
ACM Communications in Computer Algebra, TBA TBA

A polynomial time algorithm for computing all minimal

decompositions of polynomials over arbitrary fields

Raoul Blankertz
B-IT, University of Bonn

Dahlmannstr. 2, D-53113 Bonn, Germany
rblankertz@uni-bonn.de

Abstract

The composition of two polynomials g(h) = g ◦h is a polynomial. For a given polynomial f
we are interested in finding a functional decomposition f = g◦h. In this paper an algorithms is
described, which computes all minimal decompositions in polynomial time. The algorithm can
iteratively applied computes all decompositions. It is based on ideas of Landau & Miller (1985)
and Zippel (1991). Additionally, an upper bound on the number of minimal decompositions
is given.

1. Introduction

A decomposition of an univariate polynomial f over a field is a pair (g, h) of polynomials such that
f = g ◦ h and deg g, deg h ≥ 2. The computational problem to compute a decomposition of a given
polynomial is much investigated. A major challenge in this task is the case where the characteristic
of the field divides the degree of the input polynomial. Barton & Zippel (1985) give an exponential
time algorithm, which works independently from the characteristic, while the algorithm of Kozen &
Landau (1989) runs in polynomial time, but does not work unconditionally in positive characteristic.

We discuss an algorithm that computes all minimal decompositions of a polynomial in polyno-
mial time, where a decomposition (g, h) is called minimal if h has no decomposition. In contrast
to many previous decomposition algorithms—see also von zur Gathen (1990a, Theorem 2.4)—the
algorithm described here works over fields of positive characteristic as well. We estimate its runtime
for finite fields. This gives an explicit polynomial bound on the complexity of the problem of com-
puting a decomposition of an univariate polynomial over a finite field. By applying the algorithm
iteratively, we can compute all decompositions in quasi-polynomial time. This is the best we can
expect, since there are polynomials with quasi-polynomially many decompositions; see Giesbrecht
(1988, Theorem 3.9).

The main idea for the algorithm is to relate decompositions of f ∈ F [x] to certain partitions of
the set of roots of f− t, where t is transcendental over F [x], and to find a way to efficiently compute
these partitions. To specify this idea, let (g, h) be a decomposition of f . For each root λ of g − t,
the roots of h − λ form a subset of the roots of f − t. Furthermore, two different roots of g − t
yield two disjoint subsets. In this way one can partition the set of roots of f − t with respect to a

1

Title of your paper TBA

decomposition of f . This partitions are related to blocks of imprimitivity of a certain permutation
group. This relation will be made precise in Section 2.

In Section 3 two sharp upper bounds on the number of minimal decompositions of a polynomial
are given. After introducing briefly the necessary results from Landau & Miller (1985) in Section 4,
we describe an algorithm for polynomial decomposition in Section 5, which is based on ideas of
Zippel (1991).

2. Minimal decompositions and blocks of imprimitivity

Let F be an arbitrary field. In the runtime considerations of the algorithm in Section 5 we restrict
F to a field in which one can compute efficiently. One can think of F being a finite field, which is
the most interesting case.

Definition 2.1. A polynomial f ∈ F [x] is decomposable if there are g and h ∈ F [x], both of
degrees at least two, such that f = g ◦ h. The pair (g, h) is called a decomposition of f . In a
decomposition (g, h), we call g the left component and h the right component. A polynomial is
indecomposable if it is not decomposable. We call a polynomial original if its graph passes though
the origin—or, equivalently, its constant term is zero. A polynomial is monic original if it is monic
and original. A decomposition (g, h) is called minimal if h is monic original and indecomposable.

In a decomposition (g, h) of f , g is uniquely determined by f and h, since the ring homomorphism
F [x] → F [x] with x 7→ h is injective. Furthermore, g is easy to compute by the generalized Taylor
expansion; see von zur Gathen (1990a, Section 2). Let a be the leading coefficent of h and c be its
constant term. For ℓ = ax − c and ℓ∗ = a−1(x + c), we have f = g ◦ h = g ◦ ℓ∗ ◦ ℓ ◦ h and hence
(g ◦ ℓ∗, ℓ ◦ h) is a decomposition of f where ℓ ◦ h is monic original. Thus we may restrict ourselves
without loss of generality to decompositions (g, h) where h is monic original.

Functional decomposition is related to intermediate fields of certain field extensions in the fol-
lowing way. Let t be transcendental over F [x] and F (t) be the rational function field in t over F .
Then for a given polynomial f ∈ F [x] let ϕ be the irreducible polynomial f − t ∈ F (t)[x]. If we
assume that the derivative f ′ of f is not zero, then the derivative of ϕ with respect to x is not zero
and thus ϕ is separable. In this case, for a root α of ϕ in an algebraic closure of F (t), the field
F (t)[α] = F (α) is a separable field extension of F (t).

If the characteristic of F is p > 0 and f ′ = 0, then there exists a polynomial f̃ and a natural
number r such that f = f̃(xp

r

) and f̃ ′ 6= 0. If F is perfect—for instance if F is finite—then
the Frobenius endomorphism x 7→ xp is an automorphism of F . In this case, by knowing all
decompositions of f̃ one knows all decompositions of f ; see Giesbrecht (1988, Section 4.6). In
general the Frobenius endomorphism is not an automorphism, for example on function fields. From
now on we assume that f ′ 6= 0. This assumption excludes some cases in general, but we lose no
generality if F is perfect.

Now the following fact states a correspondence between decompositions of f and intermediate
fields of F (α) | F (t). Let R = {h ∈ F [x] : h is monic original and f = g ◦ h for some g ∈ F [x]}
be the set of right components of decompositions of f and let M be the set of intermediate fields
between F (α) and F (t).

Fact 2.2 (Fried & MacRae 1969, Proposition 3.4). Let f ∈ F [x] with f ′ 6= 0. Then the map
R → M with h 7→ F (h(α)) is bijective.

2

Author’s Name

The minimal polynomial of α over F (h(α)) is h(x) − h(α). Thus [F (α) : F (h(α))] = deg(h).
Furthermore, if h = u ◦ h∗ for some u ∈ F [x], then F (h(α)) ⊆ F (h∗(α)). Thus, if we take h∗ ≤ h
to mean that h = u ◦ h∗ for some u ∈ F [x], then the bijection in Fact 2.2 is an order-reversing
bijection of partially ordered sets. Hence, R equipped with ≤ is a lattice.

Definition 2.3. We call R the lattice of decompositions of f .

We introduce the notion of blocks of imprimitivity and its relation to decompositions. For this
purpose consider a finite permutation group G on a finite set Z, that is, G is a subgroup of the
symmetric group on Z.

Definition 2.4. A block of G is a subset B ⊆ Z such that for all σ ∈ G the set σ(B)∩B is empty
or equals B.

Equivalently, B is a block of G if for all σ ∈ G the sets B and σ(B) are disjoint or equal. If B
is a block, then any σ(B) is a block. If G is transitive and B 6= ∅, then {σ(B)}σ∈G is a partition of
Z.

Lemma 2.5. If B and C are blocks of G, then B ∩ C is a block of G.

Proof. Let σ ∈ G. Then σ(B ∩ C) ∩ (B ∩ C) = (σB ∩ B) ∩ (σC ∩ C) is empty if and only if
σB ∩B or σC ∩C is empty. If both are nonempty, then σ(B ∩C)∩ (B ∩C) = B ∩C, since B and
C are blocks. �

Definition 2.6. The blocks ∅, Z, and {γ}, for γ ∈ Z, are called trivial blocks. A nontrivial block
is called block of imprimitivity. A permutation group G on Z is called primitive if there are only
trivial blocks. It is called imprimitive, otherwise.

For a subgroup U ⊆ G and α ∈ Z, the orbit of α under U is the subset U(α) = {σ(α) : σ ∈ U} ⊆
Z. For a subset S ⊆ Z, the (setwise) stabilizer of S is the subgroup GS = {σ ∈ G : σ(S) = S}. We
write Gα for G{α}.

The following theorem is essential for the link between the decomposition of polynomials and
blocks of imprimitivity.

Fact 2.7 (Wielandt 1964, Theorem 7.5). Let G be a finite transitive permutation group on a
finite set Z and let α ∈ Z. Then the mapping U 7→ U(α) is an isomorphism from the lattice of
subgroups between Gα and G to the lattice of blocks of G containing α. The inverse mapping is
B 7→ GB.

We fix the following notation. Let f ∈ F [x] be of degree n > 1 with f ′ 6= 0. As before, we define
ϕ = f − t ∈ F (t)[x] and let α be a root of ϕ in an algebraic closure of F (t). Furthermore, let L be
the splitting field of ϕ over F (t), G be its Galois group, and Z the set of roots of ϕ in L. Then G
acts transitively on Z and we consider G as a permutation group on Z.

3

Title of your paper TBA

Corollary 2.8. Let f ∈ F [x] with f ′ 6= 0 and R be the lattice of decompositions of f .

(i) Then R and the lattice of blocks of G containing α are isomorphic.

(ii) Let h ∈ R and B be the block corresponding to h. Then deg(h) = |B|.

Proof. The lattice of decompositions of f is isomorphic to the lattice of intermediate fields of
F (α) | F (t); see Fact 2.2. This in turn is by Galois theory isomorphic to the lattice of subgroups
between Gα andG. Thus, by Fact 2.7, there is an isomorphism between the lattice of decompositions
of f and the lattice of blocks containing α.

Let U be the subgroup corresponding to h and B be the corresponding block, that is, F (h(α)) =
LU and U(α) = B, where LU is the subfield of L that is fixed by U . Then deg(h) = [F (α) : F (h(α))] =
[LGα : LU] = (U : Gα) = |U(α)| = |B|. �

Definition 2.9. We call a block B of G minimal if it contains α and all blocks properly contained
in B are trivial.

The minimal blocks of G correspond to the minimal decompositions of f , by Corollary 2.8(i).

3. An upper bound

We deduce two sharp upper bounds on the number of minimal decompositions of a polynomial.
These bounds coincide partly with results in von zur Gathen, Giesbrecht & Ziegler (2010).

The intersection of two distinct minimal blocks is a block, by Lemma 2.5, and therefore trivial.
Hence the minimal blocks minus {α} are distinct sets in Z \ {α}. Therefore, the sum of the
cardinality of all minimal blocks minus {α} is less than n − 1. Since the cardinality of a block
equals the degree of the right component of the corresponding decomposition, we get the following
result.

Corollary 3.1. Let f be a decomposable polynomial of degree n with f ′ 6= 0.

(i) Let d divide n. Then there are at most (n − 1)/(d − 1) minimal decompositions (g, h) of f
with deg(h) = d.

(ii) Let q be the smallest prime divisor of n. Then there are at most (n − 1)/(q − 1) minimal
decompositions of f .

Example 3.2. Let p be the characteristic of F and let f be a separable additive polynomial of
degree pr with r ≥ 2, that is, f is of the form

∑r

i=0 aix
pi with a0 6= 0. Furthermore, assume that f

splits completely over F . Then the roots of f form a group G ⊆ F which is isomorphic to (Z/pZ)r.
If α is a root of f − t, so is α + a for all roots a of f . Thus F (α) | F (t) is Galois and its Galois
group is isomorphic to G. But G has exactly (pr − 1)/(p − 1) subgroups of order p. Thus f has
exactly (pr − 1)/(p− 1) minimal decompositions. This shows that both bounds are sharp. ♦

4

Author’s Name

4. Finding minimal blocks

In this section we will discuss an algorithm that computes minimal blocks of the Galois group G.
This algorithm and all intermediate results were introduced in Landau & Miller (1985) for the
ground field Q. In our case we have the ground field F (t), but the proofs are essentially the same.
Therefore we will discuss this algorithm here only briefly. A detailed discussion can be found in
Landau & Miller (1985), Landau (1993), Zippel (1996), and Blankertz (2011).

We factor ϕ over F (α) into monic irreducible factors ψi such that

(4.1) ϕ =
s∏

i=1

(x− αi) · ψs+1 · . . . · ψr

with α = α1, αi ∈ F (α), and ψi = x − αi for 1 ≤ i ≤ s, and deg(ψi) ≥ 2 for s < i ≤ r.
Since αi ∈ F (α) for 1 ≤ i ≤ s, there are rational functions ℓi such that αi = ℓi(α1). Since α is
transcendental over F , from the equation f(α) = t = f(ℓi(α)) follows that ℓi is a linear polynomial.

Then Bα = {αi : 1 ≤ i ≤ s} is a block of G and H = ({ℓi : 1 ≤ i ≤ s}, ◦) is a group. Let Uα

be the subgroup corresponding to Bα. Then H ∼= Uα/Gα. We fist show that we can compute all
blocks that are contained in Bα.

Suppose s > 1. Then the induced action of Uα on Bα is determined by the action of H on Bα,
since Gα acts trivial on Bα. If there are minimal blocks of Uα containing α, then one can find all
of them in polynomial time in the size of H by an algorithm of Atkinson (1975). This blocks are
also minimal blocks of G. If there are no nontrivial Blocks of Uα, then Bα is a minimal block of G.
Thus we have the following lemma.

Lemma 4.2. All minimal blocks that are contained in Bα can be computed in polynomial time in
n by the algorithm of Atkinson (1975).

If s = 1, then Bα = {α} is trivial. Thus the method above cannot be applied to find minimal
blocks of G. Even more generally, if s < n, there may exist minimal blocks containing α but being
not contained in Bα. For such a block Λ, we have Λ∩Bα = {α}, by Lemma 2.5 and the minimality
of Λ. In the following we show how to compute such blocks.

Theorem 4.3. Let Λ be a minimal block of G with α ∈ Λ and Λ ∩Bα = {α}. Then for all β ∈ Λ
distinct from α the orbit 〈Gα, Gβ〉(α) equals Λ.

Fix k > s and β ∈ Z such that β is a root of ψk. Then β /∈ Bα and thus 〈Gα, Gβ〉(α) is a block,
which is minimal if there is a minimal block containing α and β. Let σ ∈ G such that σ(α) = β and
set ψ∗

i = σ(ψi) for all 1 ≤ i ≤ r. Then the polynomials ψ∗
i ∈ F (β)[x] are the polynomials ψi with

β substituted for α and the irreducible factors of ϕ over F (β) are precisely the polynomials ψ∗
i .

Theorem 4.4. Consider the bipartite graph Γβ with the set of vertices consisting of ψi and ψ
∗
i for

1 ≤ i ≤ r and with an undirected edge between ψi and ψ
∗
j if gcd(ψi, ψ

∗
j) 6= 1. Let Cβ be the the set

of roots of those ψi that are connected to ψ1. Then 〈Gα, Gβ〉(α) = Cβ.

We can compute Cβ by performing at most r2 gcd computations in F (α, β)[x]. In particular,
we do not need to compute G. Thus by Lemma 4.2 and the previous theorems, we can compute all
minimal blocks of G in polynomial time.

5

Title of your paper TBA

5. The algorithm

Before we describe the algorithm, we proof the following lemma, which tells us how to compute the
corresponding decomposition from a given block.

Lemma 5.1. Let B be a block and h be the right component of a decomposition of f corresponding
to B. Then h(x)− h(α) =

∏
γ∈B(x− γ).

Proof. The block B corresponds to the intermediate field LGB and by Fact 2.2 there is a decom-
position of f with right component h such that LGB = F (h(α)). For λ = h(α), the minimal
polynomial of α over F (λ) is h− λ. Let H =

∏
γ∈B(x− γ). For all σ ∈ GB, we have σ(B) = B and

therefore σ(H) =
∏

γ∈B(x − σγ) =
∏

γ∈σ(B)(x − γ) = H . Since F (λ) = LGB , this proves that H is

in F (λ)[x]. Since α ∈ B, we find H(α) = 0 and the gcd of H and h− λ in F (λ)[x] is not constant.
Since h − λ is irreducible over F (λ)[x] and since both polynomials are monic and have the same
degree, we find H = h− λ. �

The constant term of h(x)−h(α) is
∏

γ∈B(−γ). Since h is monic original, we get h =
∏

γ∈B(x−
γ)−

∏
γ∈B(−γ), as explicit formula.

In the following we give an algorithm that computes all minimal decompositions of a polynomial,
whose derivative does not vanish. It is based on Landau & Miller (1985) and on Zippel (1991).

Algorithm 5.2 calls a subroutine Atkinson(G, Z, α) which returns a list of all minimal blocks
of G acting on Z which contain α. If G is primitive, this list consists of Z only.

Algorithm 5.2. Computing minimal decompositions.

Input: A monic polynomial f ∈ F [x] of degree n with f ′ 6= 0.
Output: A list of decompositions (g, h) of f . This list is empty if f is indecomposable.

1. Set List = {} and let F (α) be the rational function field in α.
2. Factor f(x)− f(α) ∈ F (α)[x] into

∏s

i=1(x− αi) · ψs+1 · . . . · ψr as in (4.1).
3. If s > 1 then

4. Set Bα = {αi : 1 ≤ i ≤ s} and H = ({ℓi : 1 ≤ i ≤ s}, ◦) where αi = ℓi(α).
5. Set AtkinsonBlocks = Atkinson(H , Bα, α).
6. For Λ ∈ AtkinsonBlocks with |Λ| < n do 7–9
7. Compute h(x) =

∏
γ∈Λ(x− γ)−

∏
γ∈Λ(−γ).

8. Compute g such that f = g ◦ h.
9. Attach (g, h) to List.
10. For k ∈ {s+ 1, . . . , r} do 11–17
11. Let β be a root of ψk and let ψ∗

i be ψi with β substituted for α for all 1 ≤ i ≤ r.
12. Compute the graph Γβ as in Theorem 4.4.
13. Compute Ik = {i : ψi is connected to ψ1 in Γβ}.
14. If Ik 6= {1, · · · , r} then

15. Compute h(x)− h(α) =
∏

i∈Ik
ψi, where h(x) ∈ F [x] is monic original.

16. Compute g such that f = g ◦ h.
17. Attach (g, h) to List.
18. Return List.

6

Author’s Name

Theorem 5.3. Algorithm 5.2 correctly computes all minimal decompositions of f .

Proof. Let (g, h) be a minimal decomposition and Λ be the corresponding block. Then either
Λ ⊆ Bα or Λ ∩Bα = {α}, by Lemma 2.5 and the minimality of Λ. In the first case, Λ is computed
in step 5; see Lemma 4.2. Then h is recovered from Λ in step 7, by Lemma 5.1. In the second
case, let β ∈ Λ \ {α} and k such that ψk(β) = 0. By Theorem 4.3 and Theorem 4.4, we have
Λ = Cβ = {γ : ∃i ∈ Ik : ψi(γ) = 0}, where Cβ is as in Theorem 4.4 and Ik is computed in step 13.
Then in step 15, we have

∏
i∈Ik

ψi =
∏

γ∈Λ(x− γ) = h(x)− h(α), from which we can recover h. �

Note that Cβ is a block even if there is no minimal block containing α and β. Then either
Cβ is minimal and β /∈ Cβ or Cβ is not minimal and contains minimal blocks. An algorithm that
computes only minimal decompositions—and outputs each decomposition only once—should keep
track of this.

For the runtime consideration, let F be a field over which one can factor bivariate polynomials
in polynomial time—these include, for instance, finite fields. The gcd computation in step 12 can be
done by computing the resultant, which can be done in polynomial time. Thus the algorithm runs
in polynomial time. Zippel (1991) proposes an algorithm to compute decompositions of rational
functions. This algorithm runs in polynomial time and can be used to compute decompositions of
polynomials. The following runtime estimation for finite fields gives an explicit complexity bound.

Theorem 5.4. Let F be a finite field and n be the degree of the input polynomial f . Denote by
CP(n) the complexity of testing if two polynomial over a function field of degree at most n are
coprime. Then Algorithm 5.2 runs in O(n3CP(n)).

Proof. The factorization in step 2 can be done in O∼(nω+1) field operations, where 2 ≤ ω ≤ 3 is
the matrix multiplication exponent; see Bostan, Lecerf, Salvy, Schost & Wiebelt (2004) and Lecerf
(2007). Atkinson’s algorithm takes O(n3) bit operations; see Atkinson (1975) and Butler (1992,
Section 2). Butler (1992, Section 3) improved the runtime of Atkinson’s algorithm to O(n2 log n).
Let M(n) denote the complexity of multiplying two polynomials over F of degree at most n. Then
in step 8 and 16, for each right component h, the appropriate left component g can be computed
in O(M(n) log n) field operations by the generalized Taylor expansion; see von zur Gathen (1990a,
Section 2). Since there are at most s minimal blocks computed by the algorithm of Atkinson, step
8 is called at most s times. Step 16 is called at most r− s times. Thus we get O(rM(n) log n) field
operations for step 8 and 16.

To compute the graph in step 12 we need at most r2 gcd computations. We have to compute r−s
such graphs. Thus in total we have at most (r− s)r2 ≤ n3 such gcd computations. Actually, we do
not need to compute the gcds, but just test if two polynomials are coprime. Since one coprimality
test takes at least n field operations, step 12 dominates the runtime in the worst case. �

Remark 5.5. (i) The field arithmetic of F (α, β) is quite costly, thus one should use a modular
algorithm that tests if two polynomials in F (α, β)[x] are coprime. Blankertz (2011) proposes
such an algorithm. With fast multiplication it has expected runtime O∼(n3 log(q)), where q
is the size of F , and an error probability of at most (4n)−1. If we repeat this coprimality test
c times, then we get for all n3 computations an error probability of at most n3(4n)−c. Then
Algorithm 5.2 takes an expected number of O∼(cn6 log(q)) operations in F .

7

Title of your paper TBA

(ii) The bottleneck of Algorithm 5.2 clearly is step 12. But even if one could improve this step,
one can never get faster than the factorization in step 2.

(iii) If we want to compute the lattice of decompositions of a polynomial, we can apply Algo-
rithm 5.2 iteratively. In each iteration there are at most n minimal decompositions and the
iteration depth is in O(log n). Thus we get an algorithm with quasi-polynomial runtime. Ac-
tually, we can have quasi-polynomially many decompositions, see Giesbrecht (1988, Theorem
3.9), which shows that we cannot get better than quasi-polynomial without “a totally new
approach” (von zur Gathen 1990b).

6. Conclusion

Computing a decomposition of a polynomial over a finite field can be done in polynomial time.
Compared with other decomposition algorithms, see for instance von zur Gathen (1990a, Theorem
2.4), Algorithm 5.2 is quite slow. The advantage of this algorithm is that it has not such a strong
assumption on the input polynomial. As pointed out in Section 2, the assumption f ′ 6= 0 is easily
handled if F is finite.

Iteratively applied, Algorithm 5.2 computes the lattice of decompositions of a polynomial in
quasi-polynomial time. Another approach to compute the lattice of decompositions is to use the
subfield finding algorithm from van Hoeij, Klüners & Novocin (2011). From a given finite field
extension this algorithm computes a set of subfields—so called generating subfields—such that any
other subfield is an intersection of some of these generating subfields. One can apply Fact 2.2 to
compute the corresponding decompositions. A detailed runtime analysis for this approach is still
outstanding.

7. Acknowledgments

This work was founded in part by the B-IT Foundation and the Land Nordrhein-Westfalen. Parts
of this work have also appeared in Blankertz (2011).

References

M. D. Atkinson (1975). An Algorithm for Finding the Blocks of a Permutation Group. Mathematics of

Computation 29(131), 911–913. ISSN 0378-4754. URL http://www.jstor.org/stable/2005304.

David R. Barton & Richard Zippel (1985). Polynomial Decomposition Algorithms. Journal of Sym-

bolic Computation 1, 159–168.

Raoul Blankertz (2011). Decomposition of Polynomials. Diplomarbeit, Universität Bonn, Bonn. Mod-
ified version available at http://arxiv.org/abs/1107.0687.

A. Bostan, G. Lecerf, B. Salvy, É. Schost & B. Wiebelt (2004). Complexity issues in bivariate
polynomial factorization. In Proceedings of the 2004 International Symposium on Symbolic and Algebraic

Computation ISSAC2004, Santander, Spain, 42–49. ACM Press. ISBN 1-58113-827-X. URL http://dx.

doi.org/10.1145/1005285.1005294.

Greg Butler (1992). An analysis of Atkinson’s algorithm. ACM SIGSAM Bulletin 26(2), 1–9. ISSN
0163-5824. URL http://dx.doi.org/10.1145/130933.130935.

8

Author’s Name

Michael D. Fried & R. E. MacRae (1969). On the invariance of chains of Fields. Illinois Journal of

Mathematics 13, 165–171.

Joachim von zur Gathen (1990a). Functional Decomposition of Polynomials: the Tame Case. Journal
of Symbolic Computation 9, 281–299. URL http://dx.doi.org/10.1016/S0747-7171(08)80014-4.

Joachim von zur Gathen (1990b). Functional Decomposition of Polynomials: the Wild Case. Journal
of Symbolic Computation 10, 437–452. URL http://dx.doi.org/10.1016/S0747-7171(08)80054-5.

Joachim von zur Gathen, Mark Giesbrecht & Konstantin Ziegler (2010). Composition collisions
and projective polynomials. Statement of results. In Proceedings of the 2010 International Symposium

on Symbolic and Algebraic Computation ISSAC2010, Munich, Germany, Stephen Watt, editor, 123–
130. ACM Press. URL http://dx.doi.org/10.1145/1837934.1837962. Preprint available at http:

//arxiv.org/abs/1005.1087.

Mark William Giesbrecht (1988). Complexity Results on the Functional Decomposition of Polynomi-
als. Technical Report 209/88, University of Toronto, Department of Computer Science, Toronto, Ontario,
Canada. Available as http://arxiv.org/abs/1004.5433.

Dexter Kozen & Susan Landau (1989). Polynomial Decomposition Algorithms. Journal of Symbolic

Computation 7, 445–456. An earlier version was published as Technical Report 209/88, University of
Toronto, Department of Computer Science, Toronto, Ontario, Canada, 1988.

S. Landau & G. L. Miller (1985). Solvability by Radicals is in Polynomial Time. Journal of Computer

and System Sciences 30, 179–208.

Susan Landau (1993). Finding maximal subfields. ACM SIGSAM Bulletin 27(3), 4–8. ISSN 0163-5824.
URL http://dx.doi.org/10.1145/170906.170907.

Grégoire Lecerf (2007). Improved dense multivariate polynomial factorization algorithms. Journal of
Symbolic Computation 42(4), 477–494. ISSN 0747-7171.

Mark van Hoeij, Jürgen Klüners & Andrew Novocin (2011). Generating subfields. In Proceedings

of the 2011 International Symposium on Symbolic and Algebraic Computation ISSAC2011, San Jose CA,
345–352. ACM Press, New York, USA. ISBN 978-1-4503-0675-1. URL http://dx.doi.org/10.1145/

1993886.1993937.

Helmut Wielandt (1964). Finite permutation groups. Academic Press, New York. ISBN 0-127-49656-4.
Translated from the German by R. Bercov.

Richard Zippel (1991). Rational Function Decomposition. In Proceedings of the 1991 International

Symposium on Symbolic and Algebraic Computation ISSAC ’91, Bonn, Germany, Stephen M. Watt,
editor, 1–6. ACM Press, Bonn, Germany. ISBN 0-89791-437-6.

Richard Zippel (1996). Functional Decomposition. online. URL http://citeseer.ist.psu.edu/

viewdoc/summary?doi=10.1.1.51.3154. Last visited 18 October 2012.

9

