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Abstract

Herein, we present a sequel to earlier work on a generalizati the Lambert function. In par-
ticular, we examine series expansions of the generalizesioreproviding computational means for
evaluating this function in various regimes and furtherfearing the notion that this generalization is
a natural extension of the standard Lamb&rfunction.

AMS Numbers: 33E30, 01-01, 01-02
Also related to: 70B05, 81Q05, 83C47, 11A99

1 Introduction

The Lambert¥ function satisfyingiV’ (t)e'V'® = t provides an exact solution to:

e “C=a,(xr—r) 1)
withz = r; + %W(c e~ /a,). The Lambert W function appears in a myriad number of apfitioa.
In particular, it appears in the “lineal” gravity two-bodygblem [1/2] as a solution to the Einstein Field
equations in(1 + 1) dimensions. The Lambert W function appears as a solutiothfocase when the
two-bodies have exactly the same mass. However, the caseeqlial masses required=eneralization
of Lambert’s functionl[1, eq.(81)].

—CT

e P =a,(x—r1)(r—12) (2)



This generalization also appears in the (quantum-mechirilmuble Well Dirac Delta Potential model
[7], a one-dimensional version of a special case of the quaimhechanical three-body system known as
the Hydrogen Molecular lorand also appears in quantum gravity [2]. Specifically= 1, r» = X and

Qo = % where0 < \ < 1, all real quantities and > 0 (the case ak = 1 allows eq.[(2) to factor intd{1)
which is solvable in terms of the standard LamBé&rfunction). Subsequently, it was realized that &d). (2)
could be further generalized to the case of a rational pohjab

e~ CT — PN(‘T)
Qu(z)
wherec > 0 is a constant as before afitd; (z) and@j,(x) are polynomials in: of respectively orderdv

andM. Eq. [3) expresses the solution for the energy eigenvalfie dhree-dimensional (and realistic)
version of the Hydrogen molecular ion.

(3)

These generalizations were found to express solutions tge tlass of fundamental problems and were
found to be natural extensions of the standadfdunction requiring merely a formal nesting of the standard
LambertWW function [4] and thus economical conceptually in terms otheanatical resources. Some
exact solutions were even found for some special cases 2.

Herein, we examine the more pragmatic matter of obtainingsexpansions for ed.l(2) for analytical and
computational purposes. In the process, we will show howetjothey relate to the series expansions of
the standardV function. We will examine three series expansions whichyafapthree different regimes.
Though eq. [(R) is not the full generalization in &g (2) it aifg embodies a link between gravity theory
and quantum mechanics albeit in lower dimensidns [2] arfueiefore instructive as a special case beyond
the standardV function. Finally, some concluding remarks are made at tite &ince we are dealing
with applications in Physics, the input parameters, and the polynomial roots; wherei = 1,2, ... are
assumed to be real.

2 Series Expansions

2.1 Taylor seriesinry

By a series of manipulations, efl (1) can be brought in thelitanstandard form:

—cry
Ty = W(:Eo)eW(mo) where zy = cea 4)

Using very similar manipulations and defining respectithly mean and difference of the roetsandr,:

(5)

and bycompleting the squarf®r the quadratic on the right of ed.] (2):

(x—r)(x—ry) = (x— rm)z - 7“3

and definingW (r4) = « — r.,, €q. [2) can be rewritten as:
e~ Wlratrm) 4 g 32 = g, W(ry)?. (6)

The above can be viewed as the intersection between an exred the form Ae=¢* and a “simple
harmomnic oscillator” of the fornBz2. Potentially, there can be two and as much as three intesssct
(in the real plane), in some cases, roots of the same signbfiinareal solutions, we constraiy > 0.



It is very similar to eq.[(l1) the equation governing the seadd_amberfi’” function with the mean of the
rootsr,,, playing the role of the-; in the monomial on the right side of e@l (1), the differencénimroots
rq representing a departure from the form of €4. (1). This makefect since because whep= 0, then
r1 = ro and eq.[(R) can be factored into the form of &d. (1) bringinpark to the standartd” function.
We define:

2
o= 2| Cemermiz 2L € mernp2 @

2\ a, 2/a,

where it is understood tha&t’ (0) is/are the solution(s) whery = 0:
2 2
W(0) = - Wi(xtz) = - Wo (8)

and wherdlV (+2() on the right side of eq[18) is thetandardLambert W function. For real results, in
particular for the parameters mentioned for the Double Delc potential mentioned just below eQl (2),
we are interested in real results and make use the main bodrihk standard? function. In this case,
¢ > 0 helps ensurezy| < 1/e (althoughW (—z) could have a real result on a different branch dor
sufficiently small). Implicit differentiation on both sidef eq. [(6) yields:

OW (rq) _ 2ry _ 2ry )
ard Cefc(W(’r‘d)Jrr-m) + 2W(Td) c W(Td)2 —c Tc2l + 2 W(Td)

Qo

Naturally successive derivatives with respect jyields the Taylor series iry. Its radius of convergence
will be obtained from the disk about the point of expansign= 0 bounded by the closest singularity
or branch point in the complex plane namely when the dendmire this derivative and all successive
derivatives is zero, with (r;) simultaneously satisfying ed.l(6). Note that the expressio the right
most side of eq[(9), obtained by virtue of €g. (6), does nohédly depend om, nor r,,, but only onc
andr,. Even though this is a quadratic i (r4), only one solution satisfies el (6), namely:

—14+4/1+crq?,
W(rd crit) = (10)

C

The critical radius in the complex plane is:

1
Faen = % -\[2W(=223)+ W(-2 )2 (12)

With Wy = W (+£z) is the standard? function and the radius ig4 .;;|. Note that wheny = —e~!,

W (zp) = 0 and this represents a singularity in the denominator of¢hesterms. However the argument
—22% = —2e72 of r4 ., Which is smaller in magnitude is still on the right af. Consequently, the series
in rq4 is thus:

Wo 1 cr? L Sri@wg-1
W(rg) = 2 TO + 1 W(Jd‘kl) + 61 W;é((Wo _10_ e ) (12)
1 & r8 (8Wg — 12W2 + 3 — 4W§)
1536 W5 (Wo + 1)°
1 "8 (48W8 — 132W + 90WE — 15 — 64W + 40W7)
49152 Wi (Wo +1)7

_|_

+ + O(cgrcllo)

which is a series in? for x = W (r,) + r,, With = governed by eq[{2) and the radius of convergence
is provided by the magnitude df (11). Within its radius of wergence, it converges rapidly. Note that
whenW (+£z) = 0 the individual series coefficients are confronted with slimis by zero, a result con-
firmed with a radius of convergence of zero as given by ely.(This series expansion is valid for small
differences in the roots,;, so cleaarly an asymptotic expansion valid for largés also needed.



It would seem that in the case of three real roots, that we dvoaly recover at most two out of three
solutions. However, when two roots appear for e:g> 0 and the third root appears for< 0, the latter
can be recovered by reflection symmetry on the paramatets: ke —z, ¢ — —c¢, r; — —r; and these
same formula can be used to recover that third solution.

2.2 Reversion of Power Series

To get an asymptotic series valid for largg we further transform eql{6) with the following variable
transformations:

W(rg)? = <g>2(U2+d2)

c
d = crg/2 (13)

andz = W(rq) + r,, as before. Following the procedure for the stand&rdunction [5], we start from:

—crm/2
20 = f(U)=UeVU**+  where z = %CGT (14)

where the signt takes into account that the negative square root is alsobp@s¥Vvhend = 0, eq. [14)
reduces to the form of the standdid function. Eq.[(14) has the form:

z= f(U)
and we seek to reverse the power series to obtain:
U = g(2);

Defining p(U) = U/f(U) = eFYU*+4* and noting thaty(0) # 0, we use a specialized version of the
Lagrange-Burmann_[6] formula:

e Zk-l—l ak¢(U)k+l
U(z) = z¢(0) + (15)
(2) (0) ; (k+1) oUk U=0
Implicit differentiation of eq.[(I4) w.r.tz yields:
oU(z)  JU(@)?2+d? etV Ule)? 42 (16)

0z U(2)?2 4+ JU(2)? + d?

We can see that the square root term dominates the functiomal of the derivatives and the branch
structureU (z) in the complex plane much in accordance with the findings afrByBrown [8, 9]. Note
that eq.[(1B) has no explicit dependencezand thus there is no need to verify its consistency df (14). To
get the radius of convergence, we need to consider both @metistructure of the square root term in the
denominator of[(1I6) and values bf(z) in the complex plane about the region= 0 which would make
this denominator zero. Thus the radius of convergence iglihby either:

’Ucrit’ < ’d’

or

1
Ueral < 51V 2£2V1+ 4 (17)



whichever is smaller. We obtain:

1 23e¥3d 1 25(£5d + 1)eT>
— Fd - + = 7 _t7d 18
U(z) 2t F o 3 pE + O(z'e™'?) (18)
1 3 5
lee 29% L1c?e 29+ 1 c2e 27+ (£5erg +2)

b O@E 1) (19)

2 Ja, |8 g, 6 P
wherer, = ri, r— = ro, x = rp, + (2/¢)VU? + d? asz given in eq.[(2). Clearly this is asymptotic
series valid for largel or equivalently large-;. It also needs the requiremenit. > 0 for convergence.
As in the previous section, we also get two kinds of solutioespectively for positive and negatidebut
they do not necessarily relate at all to the solutions of tteipus section. The first section involved a
series expansion infl wherer; = (2/¢)d and invariant with respect to the sign@fHere we are dealing
with a situation where the difference between the regts very large and thus quite possibly only one
intersection between the exponential term on the left sfdao(2) and its right side namely a quadratic
in z, and thus only one solution.

2.3 Asymptotic seriesfor large argument

By taking logs on both sides of eq._{14) for the positive squapnt case only:

In(z) —In(U) = VU2 +d2 or (In(z) — In(U))? = U2 + d? (20)
Thus, we consider two types of recursion.

U — /(In(z) —In(U))2 — d2 (21)

Ur - i(—2ln(z) +In(U?) — 2d)(—21n(2) + In(U?) + 2d) (22)

The second recursion looks like a factored form involvingombination of asymptotic formulae for the
standard/¥ function. By successive substitution, we obtain:

U~ In(z) — In \l <ln(z) —In (\/ ..In <ln(z) —In (\/(ln(z) —In(U))? — d2>>2 = d2>>2 —d?

(23)

U? =~ i<—2ln(z)+ln G(—zm(z)ﬂn(... (24)

+ In G (—21In(2) + In(U?) — 2d)(—21n(z) + n(U?) + 2d)> .o+ 2d>> - 2d>

We find from experience that the argumeritas to be very large indeed for these asympotic formulations
to converge. This exercise is more to demonstrate the rdsangbwith the counterpart expansion for the
standard/¥ function.

2.4 Summation techniques

Finally, the series summation can be accelerated begondthe radii of convergence using non-linear
transformations known as the Levin or Sidi transformationle latter involves a series transformation



by which one can accelerate the convergence of a series andsam divergent series (e.g. see the work
of [10,11]). We take the point of view that a Taylor or asynmiatseries has all the desired “information”,
getting numbers from the series is a matter of a summatidmigee. For the series in; of the first
section for bothiV (£z), it was found that the series, when oscillatingrin could indeed be extended
beyond their radius of convergence using a Levim Shanks transformation.

3 Conclusions

Previously [4] we had inferred a canonical form for a gerieagibn as expressed Hyl (2) afndl (3) and given
both mathematical and physical justifications for it. Heyeve formulated Taylor series and asymptotic
series useful for analysis and computation. We find that ¢iselts are similar to those governing the
standardi¥’ function and represent a natural extension though the brsinacture in the complex plane
may differ.

This approach could be extended to higher order polynorfittitsg the pattern of eq[{3). For example,
when the right side of ed.](3) we caomplete the cubén some special cases, i.e. for

+ +bx + c = + =] = (=a - when b = —
X ax x & <3§' 3> <27 a C> 3
which can allow a special case of €4.(3) and create a culsitiorlcounterpart of eq._(14):

—CTy
e m

_ B e (Vg (25)

ao

where(z —r,)® = Y3 +dsandds = g—; — candr,, = —a/3. However, for larger order polynomials
and rational polynomials, this approach is quickly exhedistnd one has to rely on numerical techniques
which is very feasible.

Finally, the series summation can be accelerated begondthe radii of convergence using non-linear
transformations known as the Levin or Shanks transformati®he resulting series can be converted into
FORTRAN or C code using the interface between Maple and thesgiages [13].
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