
DEFINE ISSUE using \ issue

Series misdemeanors

David R. Stoutemyer∗

Abstract

Puiseux series are power series in which the exponents can be fractional and/or negative
rational numbers. Several computer algebra systems have one or more built-in or loadable
functions for computing truncated Puiseux series — perhaps generalized to allow coefficients
containing functions of the series variable that are dominated by any power of that variable, such
as logarithms and nested logarithms of the series variable. Some computer-algebra systems also
offer functions that can compute more-general truncated recursive hierarchical series. However,
for all of these kinds of truncated series there are important implementation details that haven’t
been addressed before in the published literature and in current implementations.

For implementers this article contains ideas for designing more convenient, correct, and
efficient implementations or improving existing ones. For users, this article is a warning about
some of these limitations. Many of the ideas in this article have been implemented in the
computer-algebra within the TI-Nspire calculator, Windows and Macintosh products.

1 Introduction
Here is a conversation recently overheard at a car-rental desk:

Customer: “I followed your directions of three right turns to get on the highway, but
that put me in a fenced corner from which I could only turn right, bringing me back to
where I started!”

Agent: “Make your first right turn after exiting the rental car lot.”

The original directions were correct, but incomplete.
The same was true of published algorithms for truncated Puiseux series. After reading all that

I could find about such algorithms, I implemented them for the computer algebra embedded in
the TI Nspire™ handheld graphing calculator, which also runs on PC and Macintosh computers.
Testing revealed some incorrect results due to ignorance about some important issues. Results for
other series implementations, reveal that their implementers have made similar oversights.

It required a significant effort to determine how to overcome these difficulties. This article is
intended as a warning for users of implementations that exhibit the flaws — and as suggestions to
implementers for repairing those flaws or avoiding them in new implementations. Many of the ideas
here are implemented in TI-Nspire.

Additional issues for truncated and infinite series are described in a sequel to this article tenta-
tively titled “Series crimes” (author?) [13].

∗dstout at hawaii dot edu

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

For real-world problems, exact closed-form symbolic solutions are less frequently obtainable
than are various symbolic series solutions. Therefore in practice, symbolic series are among the
most important features of computer algebra systems.

Almost all computer algebra systems have a function that produces at least truncated Taylor
series. Iterated differentiation followed by substitution of the expansion point provides a very
compact implementation. However, it can consume time and data memory that grows painfully with
the requested order of the result. Knuth (author?) [5] presents algorithms that are significantly
more efficient for addition, multiplication, raising to a numeric power, exponentials, logarithms,
composition and reversion. He also suggests how to derive analogous algorithms for any function
that satisfies a linear differential equation. Silver and Sullivan (author?) [10] additionally give
such algorithms for sinusoids and hyperbolic functions. Brent and Kung (author?) [1] pioneered
algorithms that are faster when many non-zero terms are needed.

If for a truncated Puiseux series expanded about z = 0 the degree of the lowest-degree non-zero
term is α and g is the greatest common divisor of the increments between the exponents of non-zero
terms, then the mapping zβ → t(β−α)/g can be used, with care, to adapt many of the Taylor series
algorithms for Puiseux series.

As described by Zipple (author?) [14, 15], many Puiseux series implementations have gener-
alized them to allow coefficients that contain appropriate logarithms and nested logarithms that
depend on the series variable. Geddes and Gonnet (author?) [3], Gruntz (author?) [4], and
Richardson et. al. (author?) [9] give algorithms for more general truncated hierarchical series
that also correctly prioritize essential singularities and perhaps-nested logarithms in coefficients.
Koepf (author?) [7] implemented infinite Puiseux series in which the result is expressed as a sym-
bolic sum of terms: The general term in the summand typically depends on the summation index
and powers of the series variable. Some implementations compute Dirichlet, Fourier, or Poisson
series. Most of the issues described in this article are relevant to most kinds of truncated series,
and some of the issues are also relevant to infinite series.

To obtain a series for f (w) expanded about w = w0 with w0 finite and non-zero, we can
substitute w → z + w0 into f (w) giving g (z) , then determine the series expansion of g (z) about
z = 0, then back substitute z → w − w0 into that result. However, if the series is to be used only
for real w < w0 then using instead w → w0 − z might give a result that more candidly avoids
unnecessary appearances of i — particularly if f (w) contains logarithms or fractional powers.

To obtain a series for f (w) expanded from the complex circle of radius ∞, we can substitute
ζ → 1/z into f (w) giving h (z), then determine the series expansion of h (z) about z = 0, then
back substitute z → 1/w into that result.

A proper subset of the complex circle at infinity can be expressed by an appropriate constraint
on the series variable, such as

series (f (w) , w = −∞, . . .) → H

(
1

w

)
where

H (x) = series
(
f

(
1

x

)
, x = 0, . . .

)
| x < 0.

Therefore without loss of generality, the expansion point is z = 0 throughout the remainder of this
article with, z = x+ iy = reiθ where r ≥ 0, −π < θ ≤ π, and x, y ∈ R.

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Also, wherever braced case constructs occur, the tests are presumed to be done using short-
circuit evaluation from top to bottom to avoid the clutter of making the tests mutually exclusive.

2 The disorder of order
“What we imagine is order is merely the prevailing form of chaos.”

— Kerry Thornley

Truncated series functions usually have a parameter by which the user requests a certain numeric
“order” for the result. Existing implementations treat this request in different ways, some of which
are significantly more useful than others.

2.1 Render onto users what they request
“Good order is the foundation of all things.”

— Edmund Burke

“Mathematics is the art of giving the same name to different things.”
— Jules Henri Poincaré

Unfortunately, the word “order” is used in too many ways in mathematics. Relevant definitions
used in this article are:

Definition. The exact error order of a truncated series result expanded about z = 0 is τ if the
error is O (zτ) but the error isn’t o (zτ). The exact error order of an exact series result expanded
about z = 0 is +∞.

Remark. Knuth (author?) [6] introduced the convenient notation Θ (zτ) to denote exact-order τ
in z. In comparison to O (zτ), Θ (zτ) avoids discarding valuable information when we also know
that a result isn’t o (zτ).

Definition. The degree of a truncated Puiseux series with respect to z expanded about z = 0 is
the largest exponent of z that occurs outside of any argument of any O (. . .), o (. . .), or Θ (. . .) term
that is included in the result.

It is unreasonable to request a degree because, for example, there is no way for

series (cos z, z=0, degree=1)

to return a result of degree 1. It is also unreasonable to request an exact error order because, for
example, series (cos z, z=0, Θ (z3)) can’t return a series having error Θ (z3).

Definition. If a series-function order-argument τ denotes a request that the result be · · ·+O (zτ),
then the degree of an as-requested big-O result should be the largest degree that satisfies

degree < τ ≤ exact error order. (1)

Remark. It seems likely that more often users prefer to specify the highest degree term they want
to view rather than the lowest degree term they don’t want to view. Thus most users would prefer
that the series function parameter τ denotes a request for a result that is · · ·+ o (zτ). Therefore:

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

Definition. If a series-function order-argument τ denotes a request that the result be · · ·+ o (zτ),
then the degree of an as-requested little-o result should be the largest degree that satisfies

degree ≤ τ < exact error order. (2)

The Maxima, Mathematica® and TI-Nspire™ truncated Puiseux series functions use this little-o
interpretation of a numeric parameter τ . For example, glossing over their input and output syntax
differences, they all give

series

(
sin z

z3
, z=0, 5

)
→ 1

z2
− 1

6
+

z2

120
− z4

5040
. (3)

To this Maxima appends “+ · · · ” and Mathematica appends “+O[z]6 ”.
It is easier to implement an interpretation in which the order parameter τ denotes that the

inner-most sub-expressions are computed to o (zτ) and the final result is computed to whatever
order that yields. For reasons described below, that can and often does lead to a result that is
o (zκ) with a κ that is smaller or occasionally larger than τ . For example, it would omit the last
term of result (3). For such an implementation it is essential to display an error term because
otherwise:

1. If exact order ≤ requested little-o order, then the result doesn’t reveal that it is less accurate
than requested, which can be disastrous.

2. If degree > requested little-o order, then the user must notice and perhaps somehow truncate
the excess terms to use the result in further calculations as intended.

However, even if there is an error term indicating a result that doesn’t have the requested accuracy,
this design is inconvenient for users because:

1. Users often don’t notice the deficient or excessive accuracy.
2. Users who notice excessive order, must perhaps somehow truncate the excess terms to use the

result in further calculations as intended.
3. Users who notice deficient order are forced to iteratively guess the order argument to use

in series(. . .) to obtain sufficient accuracy — then perhaps somehow truncate a result that
exceeds the desired order.

4. If the user is another function, then that function should test the returned order and correct
it if necessary by iterative adjustment and/or truncation. This is a requirement that might
not occur to many authors of such functions — particularly those who aren’t professional
computer-algebra implementers.

It is more considerate, reliable and efficient to build any necessary iterative adjustment and/or
truncation into the series(. . .) function rather than to foist it on all function implementers and
top-level users. It isn’t prohibitively harder to implement an as-requested result.

DEFINE SHORT AUTHOR HEADER USING \ authorhead

2.2 How to deliver as-requested order
Definition. If an infinite Puiseux series is 0, then its dominant term is 0. Otherwise the dominant
term is the lowest-degree non-zero term.

Definition. If an infinite Puiseux series is 0, then its dominant exponent is ∞. Otherwise the
dominant exponent is the exponent of the dominant term.

Remark. Some authors call the dominant exponent the valuation or valence, but other authors
confusingly call it the order.

A typical truncated-Puiseux-series implementation recursively computes series for the operands
of each operator and the arguments of each function, combining those series according to various
algorithms. Table 1, lists the dominant exponent of a result and the operand orders that are
necessary and sufficient to determine a result to o

(
zk
)
. In that table a result dominant exponent

of −∞ signifies an essential singularity.
As indicated there, cancellation of the dominant terms of series U and V can cause the dominant

exponent of U ± V to exceed min (α, β) when α = β, such as for

series (ez − cos z, z=0, o (z)) → ((1 + z + o(z))− (1 + o(z))

→ z + o(z).

If the coefficient domain has zero-divisors, such as for modular arithmetic or floating-point with
underflow, then the dominant exponent of UV can exceed α+β, and the dominant exponent of Uγ

can exceed γα.
Unfortunately, most of the entries in column 3 require us to know the dominant exponents of

the operands, perhaps also together with a dominant coefficient c and the exponent σ of the next
non-zero term, if any. Therefore we need this information before computing the operand series to
the correct order, but we don’t have this information until after we have computed the first term
or two of the operand series.

One way to overcome the difficulty is as follows: We can guess the dominant exponent of the
operands by using a function written according to rewrite rules such as the following, which are
heuristically motivated by the second column of Table 1:

guessDE (z, z) → 1,

guessDE (u+ v, z) → min (guessDE (u, z) , guessDE (v, z)) ,

guessDE (uv, z) → guessDE (u, z) + guessDE(v, z),

guessDE
(
uk, z

)
→ k guessDE (u, z) ,

guessDE (eu, z) → 0,

guessDE (sinu, z) → max (0, guessDE (u, z)) ,

guessDE (lnu, z) →

{
guessDE (u− 1, z) , if u(0) = 1,

0, otherwise,

guessDE (arctanu, z) →


guessDE (u− i, z) , if u(0) = i,

guessDE (u+ i, z) , if u(0) = −i,
max (0, guessDE (u, z)) , otherwise,

guessDE (u, z) | u is independent of z → 0.

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

If using the guess results in computing more terms than necessary, then we should truncate the
excess. If using the guess doesn’t produce the required order but reveals the dominant term (and
where needed the next non-zero term), then we know precisely the necessary and sufficient order to
request for recomputing the series operands.

If using the guess doesn’t reveal this information, then when there is only one function argument
we can iteratively increase the guess, starting with an initial increment δ > 0. For each iteration
we can double the increment added to the initial guess. This way, in a modest multiple of the time
required for the last iteration, the process terminates successfully or by resource exhaustion.

Resource exhaustion can be caused by an undetected essential singularity, insufficient simplifi-
cation of an operand expression, or undetected constancy around the expansion point, such as for
|x+ 1|+ |x− 1| at x = 0, which can be more candidly expressed as

−2x x < −1,

1 −1 ≤ x ≤ 1,

2x otherwise.

To increase the likelihood of the first increment δ being sufficient to expose the first non-zero
term or two but not prohibitively more terms than needed, we can use a function that guesses the
increment between the exponents of the first two non-zero terms. Let u and v be expressions with
α̃ = guessDE(u, z) and β̃ = guessDE(v, z). Then the following ordered rewrite rules are examples
for such a function:

guessInc (z, z) → 0,

guessInc (uγ, z) → guessInc (u, z) ,

guessInc (uv, z) →


guessInc (u, z) guessInc (v, z) = 0,

guessInc (v, z) guessInc (u, z) = 0,

min (guessInc (u, z) , guessInc (v, z)) , otherwise,

guessInc (lnu) →

{
guessInc (u− 1, z) if u (0) = 1,

guessInc (u, z) otherwise,

guessInc (eu, z) →

{
guessInc (u, z) if α̃ = 0,

|α̃| otherwise,

guessInc (sinu, z) →

{
2 |α̃| if guessInc (u, z) = 0,

guessInc (u, z) otherwise,
// Same for sinhu

guessInc (cosu, z) →

{
guessInc (u, z) if α̃ = 0,

2 |α̃| otherwise,
// Same for coshu

guessInc (arctanu, z) →


−α̃ if α̃ < 0,

2α̃ if α̃ > 0∧ guessInc (u, z) = 0,

guessInc (u− u(0), z) if u(0) = i ∨ u(0) = −i,
guessInc (u, z) otherwise,

DEFINE SHORT AUTHOR HEADER USING \ authorhead

guessInc (arctanhu, z) →


−α if α < 0,

2α̃ if α > 0∧ guessInc (u, z) = 0,

guessInc (u− u(0), z) if u(0) = 1 ∨ u(0) = −1,

guessInc (u, z) otherwise,

guessInc (arcsinu, z) →


2 |α̃| if guessInc (u, z) = 0,

guessInc (u, z) /2 if u (0) = 1 ∨ u (0) = −1,

guessInc (u, z) otherwise,

guessInc (arcsinhu, z) →


2 |α̃| if guessInc (u, z) = 0,

guessInc (u, z) /2 if u (0) = i ∨ u (0) = −i,
guessInc (u, z) otherwise,

guessInc (arccoshu, z) →


α̃ if α̃ > 0,

−2α̃ if α̃ < 0 ∧ guessInc (u, z) = 0,

guessInc (u, z) /2 if u (0) = 1 ∨ u (0) = −1,

guessInc (u, z) otherwise,

guessInc (u, z) | u is independent of z → 0.

The treatment of sums is more easily stated procedurally: Let s be a sum and σ̃ = guessDE(s, z).
Let S be the set of all terms in s that have σ̃ as the guess for their dominant exponent, and let S̄
be the set of all the other terms. If S̄ is empty, let γ̃ = 0. Otherwise let γ̃ be the minimum guessed
dominant exponent of the terms in S̄. Let δ̃ = 0 if 0 is the guessed increment for all of the terms in
S. Otherwise let δ̃ be the minimum non-zero guessed increment in S. Then the guessed increment
for the sum is

min
(
δ̃, γ̃ − σ̃

)
.

Because guessDE(. . .) might return an incorrect guess for a dominant exponent, it is possible
for this guessInc (. . .) to return 0 when the increment is actually positive. Therefore we can instead
guess an increment of 1 if a top-level invocation of guessInc (. . .) returns 0.

The required argument order in Table 1 for the inverse trigonometric and inverse hyperbolic
functions depends on whether the dominant exponent α of the argument u is positive, negative,
or 0 with the corresponding coefficient being a branch point. Evaluating u (0) can help us decide
this: If u (0) is a branch point, then we can use the above iteration scheme on u − u (0) to obtain
the required order o

(
zk+σ

)
. If u (0) ≡ 0, then α > 0. If u (0) is otherwise finite and non-zero,

then α = 0. Either way, the required order for u is o
(
zk
)
. Otherwise, either a negative dominant

exponent or a coefficient having a logarithmic singularity caused u (0) to have infinite magnitude
or to be indeterminant. For such u (0):

• If guessDE (u, z) ≥ 0, then we can request o
(
zk
)
, truncating if the resulting dominant expo-

nent is actually negative.
• Otherwise we can request an iterative determination of the appropriate order, with the proviso

that the order be o
(
zk
)
if α is actually positive, or else 0 with c not a branch point.

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

For a product of two or more operands, let u contain a proper subset of the operands and v
contain the complementary subset. Use recursion if u and/or v is thereby a product. Letting U and
V denote the corresponding truncated series, we can guess initial dominant exponents α and β, then
alternatively increase them if necessary until either U or V reveals its true dominant exponent. Then
we know enough to compute the other operand series to the appropriate order without iteration,
after which we know enough to truncate or compute additional terms of its companion if necessary.
We can terminate and return 0 for both U and V if a guess for β yields U = 0 + o

(
zk−β

)
, a guess

for α yields U = 0 + o
(
zk−α

)
, and α + β ≥ k. Algorithm 1 presents details.

The chances for needing to truncate or iterate are reduced if we choose for v a factor for which
the guess for β is most likely to be accurate, such as a linear combination of powers of z. To aid
this choice we can have guessDE (. . .) also return a status that is an element of

{lowerBound, exact, upperBound, uncertain} ,

with these constants being a guarantee about the guess. Example rules for computing and propa-
gating such a status are:

statusOfGDE (z, z) → equal,

statusOfGDE (u+ v, z) → lowerBound,

statusOfGDE
(
uk, z

)
→


statusOfGDE (u, z) if k ≥ 1,

upperBound if statusOfGDE (u, z) = lowerBound,

lowerBound if statusOfGDE (u, z) = upperBound,

statusOfGDE (u, z) otherwise.

For example, if statusAndGDE (u, z) returned [lowerBound, 6] and statusAndGDE (v) returned
[exact, 4], then we know that series (uv, z = 0, o (z9)) is 0 + o (z9) without computing series for u
and v.

We can return and exploit a similar status for guessInc (. . .). For example, if

statusAndGDE (u, z) → [lowerBound, 6] ,

statusAndGInc (u, z) → [exact, 0] ,

then there is no point to iteratively increasing the requested order for u beyond 6.
Another way to compute operand series to the necessary and sufficient order, pioneered by

Norman (author?) [8], is to use lazy evaluation, streams, or Lisp continuations. The idea is to
generate at run time a network of co-routines that recursively request additional order or additional
non-zero terms for sub-expressions on an incremental as-needed basis. The above guesses and
iterative techniques are relevant there too, because if the request is for an increment to the order,
it might not produce another non-zero term and if the request is for an additional non-zero term,
iteration might be necessary to produce it. However, for such algorithms that don’t recompute all
of the terms each iteration, it is probably more efficient not to increase the increment each iteration.

2.3 Optional requested number of non-zero terms
Often rather than a requested order, users need a requested number of non-zero terms, regardless of
what order is required to achieve that. Most often the needed number of terms is 1. For example,

DEFINE SHORT AUTHOR HEADER USING \ authorhead

a particularly effective way to compute many limits is to compute the limit of the dominant term.
This is particularly helpful for indeterminacies of the form ∞ − ∞. As another example, if we
equate a truncated series to a constant, then it is much more likely that we can solve this equation
for z if there are only one or two terms in the truncated series. Thus it is important to implement
a separate function such as

nTerms (expression, variable =point, numberOfNonZeroTerms) .

Parameter numberOfNonZeroTerms could default to 1 and/or there could be a separate function
such as

dominantTerm (expression, variable=point) .

For a hierarchical series the user often doesn’t know a priori an appropriate set of basis functions
for the series, and the dominant basis function can be an essential singularity or a logarithm rather
than z. For such series it is much more appropriate for users to request the desired number of terms
rather than an order in z. In this context, it is appropriate to count recursively-displayed terms of
a hierarchical series as if they were fully expanded. For example, only one such distributed term is
necessary for purposes such as computing a limit.

It is dangerously misleading to include a term unless all of the preceding terms are fully devel-
oped, which might and often does require infinite series for the coefficients of some preceding terms.
For example, it is inappropriate to include the z3 term of

z +

(
∞∑
k=0

(ln z)k

2k+1

)
z2 + z3 + o

(
z3
)

(4)

if the series for the coefficient of z2 is truncated, because (ln z)k z2/2k+1 dominates z3 for all k ≥ 0.
This is another reason that a requested distributed term count is more appropriate than an order
request for truncated hierarchical series. This is also a good reason for providing the option of not
expanding coefficients as sub-series where the implementation can’t express them as infinite series
and they don’t terminate at a finite number of terms. For example, there should be an option for
even a hierarchical series function to return

z +

(
1

2− ln z

)
z2 + z3 + o

(
z3
)

for expression (4)
To achieve a requested number of non-zero terms, we can iteratively increase the requested

order until we obtain at least that number of non-zero terms, then truncate any excess terms.
The iteration could begin with a requested order somewhere in the interval guessDE (u, z) +
[0, (n− 1)guessInc(u, z)], where n is the requested number of non-zero terms. If this attempt ex-
poses no terms, then we can increment the request by n · ∇ where ∇ starts at guessInc(u, z) and
doubles after each failed attempt.

However, the implementation should address the fact that an expansion might terminate as
exact with fewer than the requested number of non-zero terms. The fact that the returned number
of terms is less than requested is a subtle indication that the series is exact, but an explicit error-
order term of the form Θ ((. . .)∞) makes this fact more noticeable. This is additional motivation for
having each intermediate series result include an indication of exactness, if known, as elaborated in
subsection 3.2.

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

3 Issues about displaying truncated series results
In contrast to most other expressions, the terms of a truncated Puiseux series expanded about
w = w0 for finite w0 are traditionally displayed in order of increasing powers of w−w0, even if there
are logarithms involving w in expressions multiplying some of those powers. If series are represented
using the same data structures as general expressions but different ordering, then the different
ordering might prevent key cancellations because efficient bottom-up simplification typically relies
on the simplified operands of every operator having the same canonical ordering. For example,

−z + series
(
ez, z=0, o

(
z2
))
→ −z +

(
1 + z +

z2

2

)
→ −z + 1 + z +

z2

2
,

rather than simplifying all the way to 1 + z2/2.
The series (. . .) function is most often used alone as an input, perhaps with the result assigned to

a variable, rather than embedded in an expression. If so and the assigned value is ordered normally
or the system re-simplifies pasted and assigned values when used in subsequent expressions, then
the differently-ordered series result would safely be re-ordered into the non-series order during
simplification of that subsequent input.

One way to overcome this difficulty entirely is to use a special data structure for series results,
then use a special method for displaying those results. However, the next subsection describes how
onerous it is to integrate such special data structures into a system in a thorough seamless way.

3.1 The pros and cons of an explicit error order term.
Maxima 5.18.1 displays “+ . . .” at the end of a truncated series result, which means o (zn) where n
is the order argument provided by the user. Mathematica 7.0.1.0 displays a big-O term, and Maple
13.0 displays a big-O term if the result isn’t exact. Even when result orders are always as requested,
a displayed ellipsis is useful and a displayed error term is even more valuable. They remind users
that although the result is symbolic, it is perhaps or definitely approximate. Moreover, it provides
an opportunity for the implementation to make such truncated series infectious, which helps prevent
users from misusing inappropriate mixtures of approximate results with exact results or with results
having different orders or expansion points. For example, if a result of series (. . .) is

(w − 2π)−
1/2 + (w − 2π)2 + o

(
(w − 2π)2) ,

then adding sin (w) to this result would return

(w − 2π)−
1/2 + (w − 2π) + (w − 2π)2 + o

(
(w − 2π)2) .

With this infectiousness, f (w)+o ((w − w0)m) is an elegant and convenient alternative to the input
series (f (w) , w= w0, o ((w−w0)m)).

Unfortunately, the effort required to do a thorough job of implementing this syntactic sugar is
extensive. To correctly propagate the influence of an error order term, every command, operator
and function should have a method for properly treating it. This obligation also applies to every new
command, operator or function that is subsequently added to a system, including user-contributed
ones that aspire to be first-class citizens seamlessly integrated into the system.

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Table 2 shows some examples that test an implementation’s handling of explicit error-order
terms. Also, test if the implementations you use can directly plot series results or apply operators
and functions such as

∫
,
∑

, lim, solve (. . .), and series (. . .) to series results without the nuisance
of first explicitly converting the series result to an ordinary expression.

3.2 Computation, propagation and display of an order term
With a little-o interpretation of the series (. . .) function order parameter and strict adherence to
delivering as-requested order, it is unnecessary to represent and propagate error-order during the
internal calculations, even if we display, o (zτ) for that requested order.

Mathematica 7.0.1.0 and Maple 13.0 display an error order using O rather than o. However,
correctly determining a correct and satisfying exponent to use in O requires more work than o: To
return a result with a requested order o (zτ) using a O (zν), we must determine a ν > τ such that
the degree of the first omitted non-zero term, if any, is at least ν. We can’t just display O (zτ+1),
because with fractional powers the exponent of the first omitted term can be arbitrarily close to τ .

One way to determine a correct τ is to actually compute the first omitted non-zero term, but
not display it. However, that omitted term can have a degree arbitrarily greater than τ , costing
substantial computation. Moreover, there might not be any non-zero terms having degree greater
than τ . Therefore we don’t know in advance what order if any will just expose a next non-zero term
whose coefficient we discard. Also, if we find such a term, it would be more informative to display
Θ (zν) rather than O (zν).

Another way to determine a correct ν is to compute a series that is o
(
zτ+∆

)
with a predetermined

∆ such as 1, then truncate to o (zτ) and display O (zν) or Θ (zν) where ν is the dominant degree
of the truncated terms, or display O

(
zτ+∆

)
if no terms were truncated. However, with fractional

exponents there can be arbitrarily many non-zero terms having exponents in the interval [τ+, τ + ∆],
which is costly. Moreover, users might judge the implementation unfavorably if the exponent in O
is obviously less than it could be. For example with sin z the series z − z3/3 + O (z4) is disturbing
compared to z − z3/3 +O (z5), which can be more informatively displayed as z − z3/3 + Θ (z5).

When computing series, we often know the exact order for the series of some or all sub-
expressions. For example, if the requested order is 3 then z2 is Θ (z∞), whereas z5 is Θ (z5).
If we decide to store error-order information with the series for each sub-expression, then it pre-
serves information to store with the error order whether it is of type o, O, or Θ, and to propagate
it according to rules such as, for α < β;

Θ (zα) + Θ
(
zβ
)
→ Θ (zα) ,

Θ (zα) + Θ (zα) → O (zα) ,

Θ (zα) +O (zα) → O (zα) ,

Θ (zα) + o (zα) → Θ (zα) ,

o (zα) +O (zα) → O (zα) .

4 A frugal dense representation
A sparse series representation can more generally accommodate truncated Hahn series, which can
also have irrational real exponents. For example,

z
√

2 + zπ + z4 + . . .

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

This extra generality is desirable for hierarchical series. Adaptive-precision interval arithmetic can
be used to keep the exponents properly ordered.

However, most published algorithms for series are written in a notation that encourages a dense
representation as an array or list of coefficients with implied exponents. Adding two series is easy for
sparse representation. Otherwise, adapting most of the published truncated power series algorithms
to a sparse representation seems likely to make them more complicated. Moreover, with typical
applications dense representation is efficient for most univariate polynomials, hence also for most
series. As described in [11] recursive dense representation is also surprisingly efficient for most
sparse multivariate polynomials, hence also for recursive hierarchical series or multi-variate series.
Therefore this section describes a particularly efficient dense representation and some algorithmic
necessities for maintaining it.

The allowance of negative exponents suggests that we should also explicitly store the exponent
of the dominant term.

The allowance of fractional exponents suggests that we should also store the implicit positive
rational exponent increment between successive stored coefficients. To minimize the number of
stored 0 coefficients, it is most efficient to make this increment be the greatest common divisor
of all the exponent increments between successive non-zero coefficients. (The gcd of two reduced
fractions is the gcd of their numerators divided by the least common multiple of their denominators).

The truncated series 0 can be represented canonically as a leading exponent of 0, an exponent
increment of 0, and consistently either no coefficients or one coefficient that is 0. Using no coefficients
is more frugal and easier to program, but one zero coefficient permits distinguishing a floating-point
series 0.0 + o (zτ) from a rational-coefficient series 0 + o (zτ).

Rather than the gcd of the exponent increments, many implementation instead use the reciprocal
of the common denominator of all the exponents. However, this can require arbitrarily more space
and time. For example, it would store and process 21 coefficients rather than 3 for 1+2z10/3+3z20/3,
and it would store and process 31 coefficients rather than 4 for z−10 + 2 + 3z20.

Either way, for canonicality, programming safety and efficiency, it is important to trim leading,
trailing and excessive intermediate zero coefficients from intermediate and final results wherever
practical. However, within a function that adds two series, etc., it might be convenient to tem-
porarily use series that have leading 0 coefficients and/or an exponent increment that is larger than
necessary. For example:

• When two series having different exponent increments are multiplied, we can use copies in
which extra zeros are inserted between the given coefficients of one or both series so that their
mutual exponent increment is the gcd of the two series exponent increments.

• Let γ be the gcd of the dominant exponents and exponent increments of two series. If the
series have different dominant exponents and/or different exponent increments, then before
the series are added, copies of one or both series can be padded with extra zeros before
the dominant coefficient and/or between coefficients so that both series start with the same
implicit exponent and have the same implicit exponent increment γ.

For both examples the resulting series should then be adjusted if necessary so that its leading
coefficient is non-zero and its exponent increment is as large as possible.

When computing any one series, the sub-expressions all have the same expansion variable and
expansion point 0 after the transformations described in Section 1. Also, the desired order of the

DEFINE SHORT AUTHOR HEADER USING \ authorhead

result is specified by the user and can be passed into the recursive calls for sub-expressions, adjusted
according to Table 2. If an implementation delivers an as-requested o-order, then there is no need
to store it in the series data structure for intermediate series results. Therefore, only the dominant
exponent, exponent increment and frugalized coefficient list or array are necessary for an internal
data structure during computation of any one series.

For each function or operator, such as ln and “+”, it is helpful to have a function that, given an
expression and a requested order for expansion at z = 0:

1. guesses the dominant exponents of the operand series where needed,
2. computes the guessed necessary and sufficient order to request for the operand series from

Table 2 and the guessed dominant exponents,
3. recursively computes those series to the guessed necessary and sufficient orders,
4. truncates if the requested orders are excessive, or iteratively increases the requested orders if

they are insufficient,
5. invokes a companion lower-level function to compute the result series from the resulting

operand series. (For computing a function of a given series, this companion function would
be invoked directly.)

If we wish to report to the user the type of the resulting order (θ, o, or O) and the corresponding
exponent, then the internal data structure must also contain fields for those.

If we also wish to preserve with the final result the expansion variable and expansion point,
then we must have an external data structure that includes those together with the internal data
structure.

5 Exponentials interact with logarithmic coefficients
Definition. A function f (z) is sub-polynomial with respect to z if

lim
r→0+

∣∣(reiθ)γ f (reiθ)∣∣ =

{
0 ∀γ > 0,

∞ ∀γ < 0.

Examples include

• an expression independent of the expansion variable z, or
• an expression that is piecewise constant with respect to z, or
• an expression of the form ln (c (z) zα), where α ∈ Q and c (z) is sub-polynomial, or
• any sub-exponential function of sub-polynomial expressions.

Definition. A sub-exponential function g (z) is one for which g (ln z) is sub-polynomial.

Examples of sub-exponential functions include rational functions, fractional powers, ln, inverse
trigonometric and inverse hyperbolic functions.

Non-constant sub-polynomial coefficients can arise for a series of an expression that contains
logarithms, inverse trigonometric or inverse hyperbolic functions of the series variable.

Most Puiseux-series algorithms require no change for coefficients that are generalized from con-
stants to sub-polynomial expressions, making this powerful generalization of Puiseux series cost

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

very little additional program space. For example, some algorithms for computing functions of
constant-coefficient Taylor series are derived via a differential equation. However, once the algo-
rithms are obtained for constant coefficients, there is no need to incur the difficulties of including
any dependent coefficients in the differentiations and integrations used in the derivations.

However, the algorithm for computing the exponential of a series does require a change: For
series having a non-negative dominant exponent, the algorithm begins by computing the exponential
of the degree-0 term to use in the result coefficients. If the degree-0 term is a multiple of a logarithm
of a monomial containing a power of z, then the exponential of the leading coefficient generates
a power of z. To avoid incorrect truncation levels, this power of z should be combined with the
(perhaps implicit) power portions of the data structure so that the true degree of each term is
manifest in a canonical way.

Other places where coefficients interact with powers are computing derivatives or integrals of a
series with respect to z. For example, d

dz
ln z → z−1, and

∫
ln z dz → (ln z − 1) z.

6 Essential singularities
Exponentials and sinusoids of negative powers of z are essential singularities at z = 0. For a series,
let U be the sum of the terms having negative exponents and U be the sum of all the other terms.
We could use the transformation eU+U → eU · eU , then compute the series for eU , then distribute
the essential singularity eU over the resulting terms as factors in the coefficients. We could similarly
use angle sum transformations for sinusoids of series having negative exponents. However, essential
singularities dominate any power of z at z = 0. If we distribute the essential singularity, then
subsequent series operations can truncate terms that dominate retained terms that don’t contain
the essential singularity, giving an incorrect result. For example,

series
(
ez

−1 (
1 + z2

)
+ sin z, z = 0, o(z)

)
−→

(
ez

−1

+ ez
−1

z2
)

+ (z + o(z))

incorrect−→ ez
−1

+ z + o(z).

Therefore it is more appropriate to produce a recursively represented series in eU having coeffi-
cients that are generalized Puiseux series in z — a hierarchical series.

We could have one extra field in our data structure for a multiplicative essential singularity.
However, that complicates the algorithms for very little gain, because subsequent operations can
easily require a more general representation. For example, one field for a single multiplicative
essential singularity can’t represent

ez
−2

+ z.

The extra effort of implementing such a limited ability to handle essential singularities is better
spent implementing more general hierarchical series.

Collecting exponentials in an expression permits computation of generalized Puiseux series for
some expressions containing essential singularities that are canceled by the collection. For example,

ecsc z

ecot z
→ ecsc z−cot z → ez/2+z3/24+··· → 1 +

z

2
+
z2

8
+ · · · ,(

e1/x
)sinx |x ∈ R → e(sinx)/x → e1−x2/6+··· → e− ex2

6
+ · · · .

DEFINE SHORT AUTHOR HEADER USING \ authorhead

7 Unnecessary Restrictions
Not all Puiseux-series implementations currently allow fractional requested order. However, if
fractional exponents are allowed in the result, then it is important to permit them as the requested
order too. Otherwise, for example, a user will have to compute and view 1001 terms of exp

(
z1/1000

)
merely to see the first two terms 1 + z1/1000.

Not all implementations currently allow negative requested order. However, if negative expo-
nents are allowed in the result, then it is important to permit them as the requested order too.
Otherwise, for example, a user will have to compute and view 1001 terms of ez/z1000 merely to see
the first two terms z−1000 + z−999.

These restrictions are probably caused by restricting some field in the data structure to a one-
word signed or unsigned integer, which can also unnecessarily limit the magnitude of the requested
order. Although most likely motivated by a desire for efficiency, the savings are probably a negligible
percentage of the time consumed by coefficient operations and other tasks.

Not all implementations currently allow non-real infinite-magnitude expansion points, such as
for

series
(
w−1, w= i∞, 3

)
→ w−1 + θ (w∞) ,

despite the fact that such limit points can be mapped to a real infinity by a transformation such as
w → −iz.

Not all implementations currently allow full generality for sub-polynomial coefficients. For ex-
ample,

series (arcsin (ln z) , z=0, 3) → arcsin (ln z) + θ (z∞) .

The sub-polynomial coefficient of z0 can be developed as a truncated hierarchical infinite series
ln z + (ln z)3/6 + · · · , which is preferable for some purposes such as computing a limit at z = 0.
However, if the request is for expansion in powers of z. then arcsin (ln z) has the advantage of being
exact and much simpler.

Summary
The generalization from Taylor series to generalized Puiseux series introduces a surprising number
of difficulties that haven’t been fully addressed in previous literature and implementations. Such
issues discussed in this article are:

• avoiding unnecessary restrictions such as prohibiting negative or fractional orders,
• the pros and cons of displaying results with explicit infectious error terms of the form o (. . .),
O (. . .), and/or Θ (. . .),

• efficient data structures, and
• algorithms that efficiently give users exactly the order they request.

Acknowledgments
I thank David Diminnie and Arthur Norman for their assistance.

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

References
[1] Brent, P. P., and Kung, H. T, Fast algorithms for manipulating formal power series, Journal

of the ACM, 178, 1978, pp. 581–595.

[2] Corless, R.M., Davenport, J.H., Jeffrey, D.J., Litt, G., and Watt, S.M., Reasoning about the
elementary functions of complex analysis, Artificial Intelligence and Symbolic Computation,
editors J.A. Campbell and E. Roanes-Lozano, Springer, 2001, pp. 115-126.

[3] Geddes, K.O. and Gonnet, G.H., A new algorithm for computing symbolic limits using hi-
erarchical series, Proceedings of ISSAC 1998, Lecture Notes in Computer Science 358, pp.
490-495.

[4] Gruntz, D., A new algorithm for computing asymptotic series, Proceedings of ISSAC 1993, pp.
239-244.

[5] Knuth, D.E., The Art of Computer Programming, Volume 2, Addison-Wesley, 3rd edition,
1998, Section 4.7.

[6] Knuth, D.E., Big omicron and big omega and big theta, ACM SIGACT News 8 (2), 1976, pp.
18-24.

[7] Koepf, W., Power series in computer algebra. J. Symb. Comput. 13, 1992, pp. 581-603.

[8] Norman, A. C., Computing with formal power series, ACM Transactions on mathematical
software 1(4), 1975, ACM Press: New York, pp. 346-356.

[9] Richardson, D., Salvy, B., Shackell, J., van der Hoeven, J., Asymptotic expansions of exp-log
functions, Proceedings of the 1996 ACM Symposium on Symbolic and Algebraic Manipulation,
pp. 309-313.

[10] Silver, A. and Sullivan, E., The numerical solution of ordinary differential equations by the
Taylor series method, NASA-TM-X-70438, 1973.

[11] Stoutemyer, D.R., Which polynomial representation is best?, Proceedings of the 1984 Macsyma
User’s Conference, Schenectady N.Y., pp. 221-243.

[12] Stoutemyer, D.R., Ten commandments for good default expression simplification, Proceedings
of the milestones in computer algebra conference, DVD, 2008, http://www.orcca.on.ca/
conferences/mca2008/

[13] Stoutemyer, D.R., Series Crimes, in preparation.

[14] Zippel, R.E., Univariate power series expansions in algebraic manipulation, Proceedings of the
1976 ACM Symposium on Symbolic and Algebraic Manipulation, pp. 198-208.

[15] Zippel, R.E., Effective Polynomial Computation, Kluwer Academic Publishers, 1993, Chapter
10, pp. 157-171.

[16] Zippel, R.E., Simplification of nested radicals with applications to solving polynomial equa-
tions, MIT M.S. Thesis, 1977.

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Table 1:
Requested operand orders for a result having order o

(
zk
)
, with

U= czα+bzσ+· · ·+o (zm) and V = azβ+hzγ+· · ·+o (zn)
where α, β, σ, γ,m, n, k ∈ Q

operation result dominant exponent request m and n
U ± V ≥ min (α, β) m = n = k

UV ≥ α + β
m = k − β
n = k − α

U

V
≥ α− β m = k + β

n = k − α + 2β
Uγ ≥ γα m = k + (1− γ)α
eU

cosU
coshU

{
0 if α ≥ 0

−∞ otherwise
m =

{
k if α ≥ 0

essential singularity otherwise

sinU
tanU
sinhU
tanhU

{
α if α ≥ 0

−∞ otherwise
m =

{
k if α ≥ 0

essential singularity otherwise

lnU

{
σ if czα = 1

0 otherwise
m = k + α

arctanhU

{
α if α ≥ 0

0 otherwise
m =


k + σ if czα = 1 ∨ czα = −1

k + 2α if α < 0

k otherwise

arctanU

{
α if α ≥ 0

0 otherwise
m =


k + σ if czα = i ∨ czα = −i
k + 2α if α < 0

k otherwise

arcsinhU

{
α if α ≥ 0

0 otherwise
m =


k + σ/2 if czα = i ∨ czα = −i
k + α, α < 0

k otherwise

arcsinU

{
α if α ≥ 0

0 otherwise
m =


k + σ/2 if czα = 1 ∨ czα = −1

k + α, α < 0

k otherwise

arccosU
arccoshU

{
σ/2 if czα = 1

0 otherwise
m =


k + σ/2 if czα = 1 ∨ czα = −1

k + α if α < 0

k otherwise

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

Algorithm 1 Compute series(u) and series(v) for computing series(uv) to o
(
zk
)

Input: Symbolic expressions u and v, variable z, and rational number k.
Output: The ordered pair of truncated series [U, V], each computed to the necessary

and sufficient order so that UV is o
(
zk
)
.

δu ← −1; δv ← −1; // -1 means these increments haven’t yet been computed
α← guessDE (u, z) ; β ← guessDE (v, z);
m← m0 ← k−β; n← n0 ← k−α;
loop
U ← series (u, z=0, o (zm)) ;
if U 6= 0 + o (zm) , then
α← dominantExponent (U) ;
n← k − α;
v ← series (v, z=0, o (zn)) ;
if V = 0 + o (zn) , then return [U, V] ;
β ← dominantExponent (V) ;
if m = k − β, then return [U, V] ;
if m > k − β, then return [truncate (U, k − β) , V] ;
return

[
series

(
u, z=0, o

(
zm−β

))
, V
]
;

V ← series (v, z=0, o (zn)) ;
if V 6= 0 + o (zn) , then
β ← dominantExponent (V) ;
m← k − β;
U ← series (u, z=0, o (zm)) ;
if U = 0 + o (zn) , then return [U, V] ;
α← dominantExponent (U) ;
if n = k − α, then return [U, V] ;
if n > k − α, then return [U, truncate (V, k − α)] ;
return [U, series (v, z=0, o (zn−α))] ;

if m+ n ≥ k, then return [U, V] ;

δu ←


1 δu < 0 ∧ guessInc (u, z) = 0,

guessInc (u, z) δu < 0,

δu + δu otherwise;

δv ←


1 δv < 0 ∧ guessInc (v, z) = 0,

guessInc (v, z) δv < 0,

δv + δv otherwise;

m← min (m0 + δu, k − n) ;
n← min (n0 + δv, k −m) ;

endloop;

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Table 2: Test examples for treating explicit error order terms

Input equivalent to Increasingly informative results

z − series (z, z=0, o (z2)) o (z), O (z3), 0

ln (series (ez, z=0, o (z2))) z+o (z2), z+O (z3), z+Θ (z3)

1 + z − series (ez, z=0, o (z)) o (z), O (z2),Θ (z3)

series (ez, z=0, o (z5))− series (ez z=0, o (z2)) o (z2), O (z3), Θ (z3)

series (ez+z3, z=0, o (z2))− series (ez, z=0, o (z2)) o (z2), O (z3), Θ (z3)

series (ez+z3, z=0, o (z2))

series (ez, z=0, o (z2))
1+o (z2), 1+O (z3), 1+Θ (z3)

