
DEFINE ISSUE using \ issue DEFINE TYPE OF PAPER USING \ articlehead

Representation, simpli�cation and display of fractional

powers of rational numbers in computer algebra

Albert D. Rich∗

David R. Stoutemyer†

Abstract

Simpli�cation of fractional powers of positive rational numbers and of sums, products and

powers of such numbers is taught in beginning algebra. Such numbers can often be expressed

in many ways, as this article discusses in some detail. Since they are such a restricted subset of

algebraic numbers, it might seem that good simpli�cation of them must already be implemented

in all widely used computer algebra systems. However, the algorithm taught in beginning

algebra uses integer factorization, which can consume unacceptable time for the large numbers

that often arise within computer algebra. Therefore some systems apparently use various ad

hoc techniques that can return an incorrect result because of not simplifying to 0 the di�erence

between two equivalent such expressions. Even systems that avoid this �aw often do not return

the same result for all equivalent such input forms, or return an unnecessarily bulky result that

does not have any other compensating useful property. This article identi�es some of these

de�ciencies, then describes the advantages and disadvantages of various alternative forms and

how to overcome the de�ciencies without costly integer factorization.

1 Why discuss such an elementary topic here?

First:

De�nition. An absurd number is one that can be expressed as a rational number times a product
of zero or more fractional powers of positive rational numbers.

Remark. We need a brief name for this subset of algebraic numbers, and the inspiration for this one is
that ab means �from� in Latin, and �absurd numbers� continues the tradition started with whimsical
names such as surds, imaginary numbers, radicals, irrational numbers, and surreal numbers.

This article discusses the advantages and disadvantages of alternative ways computer algebra
systems can represent, simplify, and display absurd numbers. Although this is a topic taught in
beginning algebra, some major computer algebra systems do an imperfect or surprisingly poor job;
and we have suggestions for remedies.

∗Albert_Rich at msn dot com
†dstout at hawaii dot edu

1

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

1.1 Simpli�cation of equivalent forms of an absurd number

Table 1 shows the results produced by four systems for sixteen di�erent input representations of
the same absurd number.

Table 1: Results for simplifying 16 input representations of the same absurd number

Input
Derive Mathematica Maple Maxima

default default default simplify() default rootscontract() radcan()

prime bases

1
24/3 72/3

32/3 52/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 31/3 51/3 72/3
2
15

21/3 31/3 51/3 72/3
24/3 72/3

32/3 52/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

2
2
15

21/3 31/3 51/3 72/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 31/3 51/3 72/3
2
15

21/3 31/3 51/3 72/3
24/3 72/3

32/3 52/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

3
14·21/3 31/3 51/3

15·71/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 31/3 51/3 72/3
2
15

21/3 31/3 51/3 72/3
24/3 72/3

32/3 52/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

4
2·21/3 72/3

32/3 52/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 31/3 51/3 72/3
2
15

21/3 31/3 51/3 72/3
24/3 72/3

32/3 52/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

coprime square free

5
24/3 72/3

152/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 72/3 151/3 2
15

21/3 72/3 151/3 24/3 72/3

152/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

6
2
15

72/3 301/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

72/3 301/3
2
15

72/3 301/3
2 72/3301/3

15
2 14701/3

15
24/3 72/3

32/3 52/3

7 14·301/3

15·71/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

72/3 301/3
2
15

72/3 301/3
2 72/3301/3

15
2 14701/3

15
24/3 72/3

32/3 52/3

8
2·21/3 72/3

152/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 72/3 151/3 2
15

21/3 72/3 151/3 24/3 72/3

152/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

9 2·21/3
(

7
15

)2/3 2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

21/3 72/3 151/3 2
15

21/3 72/3 151/3 24/3 72/3

152/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

10
14
15

(
30
7

)1/3 2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

72/3 301/3
2
15

72/3 301/3
2 72/3301/3

15
2 14701/3

15
24/3 72/3

32/3 52/3

non perfect powers

11

(
28
15

)2/3 2·14701/3

15
2
(

7
15

)2/3
21/3

1
15

282/3151/3
1
15

282/3151/3
282/3

152/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

12
282/3

152/3
2·14701/3

15
2
(

7
15

)2/3
21/3

1
15

282/3 151/3
1
15

282/3 151/3
282/3

152/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

max reciprocal powers

13

(
784
225

)1/3 2·14701/3

15
2
(

7
15

)2/3
21/3

1
225

7841/3 2252/3 2
15

981/3 151/3 2 981/3

2251/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

14
7841/3

2251/3
2·14701/3

15
2
(

7
15

)2/3
21/3

1
225

7841/3 2252/3 2
15

981/3 151/3 2 981/3

2251/3
2 981/3

2251/3
24/3 72/3

32/3 52/3

one integer power

15 2
15

14701/3
2·14701/3

15
2
(

7
15

)2/3
21/3

2
15

14701/3
2
15

14701/3
2 14701/3

15
2 14701/3

15
24/3 72/3

32/3 52/3

16 1
15

117601/3
2·14701/3

15
2
(

7
15

)2/3
21/3

1
15

117601/3
2
15

14701/3
2 14701/3

15
2 14701/3

15
24/3 72/3

32/3 52/3

2

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Regarding columns labeled �default�:

De�nition. Default simpli�cation is the result of pressing Enter in Maple, Ctrl Enter in Derive,

or Shift Enter in Mathematica or wxMaxima � with the factory-default mode settings and no
transformational or simpli�cation functions anywhere in the input expression.

For Maple 15, simplify(. . . , size) gave some di�erent results than simplify(. . .) � not always
smaller in terms of any easily discerned measure. For Maxima 5.24, the rootscontract(. . .) function
is subject to a rootsconmode control variable, but its setting does not a�ect these examples.

The boldface results in Table 1 appear to be a consequence of happenstance more than intent,
because they do not satisfy any easily discerned goal. For example:

• In 2 · 981/3

2251/3 , both radicands are composite with the same exponent and 225 is a perfect square,

so why not either combine the two fractional powers or simplify the denominator to 152/3?

• In 2
15

21/3 72/3 151/3, prime 2 and composite 15 occurs to the same 1/3 power. Thus this pair

could equally well be 61/3 51/3 or 21/3 101/3. Also, since 15 is already composite and has the
same exponent as 2, why not combine the two factors into 301/3?

• Similar remarks apply to 2
15

981/3 151/3.

• In 1
225

7841/3 2252/3, 784 = 282 and 225 = 152, so why not express this result more compre-

hensibly as 1
152

282/3154/3 → 282/3

152/3
→
(

28
15

)2/3
?

De�nition. A canonical form for a class of expressions is one for which all equivalent expressions
in the class are represented uniquely.

As discussed in [1, 3, 4], canonical forms are unnecessarily costly and rigid for the entire class
of expressions addressed by general-purpose computer algebra systems. However, canonical forms
are acceptable and good for the internal form systems use to represent some restricted classes of
subexpressions such as absurd numbers.

Notice that the default Derive result is the same for all sixteen alternative inputs of the same
absurd number, as is the defaultMathematica result and the Maxima radcan() result.1 This suggests
that these three columns are a consequence of transforming absurd numbers to a canonical form.

In contrast, none of the other columns in Table 1 display the same result in all sixteen rows, which
implies that they are not simpli�ed to a canonical form. Such non-canonical internal representations
might be defensible if caused by the goal of returning the closest result to the input that satis�es
one of several alternative easily comprehended goals. However, we will explain how all of the
inputs already exhibit one such alternative set of goals. Therefore maximum compliance with this
goal would return the inputs unchanged. Moreover, the dramatic transformations of most inputs
throughout Table 1 indicate that closeness to the input was not a goal for any of these systems.

1.2 Di�erences of equivalent forms of an absurd number

It is di�cult to fully simplify an expression that contains di�erent internal representations of the
same absurd number, because syntactic comparison is then insu�cient to assess equivalence. This

1Full disclosure: We were two of the authors of Derive.

3

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

can lead to a disastrously incorrect result, because if a numerator and denominator are both equiv-
alent to 0 but default simpli�cation transforms only the numerator to 0, then most default simpli-
�cation will incorrectly return 0 rather than the result of 0/0.2 For example, Table 2 displays the
results of default simpli�cation of all di�erences of input forms from Table 1 for Maple and Maxima.
The entry �0,0

0
� indicates that Maxima simpli�ed the expression to 0, but Maple did not.

Table 2: Default simpli�cation of 0
formj−formk

for Maple & Maxima.

The correct result is 0
0
.

p
ri

m
al

24/3 72/3

32/3 52/3
1 0

0

2
15

21/3 31/3 51/3 72/3 2 0
0

0
0

14·21/3 31/3 51/3

15·71/3 3 0
0

0
0

0
0

2·21/3 72/3

32/3 52/3
4 0

0
0
0

0
0

0
0

co
p

ri
m

e
sq

u
a
re

fr
ee

d
is

ti
n

ct
ex

p
o
n

en
ts

24/3 72/3

152/3
5 0 0 0 0 0

0

2
15

72/3 301/3 6 0 0 0 0 0 0
0

14·301/3

15·71/3 7 0 0 0 0 0 0
0

0
0

2·21/3 72/3

152/3
8 0 0 0 0 0

0
0 0 0

0

2·21/3
(

7
15

)2/3
9 0 0 0 0 0

0
0 0 0

0
0
0

14
15

(
30
7

)1/3
10 0 0 0 0 0 0

0
0
0

0 0 0
0

im
p

er
fe

ct
p

o
w

er
s

(
28
15

)2/3
11 0 0 0 0 0 0 0 0 0 0 0

0

282/3

152/3
12 0 0 0 0 0 0 0 0 0 0 0

0
0
0

re
ci

p
ro

ca
l

ex
p

o
n

en
ts

(
784
225

)1/3
12 0 0 0 0 0 0 0 0 0 0 0 0 0

0

7841/3

2251/3
14 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0
0

1
in

te
g
er

b
a
se

2
15

14701/3 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

1
15

117601/3 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0
0

0
0

formj ↑ ↑ form# : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

↑ category −→ primal coprime square free
distinct exponents

imperfect
powers

reciprocal
exponents

1 integer
base

The �ve categories of forms, such as the primal form, are described in Section 2. Notice that the

2Maple and Maxima both throw an error for 0/0. Less disruptively, Mathematica returns the symbol
Indeterminate and Derive returns the symbol �?�.

4

DEFINE SHORT AUTHOR HEADER USING \ authorhead

only successes had both forms from the same category, as evidenced the 0
0
entries being con�ned to

blocks along the diagonal.
Maple's default simpli�cation recognizes only 17% of the 0 denominators and Maxima's default

simpli�cation recognizes only 18%. If Maple and Maxima default simpli�cation simpli�ed absurd
numbers to a canonical form, then all of the entries would be 0

0
, as they are for Mathematica and

Derive.
The Maple simplify(. . .) function does simplify all of these denominators to 0 despite the fact that

it doesn't transform all sixteen forms to the same form. Therefore a canonical form isn't absolutely
necessary for zero recognition. However zero recognition is much more di�cult to implement and
often slower to execute without a canonical form. Clearly the extra e�ort invested in simplify(. . .)
was not invested in the Maple default simpli�cation. Unfortunately, that can cause simplify(. . .) to
return incorrect results despite its admirable sophisticated zero-recognition for absurd numbers:

simplify

(
0

formj − formk

)
(1)

incorrectly returns 0 rather than the result of 0/0 for 83% of the di�erences because default simpli-
�cation has already incorrectly simpli�ed the entire argument to 0 before simplify(. . .) has a chance
to simplify the denominator to 0.

For similar reasons, in Maxima

radcan

(
0

formj − formk

)
(2)

incorrectly returns 0 rather than the result of 0/0 for 82% of the di�erences despite the fact that
radcan (. . .) produces a canonical form.

Thus as much as practical, it is important for default simpli�cation to simplify the di�erence
between equivalent forms to 0. By far the easiest way to implement this is to default simplify
equivalent inputs to a canonical internal form.

Some systems use a canonical form based on factoring radicands, but don't attempt complete
factorization when it becomes too costly. For example, Table 3 compares results for the expression

√
123457012 · 12345709 − 12345701

√
12345709 , (3)

which is equivalent to 0:

Table 3: Simpli�cation of
√

123457012 · 12345709 − 12345701
√

12345709 :

Derive Maple Mathematica Maxima
default default simplify default Simplify FullSimplify default rootscontract radcan

0 non-0 0 non-0 non-0 0 non-0 non-0 non-0

Therefore, simplify(. . .), FullSimplify[. . .], rootscontract(. . .) and radcan(. . .) all incorrectly give
0 for the argument 0√

123457012 · 12345709 − 12345701
√

12345709

because their system's default simpli�cation did not simplify to 0 a subexpression that is equivalent
to 0. The damage was done before entering these four extra simpli�cation functions.

5

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

Even with some non-canonical internal forms, gcds can be used to determine when two surds
are rational multiples of each other, then combine them. For expression (3) with the left radicand
expanded, the gcd of the two radicands is 12345709, so the expression is equivalent to

√
15241557021803401 ·

√
12345709 − 12345701

√
12345709, (4)

then gcd(15241557021803401, 12345701)→ 12345701 and

15241557021803401/12345701 → 12345701 (5)

giving

√
123457012 ·

√
12345709 − 12345701

√
12345709 → 0 (6)

As indicated by the great variety of inputs and results in Table 1, there are a bewildering number
of ways absurd numbers can be internally stored and displayed. However, the sixteen canonical
inputs can be organized into a spectrum of categories discussed in Section 2, which compares their
algorithms, advantages, and disadvantages, with conclusions in Section 3.

This article is complementary to [5], which instead addresses products of fractional powers of
rational powers of non-numeric expressions. The di�culties there are di�erent, entailing the need to
be correct even when a subsequent substitution makes a denominator 0 or a radicand non-positive.

2 A spectrum of representation categories

For e�ciency and ease of implementation, most computer algebra systems use an internal represen-
tation during simpli�cation that does not completely correspond to displayed results. For example,
often subtraction is represented using multiplication by a negative numeric coe�cient.

We can do this for absurd numbers too: We can choose an internal representation that is
easy to implement and/or fast to simplify; but for each example display the most concise of some
alternative forms. As proposed in [6, 7], we could also have a transformation wizard that opens
an Alternative Transformation dialog box for a highlighted subexpression. For example if the
highlighted subexpression is 1

225
7841/3 2252/3, then the dialog box might be

6

DEFINE SHORT AUTHOR HEADER USING \ authorhead

This is a mock up created with theMathematica CreateDialog[. . .] function. The size column would
be some easily-computed measure that correlates positively reasonably well with the area used to
display the alternative.

The integer or rational number bases of fractional powers can be treated similar to variables in a
data structure, but perhaps with additional rules for when an exponent becomes integer. Therefore
we can represent expressions having more than one such prime base in either distributed or recursive
form. For example,

7

5
22/3 34/5 51/2 − 8

5
34/5 51/2 + 32/3 51/2 + 31/4 + 6

versus ((
7

5
22/3 − 8

5

)
34/5 + 32/3

)
51/2 + 31/4 + 6.

For brevity the forms and algorithms discussed in this section assume only distributed form. How-
ever they can be adapted to recursive form, which has certain advantages such as often being more
concise. For all forms we assume some canonical ordering of the factors in that form, such as in
order of increasing base magnitude.

This section discusses the sixteen numbered input forms in Table 1, in that order. These
examples are partitioned into �ve categories depending on the properties of the radicands and their
exponents. To help show the relationships of the alternatives between and within each category,

7

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

Table 4 shows the same input forms in the same order, with descriptive phrases describing the
properties of the radicands, their exponents and restrictions on any rational coe�cient. This list
of alternative forms is incomplete. However, it �ts on one page; it collectively suggests additional
forms; and we hope that it includes all of the most useful forms in general � not only for this
example.

2.1 Primal forms

There are several canonical forms for absurd numbers based on prime factorization.

2.1.1 Pure primal form

De�nition. Pure primal form is 0, 1, or a product of one or more distinct primes raised to nonzero
reduced rational powers, with the factors in increasing order of their prime bases, or this form
preceded by a minus sign.

Remark. For example, input #1 in Table 4 has this form.

Proposition 1. Pure primal form is canonical for absurd numbers.

Proof. Adapt almost any proof of the fundamental theorem of arithmetic from positive integer to
reduced rational exponents, and employ the chosen canonical ordering of factors.

The algorithm for multiplication of two absurd numbers represented using pure primal forms
is obvious, easy to implement, and fast � as is raising a pure primal form to a rational power.
Unfortunately for computer algebra implementers:

1. Conversion of composite radicands to primes requires integer factoring.

2. Factorization of large integers can be prohibitively time consuming.

3. Large integers occur rather often within computer algebra � even when the input and �nal
result do not contain large integers.

Addition of pure primal forms is also quite slow because there is very little opportunity for making
results more concise by merely combining syntactically similar terms: The only syntactically similar
terms are ones that are identical or di�er only in their signs, such as

23/2 5−7/3 +
(
−23/2 5−7/3

)
→ (1− 1)23/2 5−7/3 → 0 .

Thus to simplify 25/2 5−5/3−21/2 5−2/3 to this canonical form we must recognize that the di�erences
in their corresponding exponents are all integers, then temporarily use a form that makes them
syntactically similar such as the proper-exponent primal form discussed in the next subsection.
Then in general we must factor the resulting rational coe�cient to convert the result to pure primal
form:

25/2 5−5/3 − 21/2 5−2/3 → 4

25

(
21/2 51/3

)
− 1

5

(
21/2 51/3

)
→ − 1

25

(
21/2 51/3

)
→

− 5−2
(
21/2 51/3

)
→ −21/2 5−5/3.

8

DEFINE SHORT AUTHOR HEADER USING \ authorhead

If the di�erences in the exponents are not all integer, then the two numbers are not commensurate
and their sum or di�erence must be represented as a more general expression than a single absurd
number.

To incur the cost of integer factorization not only initially but also after most additions of similar
terms makes pure primal form a costly internal form, but it can be useful as an optional result form.
Most computer algebra systems contain a rational-number factorization function that returns the
pure primal form.

2.1.2 Proper-exponent primal form

De�nition. Proper-exponent primal form is a rational number times a pure primal form in which
all of the exponents are in the interval (0, 1).

Remark. For example, input #2 in Table 4 is proper-exponent primal form.

We were taught in beginning algebra to simplify a fractional power of a positive rational number
rα by converting it to this form. The algorithm can be expressed as

1. Factor r.

2. Represent the factored r as a product containing negative powers rather than as a ratio.

3. Distribute α over the factors.

4. Extract and multiply together the rational numbers corresponding to the �oor of each resulting
exponent.

Using the �oor automatically rationalizes the denominator.

Proposition 2. Proper-exponent primal form is canonical.

Proof. Step 3 above gives the canonical pure primal form. The �oor function is de�ned and single
valued for all reals. Thus the extracted rational parts, their product, and any residual fractional
powers are unique. Conversely, if we start with the proper-exponent primal form, factor the rational
part, combine similar primes and order the bases, then the result is unique.

The algorithms for multiplication of two proper-exponent primal forms and for raising one to a
rational power are nearly as obvious, easy to implement, and fast as for pure primal form. Moreover
addition of proper-exponent primal forms is much easier and more e�cient than for pure primal
forms: Sums of proper-exponent primal forms can be collected to make another such form if and
only if the irrational factors are identical which is fast to check. Moreover, when the irrational
factors are identical, there is no need to factor the resulting rational coe�cient.

Unfortunately, integer factorization is still generally needed to transform a fractional power of
a positive rational number to proper-exponent primal form.

Pure primal form often requires less display area than other primal forms because there is
no rational factor formed from expanding a product of integer powers of the prime bases having
exponents not in a designated interval. However, users often feel that extracting that rational factor
makes the result �simpler�. Students are also taught to rationalize denominators. Therefore, display
of proper-exponent primal form complies with users' comfort zones.

�... the customer is always right.�
� Marshall Field

9

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

2.1.3 Tight balanced-exponent primal form

Any �xed near-unit-width exponent interval can be used instead of (0, 1) for primal and other cat-
egories of forms. The nearly balanced interval (−1/2, 1/2] has some appeal because the magnitude
of the exponents never exceeds 1/2.

De�nition. Tight balanced-exponent primal form is a rational number times a pure primal form
in which all of the exponents are in the interval (−1/2, 1/2].

Remark. For example, input #3 in Table 4 has this form. As another example with input 22/3 we
rationalize the numerator to return 2/21/3.

2.1.4 Loose balanced-exponent primal form

De�nition. Loose balanced-exponent primal form is a rational coe�cient times a pure primal form
in which all of the exponents are in the interval (−1, 1) , none of the numerator radicands divide the
denominator of the rational coe�cient, and none of the denominator radicands divide the numerator
of the rational coe�cient.

Remark. For example, input #4 in Table 4 has this form.

This form can be derived from pure primal form by separately making the numerator and
denominator exponents proper, and not rationalizing any denominators or numerators. For example,√

2, 1/
√

2, and 5× 72/3/(2× 34/5) have this form, but
√

2/6 does not because gcd(2, 6) 6= 1. Loose
balanced-exponent form is often more concise than proper-exponent or tight-balanced primal form
because rationalizing denominators or numerators often increases bulk. For example, compare
1/
√

1234567891 with
√

1234567891/1234567891 and compare
√

9876543211 with

9876543211/
√

9876543211.

Such rationalizations are also inconsistent with customary simpli�cation of non-numeric radicands:
Most people prefer 1/u1/3 or u−1/3 to the unreduced u2/3/u, and avoiding unnecessary form changes
upon substitution of numbers is a virtue. We can of course use a product containing negative
exponents rather than a ratio for the internal form.

However, addition is harder with loose balanced-exponent primal form than with proper-exponent
primal form, because mere syntactic comparison does not reveal all commensurate absurd numbers.
For example, 21/2 and 2−1/2 are not syntactically similar, but 21/2 + 2−1/2 → 21/2 + 21/2/2 →
(3/2)21/2 → 3× 2−1/2 . Therefore we do not recommend this as an internal form, but it is a good
display form.

2.2 coprime square-free distinct-exponent forms

Gcd calculations are su�cient to make all fractional power bases in a result mutually coprime. For
example, gcd(30, 42)→ 6, so

301/2421/3 → (5 · 6)1/2 (6 · 7)1/3 → 51/2 61/2 61/3 71/3 → 51/2 65/6 71/3.

This particular result is canonical, but relative primality alone is not su�cient to guarantee
canonicality. For example, the bases in the equivalent forms 51/2 61/2 71/3 and 31/2 71/3 101/2 are
coprime. Combining factors having the same exponents to make all of the exponents distinct makes

10

DEFINE SHORT AUTHOR HEADER USING \ authorhead

this example canonical: We combine 51/3 and 61/3 or combine 31/3 and 101/3 giving 71/3 301/2 either
way.

However, 24 and 5 are coprime in 241/2 51/3 with distinct exponents, as are 2, 3 and 5 in
23/2 ·31/2 51/3, but both products are equivalent. So we need an additional criterion for canonicality:

De�nition. An integer > 1 is square free if none of its prime factors occurs more than once.

Remark. For example, 6 is square free, but 24 = 23 3 is not.

De�nition. coprime square-free integer bases distinct-exponent form is a product of coprime pos-
itive square-free integers raised to distinct rational exponents, or −1 times that, or 0.

Remark. For example, input #5 in Table 4 has this form.

This form can be computed from pure primal form as follows: For each distinct exponent,
combine all of the factors having that exponent, raising the product of their primes to their shared
exponent. There is clearly only one way to do this, the resulting bases are square-free because they
are a product of distinct primes, and the resulting bases are coprime because each prime occurs in
only one of the bases.

Conversely, to compute the pure primal form from this form, factor each base then distribute
the distinct exponent of that square-free base over the resulting product of primes. Each distinct
prime can occur in only one of the coprime factors, so the distinct exponent for each base will be
the �nal exponent of all the primes in that base. This result is clearly unique when the bases are
ordered canonically, so the coprime square-free integer bases distinct-exponent form is canonical.

When multiplying two such forms, if a base b in one form is not identical to a base in the other
form, then it is important to compute the gcd of b with the bases in the other form to check for
coprimeness and act appropriately if any of these gcds is not 1. It is also important to check for
identical exponents as well as identical bases. Therefore multiplication is slower and not as easy to
implement as for primal forms.

There are also proper, tight balanced, and loose balanced variants analogous to those based on
prime radicands. For example,

• Input #6 is coprime square-free integer bases distinct proper-exponent form. Two such forms
are commensurate for addition if and only if their irrational parts are identical, making this
variant the best choice of internal form for this class.

• Input #7 is coprime square-free integer bases distinct tight balanced-exponent form.

• Input #8 is coprime square-free integer bases distinct loose balanced-exponent form.

As with primal forms, the proper variant is most e�cient for adding absurd numbers because
syntactic comparison is su�cient to decide similarity.

We can also combine factors whose exponents di�er only in sign, for further sharing of common
exponents, giving forms that are more concise and faster for subsequent �oating-point approxima-
tion:

De�nition. coprime square-free rational bases distinct proper-exponent form is a rational number
times a product of coprime square-free positive rational numbers raised to distinct proper exponents,
or −1 times that, or 0.

11

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

Remark. For example, input #9 is that form, obtained by combining a numerator and denominator
factor of input #5.

De�nition. coprime square-free rational bases distinct tight balanced exponent form is a prod-
uct of coprime square-free positive rational numbers raised to distinct exponents in the interval
(−1/2, 1/2], or −1 times that, or 0.

Remark. For example, input #10 is that form, obtained by combining a numerator and denominator
factor of input #7.

Unfortunately there is no known way to square-free factor an integer faster than by factoring it
then combining bases having identical exponents. For example, to square-free factor 2910600, we
can factor it into 23 33 52 7211, then combine factors having the same exponent to produce 63 352 11
in which 6, 35 and 11 are square free. However, if we are incurring the cost of integer factorization
anyway, it is simpler and probably faster to use full factorization for the internal form. Consequently
although these coprime square-free distinct-exponent forms are often the most concise display forms,
we do not recommend them as an internal form.

2.3 Forms based on perfect power computation

Our next family of canonical forms uses perfect-power factorization to avoid the cost of integer
factorization.

De�nition. For integers k > 1, m > 1 and n > 1, n is a kth perfect power of m if and only if
mk = n.

We are interested in determining the maximum k̂ and minimum integer m̌ for which m̌k̂ = n.
Perfect powers can be determined from a prime factorization, but there is a much faster way:

As described by Fitch [2], given integers n > 1 and k > 1, Newton's method with the help of the
�oor function can be used to quickly compute an exact kth root of n or determine that one does
not exist. If n has b bits, then starting with a guess that has db/ke bits, the number of correct bits
of the result doubles from 1 or more with each iteration, which is fast. Since we want the largest
such k, we can try successive primes starting with 2, repeating each prime until it no longer works.
Each success substantially reduces m from its initial value of n, reducing the work for subsequent
trials. We can stop when for the next prime p and the current value of m, 2p > m. Here are some
extreme examples for large n, ordered from least to most applications of Newton's method:

1. For n = 62·3·5·7, it requires one successful and one unsuccessful application of Newton's method
with each of the 4 successive primes 2, 3, 5 and 7 to determine that the 164 digit n = 6210.

2. For n = 229 it requires 9 successful applications of Newton's method with the �rst-tried prime
2 to determine that the 155 digit n = 2512.

3. For n = m2 with m being the largest prime less than 2256, it requires 1 successful application
of Newton's method followed by 53 unsuccessful applications to determine that the 154 digit
n = m2.

4. For n = 2509, it requires 96 unsuccessful applications with successive primes followed by one
successful application with the prime 509 to determine that the 154 digit n = 2509.

12

DEFINE SHORT AUTHOR HEADER USING \ authorhead

5. For n being the largest prime less than 2512, it requires 97 unsuccessful applications with
successive primes to determine that the 154 digit n is not a perfect power.3

For both the mean case and worst case this method is much faster than factoring large integers.

De�nition. A positive rational number is a perfect kth power if it is a perfect kth power of an
integer, or the reciprocal of such a perfect power, or its numerator is a perfect jth power, its
denominator is a perfect `th power, and k evenly divides gcd(j, `).

De�nition. A positive rational number is an imperfect power if it is not a perfect power.

We are interested in determining the maximum k̂ and minimum rational number ř for which
řk̂ = r > 1. For a reduced positive fraction r that is neither an integer nor a reciprocal, we can
compute the k̂1 for whichever of the numerator and denominator is smaller, then if k̂1 > 1, restrict
the choice of primes for applying Newton's method to the other part to primes that exactly divide
k̂1.

2.3.1 A positive rational power of a positive rational number that is an imperfect
power

De�nition. Single rational imperfect power base positive exponent form is a positive rational power
of a positive rational number that is an imperfect power, or −1 times that, or 0.

Remark. For example, input #11 in Table 4 has this form.

To transform a positive rational power α of a positive rational number r to this form, maximally
perfect-power factor r → řk̂, then return řk̂α.

Proposition 3. Single rational imperfect power base positive exponent form is canonical.

Proof. To convert pure primal representation P = pα1
1 p

α2
2 · · · to this form, let γ ← gcd(α1, α2, . . .),

which is positive, then let n1 ← α1/γ, n2 ← α2/γ, etc. All of the nj are coprime integers. Conse-
quently P can be represented as rγ where r is the expanded rational number pn1

1 p
n2
2 · · · . Then use

Newton's method to express r as an imperfect power base raised to a positive exponent: r → řk̂

giving P → řk̂γ. The pure primal representation together with γ, n1, n2, r, ř and k̂ are all unique,
therefore this single power form for P is unique. Now consider the other direction: Factor ř,
distribute k̂γ, then sort the factors into canonical order, giving the canonical pure primal form.

To multiply two such forms u1r
α1
1 and u2r

α2
2 with u1, u2 ∈ {1,−1}:

1. Let γ ← gcd(α1, α2), n1 ← α1/γ, n2 ← α2/γ, making n1 and n2 integer

2. Use Newton's method to compute rn1
1 rn2

2 → řk̂, then return u1u2 (ř)k̂γ.

To add two such forms:

1. Let m1 ← bα1c, m2 ← bα2c, β1 ← α1 −m1, β2 ← α2 −m2.

2. If β1 6= β2, then the ratio of the two inputs is irrational, so their sum cannot be represented
as a single absurd number.

3It might be worth using a primality test in perfect power factorization.

13

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

3. Otherwise, let g ← gcd(r1, r2), r̄1 ← r1/g, r̄2 ← r2/g, n← numerator(β1) , d← denominator(β1).

4. If r̄1 6→ r̆d1 or r̄2 6→ r̆d2 then the sum cannot be represented as a single absurd number.

5. Otherwise let ρ← u1r
m1
1 r̆n1 + u2r

m2
2 r̆n2 .

6. If ρ = 0 then return 0.

7. Use the multiplication algorithm to return the result of ρgγ as a positive rational power of a
positive rational number that is an imperfect power � or as −1 times that.

This is a canonical form that avoids the cost of integer factorization!
However, for strict consistency, even a rational number might have to be represented as a perfect

power such as 256/81 → (4/3)4. The frequent use of Newton's method to maintain this would
unacceptably slow down rational arithmetic. Therefore in practice whenever a resulting exponent
is an integer, then it is better to expand the power to the more typical representation for a rational
number.

Although fractional exponents are often merely half-integer or thirds of an integer, this form
can result in large radicands. For example,

2931/10

21/10
→
(

2931

2

)1/10

→
(

2159424054808578564166497528588784562372597429

2

)1/10

. (7)

Extracting a maximal rational factor from the pure primal form made it much faster to add
absurd numbers, so it is natural to wonder if the same is true for single rational imperfect power
base positive exponent form. For example,(

576

25

)2/3

→
(

24

5

)4/3

→ 24

5

(
24

5

)1/3

.

Unfortunately, this isn't a canonical form, because 24 = 233, so this number also has a di�erent
representation in this form as

48

5

(
3

5

)1/3

, (8)

and it requires square-free integer factoring to obtain this form, which requires integer factoring.
One way to make it canonical is: Whenever an input or a tentative result is a rational number times
a fractional power of a rational number:

1. Transform the product to single rational imperfect power base positive exponent form.

2. Then use the �oor function to extract a rational factor if the positive fractional power exceeds
1, making the fractional power proper.

For example,

48

5

(
3

5

)1/3

→
(

483 3

53 5

)1/3

→

((
24

5

)4
)1/3

→
(

24

5

)4/3

→ 24

5

(
24

5

)1/3

.

14

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Gcds can be used to simplify sums of absurd numbers in this form without doing this canonicalizing
reabsorption. For example, gcd(24/5, 3/5)→ 3/5, so

24

5

(
24

5

)1/3

− 48

5

(
3

5

)1/3

→ 24

5
81/3

(
3

5

)1/3

− 48

5

(
3

5

)1/3

→ 48

5

(
3

5

)1/3

− 48

5

(
3

5

)1/3

→ 0.

However, the loss of canonicality for irrational absurd numbers is still troublesome. For example,
for any function f � including a generic one with no current de�nition � we would like

f

(
24

5

(
24

5

)1/3
)
− f

(
48

5

(
3

5

)1/3
)
→ 0.

However, that won't happen with this non-canonical form unless every time a subexpression of the
form f(u)−f(v) is encountered during all transformations we check to see if u−v can be simpli�ed
to 0. This is time consuming, a programming nuisance, and unlikely to enjoy 100% programmer
compliance.

A way to partially overcome this dilemma is to use the proper variant only temporarily during
a sequence operations with irrational absurd numbers, then represent the result of this sequence as
a rational number if it is one, or as a unit times a single power otherwise. However, such context-
dependent departure from pure locally self-contained bottom-up simpli�cation is extra programming
work, hence an invitation to inconsistent behavior.

In any event, it is de�nitely worthwhile overall to represent rational absurd numbers as rational
numbers.

2.3.2 A ratio of positive rational powers of positive integers that are imperfect powers

De�nition. Ratio of two imperfect power integer bases raised to positive exponents form is a ratio
of two positive rational powers of positive integers that are imperfect powers, or −1 times that, or
0.

Input #12 in Table 4 has this form. For this example the resulting two exponents are identical,
but that might not be so. For example, this form can help reduce or avoid radicand growth by
transforming the right side of (7) to the left side.

2.3.3 Maximal positive reciprocal power of a positive rational number form

De�nition. Maximal positive reciprocal-exponent form is the largest possible positive reciprocal
power of a positive rational number, or −1 times that, or 0.

Remark. For example, input #13 in Table 4 has this form. As another example, (9/4)1/4 does
not have this form, but the equivalent expression (3/2)1/2 does. Although 8/27 is a perfect cube,
(8/27)1/2 has this form because the exponent in (2/3)3/2 is not a reciprocal.

To convert a positive reduced fractional power of a positive reduced rational number rn/d to this
form:

1. Use Newton's method to �nd d̄, the largest divisor of d such that r → r̄d̄.

2. Expand r̄n giving r̂.

15

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

3. Return the form r̂d̄/d. Note that this generally requires fewer applications of Newton's method
than to determine the maximal perfect root of r.

Proposition 4. A maximal positive reciprocal power of a positive rational number is canonical.

Proof. To convert pure primal representation P = pα1
1 p

α2
2 · · · to this form, let γ ← gcd(α1, α2, . . .),

which is positive, then m1 ← α1/γ, m2 ← α2/γ, etc. (The gcd of two fractions is the gcd of
their numerators divided by the least common multiple of their denominators. Therefore all of
the multiplicities mj are coprime integers.) Consequently P can be represented as r1/denominator(γ)

where r is the expanded rational number (pm1
1 pm2

2 · · ·)
numerator(γ). The pure primal representation

together with γ, m1, m2 and r are all unique. Therefore this single power form for P is unique.
Now consider the other direction: Factor r, distribute 1/denominator(γ), then sort the factors into
canonical order, giving the canonical pure primal form.

As illustrated by comparing inputs #11 and #13 in Table 4, this form can be less concise than
imperfect power form. However, the arithmetic is faster:

To multiply two such forms u1r
α1
1 and u2r

α2
2 with u1, u2 ∈ {1,−1}:

1. Let γ ← gcd(α1, α2), which is a reciprocal because α1, and α2 are both reciprocals.

2. Let m1 ← α1/γ, m2 ← α2/γ, making m1 and m2 integer.

3. Expand u1u2 giving u and expand rm1
1 rm2

2 giving r.

4. Convert rγ → r̂1/ď by the algorithm at the beginning of this sub-subsection.

5. Return ur̂1/ď.

To add two such forms:

1. If α1 6= α2, then the sum cannot be represented as a single absurd number.

2. Otherwise, let g ← gcd(r1, r2), n1 ← r1/g, n2 ← r2/g, d← denominator(α1).

3. If n1 6→ n̄d1 or n2 6→ n̄d2, then the sum cannot be represented as a single absurd number. (These
perfect root computations require only one or two applications of Newton's method for one
speci�c d, making them faster than determining the maximal perfect powers.)

4. Otherwise let ρ← u1n̄1 + u2n̄2.

5. If ρ = 0 then return 0.

6. Otherwise use the multiplication algorithm to transform ρgγ into a maximal reciprocal power
of a positive rational number � or −1 times that.

This is another canonical form that avoids the cost of integer factorization, and requires fewer
applications of Newton's method than imperfect power form. Moreover, rational numbers are a
special case wherein γ is the reciprocal of 1. However, the radicand can become quite large if the
numerator of the given exponent is large. For example,

2931/10 →
(
2931

)1/10 → 21594240548085785641664975285887845623725974291/10.

16

DEFINE SHORT AUTHOR HEADER USING \ authorhead

2.3.4 A ratio of two maximal reciprocal powers of positive integers

De�nition. Ratio of two maximal reciprocal powers of positive integers form is a ratio of two
maximally positive reciprocal powers of positive integers, or −1 times that, or 0.

Input #14 in Table 4 has this form. For this example the resulting two exponents are identical,
but that need not be so. For example,

23/4 71/4

32/351/3
→ (8× 7)1/4

(9× 5)1/3
→ 561/4

451/3
.

In contrast, the radicand for uni�cation into a single fractional power can be signi�cantly larger:

561/4

451/3
→ 563/12

454/12
→ 1756161/12

41006251/12
→
(

175616

4100625

)1/12

.

However, arithmetic using separate single numerator and denominator radicals is more compli-
cated, because we must use gcds to insure that numerator radicands and denominator radicands
are relatively prime and contend with possibly di�erent exponents of their gcd if it isn't 1.

2.4 Proper power of an integer forms

People often like to have absurd numbers displayed as a rational number times one rationalized
proper fractional power of the smallest possible positive integer because:

• It is proper.

• The denominator is rationalized, which students are taught to overvalue.

• It has only one fractional power and the radicand is an integer.

• The maximum possible amount of rational coe�cient is factored out, so the one radicand is
as simple as possible for such a form.

De�nition. Single minimal integer base raised to a proper exponent form is a rational number or
a rational number times the smallest possible positive integer raised to an exponent in the interval
(0, 1).

Input #15 in Table 4 has this form. Proper exponent primal form can be converted to this form
by unifying all its fractional powers into one. For example,

2

15
21/331/351/372/3 → 2

15

(
2× 3× 5× 72

)1/3 → 2

15
14701/3.

Unfortunately we do know how to guarantee this form canonical without integer factorization.
However, the following form is similar and avoids integer factorization, but can result in larger
integer radicands:

De�nition. Single integer imperfect power base form is derived from the ratio of two imperfect
power integer bases with positive exponents form as follows:

17

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

1. Extract a rational factor by independently making the numerator and denominator exponents
proper,

2. Rationalize the denominator.

3. Unify the resulting two numerator fractional powers into a single fractional power of an integer.

For example, starting with input #12,

282/3

152/3
→ 282/3 151/3

152/3 151/3
→ (784× 15)1/3

15
→ 117601/3

15

giving input #16 in Table 4. This is not as nice as input #16, but depending on taste and the
application, it is arguably nicer than inputs #11 through #13, which are the only other listed ones
based only on imperfect powers with no need for integer factorization.

Although it is a good default display form for implementations that totally avoid integer factor-
ization, this form is not very convenient as an internal form.

2.5 A hybrid of proper-exponent primal and imperfect power forms

• Primal internal forms entail integer factorization time that is unacceptable to many users if
the second largest prime factor is larger than about, say, 30 digits. However, these forms are
the only points of departure for generating many display forms that users might value. Of the
various primal forms, arithmetic is the fastest and easiest to implement for proper-exponent
primal form, with tight balanced primal form being a close second.

• coprime square-free distinct exponent internal forms also occasionally entail unacceptable
integer factorization time, but they tend to require less display space than primal forms.
However, coprime forms are a helpful point of departure for fewer display forms, and the
arithmetic is somewhat slower and harder to implement.

• Internal forms based on imperfect power factorization do not entail integer factorization, but
the radicands can become large. Moreover, although input #11 in Table 4 is among the most
concise for this particular absurd number, this display form would not be liked by many users
on some other examples, and these internal forms are not helpful as a point of departure for
most of the display forms that users might want.

Thus, the advantages of proper primal internal form subsume those of coprime square-free distinct
exponent internal forms, and in comparison the disadvantages of canonical forms based solely on
perfect power factorization don't make up for its better worst-case computing time. These consid-
erations suggest the following hybrid internal representation and algorithmic ideas:

1. Use radicand factorization and proper-exponent primal form up through some prime p̂. Com-
posite integer factors exceeding p̂2 are merely perfect-power factored, and the exponents are
made proper. Let's call any consequent integer radicand exceeding p̂2 a quasi-prime. Tight
balanced exponents could be used instead of proper exponents.

18

DEFINE SHORT AUTHOR HEADER USING \ authorhead

2. Treat the quasi-prime factors the same as prime factors, except compute gcds between each
new quasi prime and any other quasi primes and a rational denominator and/or numerator
whose magnitude exceeds p̂. Any resulting non-trivial gcd splits the radicand or radicands and
might enable extracting more rational coe�cient. This process is illustrated in computations
(3) through (6).

3. The resulting form isn't necessarily canonical if it contains a quasi-prime radicand, which will
be rather infrequent if p̂ is set rather large. However:

(a) The radicands are always coprime to each other and the numerator and denominator of
any rational factor.

(b) Addition, multiplication and rational powers of absurd numbers always yield a single
absurd number if the result can be so represented, and therefore 0 is always recognized
in such results.

3 Conclusions

Some major computer algebra systems currently produce erroneous results that could be prevented
by transforming absurd numbers to a canonical internal form. There are reasonably e�cient canon-
ical forms that avoid the potential cost of factoring large integers, and they are not di�cult to
implement. However the radicands can become large, the arithmetic is slower when there are no
large prime factors, and these forms are not good points of departure for popular display forms.

Thus for an internal representation we recommend using the proper or tight balanced exponent
primal form up to some particular prime base p̂, beyond which only perfect power factorization is
used, together with gcds to assure 0-recognition and that all factors are coprime.

We think the default display form should be concise. No one form will be the most concise for
all examples, but the most concise will often be in the set:

1. a rational number times one minimal integer raised to a proper exponent, as exempli�ed by
input #15;

2. coprime square-free bases raised to distinct exponents � perhaps times a rational number �
as exempli�ed by inputs #5 through #10.

A system could compute all these forms and perhaps others, and then display the most concise one.
However, when displaying an expression containing multiple absurd numbers, consistency in the
form used for those numbers is also important. Also the prime factorization provided by the pure,
loose balanced-exponent, and proper primal forms is particularly informative. Therefore systems
should provide a convenient mechanism for users to set the default form used to display absurd
numbers. Ideally this default display form setting would be done using a transformation dialog box
such as that shown in Section 2.

References

[1] Brown, W.S: On computing with factored rational expressions. Proceedings of EUROSAM '74,

ACM SIGSAM Bulletin 8 (3), pp. 26-34, 1974.

19

DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

[2] Fitch, J., A simple method of taking nth roots of integers, ACM SIGSAM Bulletin 8 (4), p. 26,
1974.

[3] Moses, J: Algebraic simpli�cation, a guide for the perplexed. Proceedings of the second ACM

symposium on symbolic and algebraic manipulation, pp. 282-304, 1971.

[4] Stoutemyer, D.R., Ten commandments for good default expression simpli�cation, Journal of
Symbolic Computation, 46 (7), pp. 859-887, 2011.

[5] Stoutemyer, D.R., Simplifying products of fractional powers of powers, to appear in ACM Com-

munications in Computer Algebra. preprint at http://arxiv.org/abs/1203.1350

[6] Stoutemyer, D.R., A computer algebra interface manifesto, submitted for publication.

[7] Stoutemyer, D.R., Useful computations need useful numbers, ACM Communications in Com-

puter Algebra 41 (3), pp. 75-99, 2007.

20

DEFINE SHORT AUTHOR HEADER USING \ authorhead

Table 4: Some alternative forms for the same absurd number:

Ratio form Product form Coef Name of form

(Bases are primes:)

1
24/3 72/3

32/3 52/3
24/3 3−2/3 5−2/3 72/3 ±1 pure primal

2
2 21/3 31/3 51/3 72/3

15
2
15

21/3 31/3 51/3 72/3 Q proper-exponent primal

3
14·21/3 31/3 51/3

15·71/3
14
15

21/3 31/3 51/3 7−1/3 Q tight balanced-exponent primal

4
2·21/3 72/3

32/3 52/3
2·21/3 3−2/3 5−2/3 72/3 Q loose balanced-exponent primal

(Bases are coprime and square-free:)

5
24/3 72/3

152/3
24/3 72/3 15−2/3 ±1

coprime square free integer bases,
distinct exponents

6
2 72/3 301/3

15
2
15

72/3 301/3 Q coprime square free integer bases,
distinct proper exponents

7
14 301/3

15 71/3
14
15

7−1/3 301/3 Q coprime square free integer bases,
distinct tight balanced exponents

8
2·21/3 72/3

152/3
2 · 21/3 72/3 15−2/3 Q coprime square free integer bases,

distinct loose balanced exponents

9 2·21/3
(

7
15

)2/3
2·21/3

(
7
15

)2/3 Q coprime square free rational bases,
distinct proper exponents

10 14
15

(
30
7

)1/3 14
15

(
30
7

)1/3 Q coprime square free rational bases,
distinct tight balanced exponents

(Bases are imperfect powers:)

11
(

28
15

)2/3 (
28
15

)2/3 ±1
single rational imperfect power base,

positive exponent

12
282/3

152/3
15−2/3 282/3 ±1

ratio of two imperfect power integer bases,
positive exponents

(Maximal reciprocal exponents:)

13
(

784
225

)1/3 (
784
225

)1/3 ±1
single rational base,

maximal positive reciprocal exponent

14
7841/3

2251/3
225−1/3 7841/3 ±1

ratio of two integer bases,
maximal positive reciprocal exponents

(One integer base:)

15
2 14701/3

15
2
15

14701/3 Q single minimal integer base,
proper exponent

16
117601/3

15
1
15

117601/3 Q single integer imperfect power base,
proper exponent

21

