the coefficients beyond the point when even and odd coefficients
are both below 1.0e-15 is not worthwhile. For a step function, the really effective way of dealing with the
discontinuity is to break the function into two sections, as is done in a later version of Chebfun.

A function like x100 + 1 seems to require terms up to the 100th Chebyshev coefficient, but not much
(actually, none) beyond that. Yet consider that this function is hardly different from g(x):=1 on most of
[-1,1], and so can be approximated to some degree of satisfaction by a polynomial of lower degree. This
aspect of Chebshev approximation, and so much else about this topic has been well studied in the classical
literature.

6 What to store?

The Chebfun Project design is set to store an array of values of the CS at a set of Gauss-Lobatto points
(GLP): certain points in the interval [-1,1]. In particular, for n terms, these points are cos(kπ/(n − 1)) for
0 ≤ k ≤ n − 1. (There are other choices possible, including points half-way between these chosen above).
These particular sets of evaluation points can be converted by a Discrete Cosine Transform (so-called DCT-I)
into the coefficients in a Chebyshev series; these are convertible back by an inverse DCT, which is the same
program with the result multiplied by a constant4.

We have one set of programs that manipulates CS based on a data representation that stores the Cheby-
shev coefficients (CC). Another set of programs uses GLP. These representations can be rapidly intercon-
verted by the DCT and its inverse. Our primary reason for using (or at least periodically computing) CCs is
that we need them to make a determination that after some certain number of terms, the remaining terms
(probably) make a negligible contribution to the value of the function. This is not obvious from the function
values at GLP, and so computations that logically suggest trimming terms must depend on computing the
CCs.

What operations can we do with the GLP representation? Lots. For example, we can add or multiply
two CS in the GLP representation in linear time: just add or multiply pointwise the two arrays5.

There may be other material stored with the CS, such as “what computations got us to the function”
and perhaps both the GLP and CC could be stored.

We refer the reader elsewhere [2] for a discussion of the many kinds of computations that can be consid-
ered, and the nature of functions that can be appropriately modeled by a Chebyshev expansion.

Interestingly, there is a history (since the mid-1960s) in the CAS community of performing polynomial
computations rapidly by taking images of polynomials formed by modular and evaluation homomorphisms,
performing operations on the images, and then re-assembling the results back to polynomials. This algo-
rithmic approach, while inefficient for small cases, also lead to vastly more efficient large-scale computation

3There are much more specific characterizations than “nicer”. We are avoiding the technical discussion necessary to make
this notion definite.

4Any of the DCT versions and their inverses can conveniently be expressed as a row-by-matrix multiplication; the fast DCT
can be thought of as a way to rapidly multiply that row by a specially structured matrix. The DCT is often implemented in a
suite of programs based on fast Fourier transforms

5Actually, they have to be represented at the same GLP set, and if they are not, then there are at least 2 plausible techniques,
namely interpolation and using a DCT, changing the number of terms, and then an inverse.

5

of polynomial greatest-common-divisor and related algorithms. Approximate evaluation of more general
functions except perhaps in the context of Taylor series, was not an area of activity.

The Chebfun web site discusses further Matlab programs which include facilities for functions being
translated or scaled away from the interval [-1,1], or pasted together piecewise, so that discontinuous functions
may be split into intervals that are tractable, but manipulated collectively. (We have written programs to
provide this basic facility too. However, we have not yet written an efficient splitting algorithm – one
which would determine breakoints for these alternative representations. This involves detecting “edges” in
a function.)

7 Implementation Notes

1. Using an FFT6 for DCT indeed speeds things up considerably over the naive summation formula.
Writing a specific fast DCT program7 gives us a factor of about 8 in our experiments over the mapping
to an FFT. Given that we are probably only interested in DCTs of sizes 2n for 2 ≤ n ≤ 9 we can
use a well-known optimization technique: that is to generate specific code for each of these fixed-size
DCTs, essentially unrolling all loops. For example, we hand-coded an 8-point DCT and found it about
5 times faster than the more general DCT on 8 points. We “automatically generated” a 32-point
DCT by instrumenting our Lisp DCT to emit code instead of performing the operations and found
the code ran about 4.5 times faster. By doing more operations essentially in registers rather than
arrays, the speed can be improved yet more. The number of tricks that can be played here, trying to
benefit from particular memory and arithmetic architectures, is almost unlimited. There are so many
implementations of the FFT it is reasonably to simply rely on someone else doing a bang-up job of it.
The Chebfun people presumably use the DCT in Matlab, which we believe is some version from FFTW
[3]. Readers interested in pursuing this aspect of this paper may consider yet alternative DCTs8. We
have written an interface to FFTW available from Lisp, which has a feature that any length FFT, (or
for our purposes, a DCT), not just power-of-two or product-of-primes size, can be computed.

Some of the versions (of the FFT), especially in those written in a kind of generic-arithmetic Lisp,
have the neat option of also allowing arbitrary precision, or other extended arithmetic.

Speed is not everything: for small cases not a power of 2, a program may run faster with an algorithm
that is O(n2) rather than O(n log n) operations for a length-n FFT. The “slow” cosine transform can,
at least for short cases, produce useful exact answers in terms of symbolic (algebraic) roots and rational
numbers.

2. I am overly simplifying the calculation heuristics for how many terms are needed to represent a function.
My program looks at several of the trailing coefficients. If they are relatively small compared to the
largest of the other coefficients, it truncates the series there. It is important to look at two or more
coefficients since common functions may be even or odd, and therefore have half zero coefficients.

3. I have not dealt at all with NaN or Infinities, either those that might occur in the input data from
evaluation of a function, or from calculations of the transform.

4. There are new extensions (cf Chebfun Project software in Matlab) that are possible and some of these
may be enhanced by symbolic capabilities. There are others that seem to make sense only as functions
implemented as arrays of double-floats, and CAS features are irrelevant. A more productive use of our
time or potential users of such facilities would seem to suggest that users get a copy of Matlab and
Chebfun! (This is discounting the educational or fun aspects of revisiting implementations).

6If we use FFT code, the DCT of size n can be mapped in linear time to an FFT of size 4n where half the entries are zero
and half of the remaining entries are the same as the original, but in reverse order, with some normalization multiplier.

7ACM Algorithm 749, translated from FORTRAN to Lisp
8Google for FFTPACK5, FFTW, djbfft, MPFR, Numerical Recipes

6

5. Many functions that we supply could be done in a cleverer fashion. This might reduce roundoff
accumulation, or speed up the production of coefficients compared to evaluation/DCT. For example,
conversion of rational functions can be done by partial fraction expansion, rootfinding, and many
special cases. There are different methods of implementation in the CC or GLP representations of
basic operations, including even multiplication and addition.

6. To some extent our programs are slowed down by the availability of full generic (arbitrary precision,
rational, etc.) arithmetic facilities. Thus they may be slower than necessary for some users. As
compensation, with a few declarations we can compile them specifically for double-precision floats to
be faster (while also less general).

7. On the other hand, for some programs we assumed that they made sense only in double-precision
and just dropped in a double-float value for π, especially in the fastDCT. In these cases a user could
complain of prematurely approximating calculations: a lack of exactness or generality. (Maxima knows
that cos(3π/4) is − 1√

2
, and can continue working with expressions of that kind, but not if a numerical

value for π is first inserted).

8. In converting to a Chebyshev form, it is important that a function be evaluated accurately at the GL
points. If it is not, it will appear to be a slightly different function, perhaps one whose Chebyshev
coefficient series is much longer. In our experiments, we tried converting (4x − 5)2, a simple-enough
function, to a Chebyshev series matching our usual criterion, having a minimal number of terms. To
our dismay we got a series with hundreds of terms, all but the first three of size about 10−15. Our
program to cut off terms was fooled into thinking these terms were significant. Converting the original
expression to the equivalent, “Horner” form x (16x− 40) + 25 leads to a more stable evaluation, and
conversion to Chebyshev form returns three terms: [66, -40, 8]9 Some of the programs now insert this
“Horner” conversion, routinely.

8 Neat symbolic manipulations

While some functions are written to produce exact Chebyshev coefficients when given polynomial inputs, and
may work even for polynomials with symbolic entries, these are probably only of occasional pedagogical use.
They certainly will not survive a round-trip through a fast FFT-based DCT. Yet not everything needs to be
done via DCT or fast DCT, and sometimes it can be illuminating to deal with symbolic entries. Consider
an expression a ∗ T5(x) where the x is implicit. This is a Chebyshev series [0,0,0,0,0,a]. Its derivative is
the surprisingly regular expression [10a,0,10a,0,10a]. The square of [0,0,0,b] is [b2,0,0,0,0,0,b2/2].
While not usually advisable, even the discrete cosine transform can be symbolically and exactly computed:

DCT([a, b, c]) =
[
c+ b+ a√

3
,−c− a

2
,
c− 2 b+ a

2
√

3

]
.

The explicit expression for a DCT of [a,b,c,d] is clumsier, and probably not worth displaying per se but
with a little juggling, a program for an arbitrary 4-term transform can be produced. One such program looks
like this:

block([t1,t2,t3],
t1 : pi/8,
t2 : cos(t1),
t3 : sin(t1),
[(d+c+b+a)/2, -(t2*d+t3*c-t3*b-t2*a)/2,
sqrt(2)*(d-c-b+a)/4, -(t3*d-t2*c+t2*b-t3*a)/2])

9To be more precise, chebseries (66.0,−40.0, 7.999999999999999).

7

This little program is not optimal, since the constants t1 and t2 can precomputed, but also it can be
improved with respect to multiplications. Consider the two subexpressions R=t2*d+t3*c and S=t3*d+t2*c.
This uses 4 multiplications and 2 additions. We can do it using only 3 multiplications and 5 additions.
(z:=d*(t2+t3), R:=(c-d)*t3+z, S:=-(c+d)*t2+z). This trick can be used twice in the program above.

9 Status

The programs are currently divided into a few files; while some were initially written in Lisp, most programs
were rewritten in the Maxima language so as to be more general, allowing for different (even sometimes
non-numeric) argument types. These Maxima programs can be sped up by compiling into Lisp and then
into machine instructions. However, writing in Lisp is sometimes a good deal more direct, especially if we
know that given the particular context, the only sensible data types are numeric, and among those numeric
types, the only one that will be used is (real) machine double-float.

Of course the temptation exists to link the Maxima or Lisp system to Matlab and just use Chebfun.
The file mincheb.mac is the minimum setup for converting to and from chebyshev form, and trimming

coefficients. It is 2 pages long, and has some useful utility functions.
The file dct.mac provides the discrete cosine transform and inverse, both “slow” and “fast” (using Max-

ima’s FFT). It is one page, although an additional half-page provides alternative somewhat faster versions
of Maxima code to set up the call to the FFT. The versions using the FFT are obsoleted by the next file,
though.

The file algo749.lisp is a Lisp-language version of the discrete cosine transform from Collected Al-
gorithms of the ACM, Algorithm 749. This was created by first automatically translating the original
FORTRAN into Lisp with the program f2cl. We then edited the result so as to use more idiomatic Lisp,
and in the process, vastly shortened the f2cl output. In simple tests on 16 and 64-point transforms, it
appears to be about 10 times faster than the previous version in dct.mac which is first obligated to set up
a rearrangement of the terms and then call the built-in FFT on a larger array.

The file cheb-arith.mac shows how to do addition, multiplication of CS, and composition of a CS with
another, as well as application of a (non-CS) function to a CS to produce a CS. About 1.5 pages.

The file cheb-integ.mac provides (indefinite) integration and differentiation. 40 lines.
The file cheb-bary.mac provides barycentric interpolation and also some arithmetic for operating on lists

of evaluation points rather than chebyshev coefficients. This really doesn’t fit into the rest of the system –
in fact it is using a different cosine transform based on another set of evaluation points (off by 1/2 from the
ones used elsewhere).

The file cheb-extend.mac provides tools for creating and manipulating generalized Chebyshev series on
a finite interval [a,b] other than [1,1], as well as piecewise representations. For example, the absolute value
function on [-3,3] is gencheby(-3,0.0, chebseries(3.0,-1.5), 0.0,3, chebseries(3.0,1.5)). This is
simply suggesting how we might incorporate in our model the piecewise advanced version of Chebfun. The
file cheb-misc.mac contains a few functions that are useful if the user prefers not to write or see “anonymous
functions” as lambda expressions, and just uses cheby(sin(x)+x) rather than tocheby(lambda([x],sin(x)+x)).

All the files are potentially still under development, and so may grow or shrink; additional files may be
started as appropriate.

Many of the functions work as expected. Very little timing data has been collected.
There are several arbitrary limits set that might be altered. In particular: the acceptable relative error

for truncation of a CS is relerr set to 1.0e-13. The largest number of coefficients is arbitrarily set at 512.
The number of trailing items tested to see if an approximation is good enough is 2.

10 Examples

After loading the chebfun files for Maxima, we can do the following:

s: cheb(sin(x));

8

This results in the following expression:

chebseries(7.8062556418956319*10^-17,0.88010117148987,-1.9009829523078689*10^-17,
-0.039126707965337,2.4590084002406301*10^-17,4.9951546042242053*10^-4,
2.6187632824244736*10^-18,-3.0046516348858354*10^-6,-1.349298206681369*10^-17,
1.0498500309169361*10^-8,1.9452934283922738*10^-17,-2.3960209521740189*10^-11)

This is not meant to be examined by human eyes, but if we replace all “small” values by 0 it looks somewhat
better. For this purpose We defined a program stz which converts small numbers to zeros.

[stz means small-to-zero]:

stz(%);

chebseries(0,0.88010117148987,0,-0.039126707965337,0,4.9951546042242053*10^-4,
0,-3.0046516348858354*10^-6,0,1.0498500309169361*10^-8,0,0)

Here we define a notation for application of a CS to a point. (We could include this automatically in
the Chebyshev package, but we hesitate to use up a symbol that might be used for other operators.) In
Maxima, the point could be symbolic. It is preferable to convert “contagiously” to a rational form so all the
arithmetic consequences of the conversion will be simplified – so we use rat(z).

infix("@");
"@"(a,b):=fromcheby(a,b)

cheb(sin(x))@0.345;
0.33819667724783

which compares to

sin(0.345);
0.33819667724779

For a symbolic polynomial (power-basis) version of the series, try this:

stz(cheb(sin(x)@rat(z));

2.4535254550261953*10^-8*z^11+2.7550880291605769*10^-6*z^9
-1.9841231276078824*10^-4*z^7+
0.0083333332209776*z^5-0.16666666665263*z^3+0.9999999999995*z

Forms for exact series for powers of a variable are stored in an array. The array is expanded as needed. This
shows that exact coefficients are possible too. Here is the series for x10 or z10, etc.

onepowcs[10]

chebseries(63/128,0,105/256,0,15/64,0,45/512,0,5/256,0,1/512)

To illustrate the difference between the simplified rat() and “just plugged in” forms:

onepowcs[4]@z;
z*(2*z*(z^2/2+3/8)-z/4)-z^2/2

compare to

9

onepowcs[4]@rat(z);
z^4

We can integrate a series and then apply it.

stz(chebint(onepowcs[4])@rat(z));
0.2*z^5

We can compose a series with another, using the sin(x) series s from above:

cc(s,s)@0.3
0.29123754560999

compares to

sin(sin(0.3))
0.29123754560994

The number of terms carried should expand automatically as necessary (if the design is successful). We have
tried to emulate the Chebfun Project heuristics. e.g. let

five: onepowcs[5]

length(five) is 6 as expected.
length(cc(five,five)) is 26, as expected. The CS approximation should be good for values in [-1,1],

but in this case appears to be good elsewhere too.

cc(five,five)@2.0
3.3554432028975487*10^7

compared to the exact answer

3.355443200*10^7

It is also possible to compose an arbitrary function of one variable which a Chebyshev series, though
whether this is meaningful may depend on having functions with appropriate domains.

Illustrating chebplus and chebdiff for addition and differentiation, respectively, we can show that
sinx+ d/dx(cosx) is close to zero:

hh: stz(chebplus(cheb(sin(x)),chebdiff(cheb(cos(x)))));
chebseries(0,0,0,0,0,0,0,0,0,0,0,0)

We would ordinarily drop the terms less than some relative error, relerr. The default relerr is set to 1.0e-13.
This is usually done by trimcs:

trimcs(hh,relerr);
chebseries(0.0)

Or consider

chebplus(chebtimes(cheb(sin(x)),cheb(sin(x))),
chebtimes(cheb(cos(x)),cheb(cos(x))));

chebseries(2.0).

Here’s another way to tell that diff(cos(x),x)=-sin(x), heuristically at least. Observe that

chebnorm(chebplus(cheb(sin(x)),chebdiff(cheb(cos(x)))));
8.8714401421864493*10^-27

10

This norm is a sum of squares of the coefficients.
Other operations on CS include chebtimes, chebsubtr, chebmin, chebpower, for multiplication, sub-

traction, negation, and powers. Since chebpower works for real number exponents, a/b can be computed by
chebtimes(a,chebpower(b,-1)).

It is also possible to embed CS inside other expressions and evaluate them this way:

E: q(onepowcs[10 + r(onepowcs[5]))
q(r(chebseries(0,5/8,0,5/16,0,1/16))+
chebseries(63/128,0,105/256,0,15/64,0,45/512,0,5/256,0,1/512))

Allfromcheby(E, x) --> q(r(x^5)+x^10)

11 Conclusions

Considering the pleasant collection of ideas and programs constituting the Chebfun suite of programs, we
see that mimicking them in a computer algebra system can provide some additional facilities. While the
core of the programs we wrote can use (for example) highly-tuned library programs for DCT (discrete cosine
transform), we can also introduce and maintain, in some aspects, symbolic parameters, and a fairly natural
high-level interface.

References

[1] T. Einwohner and R. Fateman, “A MACSYMA Package for the Generation and Manipulation of Cheby-
shev Series (Extended Abstract)” Proc. 1989 ISSAC, ACM 0-89791-325-6/89/0007/0180 p180-185.

[2] Chebfun Project, http://www2.maths.ox.ac.uk/chebfun which contains links to new and old litera-
ture.

[3] FFTW: Fastest Fourier Transform in the West, http://fftw.org

12 Appendix: Some Programs

There are a collection of experimental programs in files as indicated in the sections on Status and Imple-
mentation Notes.

We also experimented with the use of the DCT for multiplying polynomials (with floating-point coeffi-
cients). 10

We include in this section a listing of the file called mincheby.mac for reference:

/* Chebyshev series: a small set of programs to get you started */

/* Convert analytic function lambda([x]...expression in x) to Chebyshev series
The result will be a list of double-float Chebyshev coefficients.
We use a Discrete Cosine Transform, (DCT) and also a fastDCT implemented
by FFT. */

load("c:/cheby/dct.mac")$ /*defines various programs, arbitrary size slow DCT. load("c:/cheby/algo749formax.o")$ /* defines the functions fdct, fdcti using lisp programs. */

10It has been well-known that this could be done via FFTs but the programs we’ve used have not taken advantage of the fact
that the inputs and outputs are real-valued; the DCT makes that assumption. The speedup for DCT is modest but noticeable.
An alternative which came to light, of pasting the two polynomial inputs into the real and imaginary parts of the input, makes
the FFT quite close to the DCT in speed and space.

11

ispowerof2(n):=is(integerp(n) and (n>0) and n= 2^?round(?log(n,2))) ;

tocheby2(f,n):=
/* n need not be a power of 2 for this program, but

if n IS a power of 2, it uses a fast transform method.
The program assumes that f, which is the name of a function or perhaps
looks like lambda([r],...), evaluates to a real number at each relevant point. */

block([dc:if ispowerof2(n) then fdct(glpf(f,n)) else DCT(glpf(f,n)),
in:sqrt(4.0d0/n)],
apply(’chebseries,makelist(dc[i]*in,i,1,n)))$

tocheby2slow(f,n):=
/* n need not be a power of 2 for this program,

f need not evaluate to a real number (but if symbolic,
expect a large expression!). */

block([dc: DCT(glpf(f,n)),
in:sqrt(4.0d0/n)],
apply(’chebseries,makelist(dc[i]*in,i,1,n)))$

fromcheby(CS,x):= if numberp(x) then eval_ts(CS,?float(x,1.0d0))
else fcheb(CS,x)$

/* Evaluates a CS at a point x, ordinarily a double-float. BUT.. If
x is a symbol, this will convert Chebyshev series to an expression in
the power basis, i.e. polynomial in x. Better to say
fromcheby(a,rat(x)) which will simplify the answer to a polynomial in
x. (if CS include parameters, this still works.) This algorithm is
based on the Clenshaw recurrence, also see Fox & Mayers, Computing
Methods, Chapter 7 ex 4. */

fcheb(c,x):=
block([keepfloat:true,
bj2:0,bj1:0,bj0:0,z:reverse(args(c)),tx:2*x],
while z#[] do
(bj2:bj1,bj1:bj0,
bj0:tx*bj1-bj2+first(z),
z:rest(z)),

1/2*(bj0-bj2))$

/* Compiling fcheb makes it run about 13X faster. The Lisp version of
this program, eval_ts, runs about 5X times faster on top of that.
Compiling eval_ts gives about another 3X times faster, or in total,

200X. The code for eval_ts is in algo749formax.lisp */

/* Since some of these DCT programs produce tiny residual numbers, it
is handy, while eye-balling them, to convert such numbers to zeros. */

small_to_zero(expr,eps):=
/* Replaces all numbers smaller in absolute value than eps by zero. */

12

fullmap(lambda([x], if numberp(x) and abs(x)<eps then 0.0d0 else x),
expr)$

/*shorthand for above, using a fixed epsilon that we found useful*/
stz(z):=small_to_zero(z,1.0d-9)$

/* Chebnorm computes the sum-of-squares "size" of a CS*/

chebnorm(r):=block([s:0], for i in args(r) do s:s+i^2, s)$

/* Given a Chebyshev series, return another one in which we may have
removed terms that don’t matter much; that is, we chop off trailing
coeffs which were small relative to larger coeffs. An interesting
design question is how to deal with CS that are constants,
e.g. chebseries(2.0d0) is effectively the number 1.0d0. That is, a
number is a special case of a CS. We don’t, for now.*/

trimcs(a,relerr):=
block([max: apply(max,args(a)),

min: apply(min,args(a)),
r: reverse(args(a)),
bigmaginv,mm],

if (mm: float(max(abs(max),abs(min))))=0.0
then return (chebseries(0.0)) else bigmaginv:1/mm,

while (r#[] and abs(first(r))*bigmaginv < relerr) do r:rest(r),
return(apply(’chebseries,reverse(r))))$

goodenoughCS(a,relerr):= /* is this Chebyshev series good enough? */
block([max: apply(max,a:args(a)),

min: apply(min,a),
la:length(a),tail,

bigmaginv],
tail:inpart(a,[la-1,la]), /* extract the last two items */
bigmaginv: relerr/max(abs(max),abs(min)),
/*display(bigmaginv), */
/* test to see that last 2 coeffs are relatively small */

is (abs(tail[1]) < bigmaginv)
and

(abs(tail[2]) < bigmaginv))$

/* a simple formula (Thacher, 1964) sufficient to convert from x^r to Cheby.
onepowcs[r] is the chebseries for x^r */

onepowcs(z):=onepowcs[z]$
onepowcs[r]:=apply(’chebseries,makelist(

if evenp(r-q)then 2^(1-r)*binomial(r,(r-q)/2) else 0,
q,0,r))$

/*if powers(a,b,c,d) is an encoding of a+b*x+c*x^2+d*x^3,
with "x" understood, then converting
from power basis [exactly!] to chebshev basis is */

13

power2cheby(p):=
block([pa,ans,n:length(p)],
local(pa,ans),
pa[i]:=inpart(p,i+1),
ans[i]:=0,
for r:0 thru n-1 do /* for each power r*/
for q:0 thru r do (
if evenp(r-q)then

ans[q]:ans[q]+pa[r]*2^(1-r)*binomial(r,(r-q)/2)),
apply (’chebseries, makelist(ans[i],i,0,n-1)))$

cheby2power(c):= /* convert to power basis list, not so efficient perhaps */
block([f:fromcheby(c,rat(zz))],
apply(’powers,makelist(ratcoeff(f,zz,i),i,0,length(c)-1)))$

/* this version of tocheby takes an expression and tries to
figure out how many terms to include. It requires
that you use a function, e.g. tocheby(lambda([x],x^2)).
It will try up to 512 terms.
See cheb-misc.mac for even simpler to use: cheb(x^2) */

tocheby(f):=
block([n:8,trial,ratprint:false],

trial:tocheby2(f,n),
while (n<=toomany) and not(goodenoughCS(trial,relerr)) do
trial:tocheby2(f,n:2*n),
if n>=toomany then (print("Chebyshev encoding requires more than", toomany, " terms for error",relerr),
trial)

else trimcs(trial,relerr))$

round2n(h):=2^ceiling(log(h)/log(2.0d0))$

toomany:512$
relerr:1.0e-13$

/* requires for ... collecting ... and polyp. produces exact results for exact polynomials .

poly2cheb(e,x):= if polynomialp(e,[x]) then
(e:rat(e,x),

power2cheby(for i:0 thru hipow(e,x) collect ratcoef(e,x,i)))
else tocheby(e)$

*/

poly2cheb(e,x):= if polynomialp(e,[x]) then
block([h:[],re:rat(e,x)],

for i:0 thru hipow(re,x) do h:cons(ratcoef(re,x,i),h),
power2cheby(reverse(h)))
else cheby(e)$

14

/* trials
stz(tocheby(lambda([r],cos(5*acos(r))))) ; works
stz(tocheby(lambda([r],cos(10*acos(r))))) ; works
stz(tocheby(lambda([r],cos(11*acos(r))))) ; doesn’t work. too much float error
*/

15

