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Knuth is said to have described Computer Science as “that part of mathematics in which log log n =
3”. This paper only considers some parts of Computer Algebra, and the even more special case
when log n ≈ 3, or even less, and where compactness of the algorithm itself, as well as the data
structures, is important.
We begin with a few remarks on integration, which, while in some sense the culmination of computer
algebra for the “compact computer algebra” market, also inspired many of our other suggestions.
Acknowledgements. This paper was prepared when the author was visiting the Symbolic Com-
putation Group in the David R. Cheriton School of Computer Science, University of Waterloo, and
the author is grateful to Prof. Giesbrecht and colleagues for their hospitality. Its preparation was
inspired by an invitation to talk at the Compact Computer Algebra workshop at CICM 2009, and
the author is grateful to Dr Smirnova for the invitation. At that workshop Prof. Geddes remarked
that the subresultant algorithm did not work well for multivariates, which inspired section 5.

1 Integration

Here the Risch–Norman [NM77] algorithm can be quite short to program, and, while not a full
decision procedure, is complete on a reasonable range of transcendental integrands [Dav82]. There
is a recent extension [Kau08], which looks promising on many cases of algebraic integrands. Here
the aim would be to integrate correctly many common cases, while not guaranteeing that “I can’t”
is equivalent to “no-one can”. We should note that, while the traditional “full Risch” integration
algorithm is adapted to a recursive representation of polynomials, Risch–Norman is equally adapted
to a distributed representation (where in fact it was first implemented [NM77]). Since this algorithm
is the inspiration for algorithms 3–5 below, and since we claim that there is great commonality of
technology, we give an appropriate sketch here.

Algorithm 1 (Risch–Norman Method [NM77]) To integrate f(x, θ1, . . . , θn), where f is a ra-
tional function with coefficients in some field C of constants (of characteristic zero), and each θi is
defined over Ki = C(x, θ1, . . . , θi−1) by one of:

log θi = log ui, i.e. θ′i =
u′i
ui

, where ui ∈ Ki (in practice we impose ui ∈ C[x, θ1, . . . , θi−1]);

exp θi = expui, i.e. θ′i = u′iθi;

sin θi = sinui, i.e. θ′i = u′i cosui;
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cos θi = cosui, i.e. θ′i = u′i sinui;

These two don’t quite satisfy “θi is defined over the previous”, but as long as we introduce them
in adjacent pairs, i.e. if θi = sinui, one of θi±1 = cosui and vice versa, this seems to work in
practice. Alternatively, we can employ the half-angle substitution, and use

tan θi = tanui, i.e. θ′i = u′i(1 + θ2i );

arctan θi = arctanui, i.e. θ′i =
u′i

1+u2i
, where ui ∈ Ki.

1. Perform a certain amount of normalization on f . In principle we ought to do a full application
of the Risch Structure Theorem [Ris79], but in practice we do rather less, e.g. replacing
exp(2x) by exp(x)2. [Dav86] suggests some additional normalizations, which, while not strictly
necessary according to [Ris79], reduce (see question 1 below) the incidence of pathological
counter-examples to the completeness of the Risch–Norman Method.

2. Write f = p/q where p, q ∈ C[x, θ1, . . . , θn]. It may be necessary to introduce apparently
spurious common factors, e.g. a 1

x
if the integrand involves log x, as described in step 7.

3. Compute r = gcd(q, num(q′)) and s = gcd(r, num(r′)), where ′ denotes total derivative, and
the num deals with any denominators that come from differentiating log, arctan etc.

4. Produce a list L of “new functions”. Conceptually we ought to factor q over the algebraic
closure C, and for each factor f , add log f to L. In practice we tend to take a short-cut, and
compute either a factorization over C, or even just a square-free decomposition, and, for each
factor f

(a) add log f to L;

(b) if f is a quadratic pα2 + qα + r, where α is x, any of the θi, or a power of any of these,

and if 4pr− q2 is either a square1 constant or a positive constant, add arctan

(
2pα+q√
4pr−q2

)
to L (and if p itself is not constant, add log p to L as well);

(c) if 4pr − q2 is minus a square1, or a negative constant, replace log f by its summands

log
(

2pα + q ±
√
q2 − 4pr

)
(and if p itself is not constant, add log p to L as well);

(the case where 4pr − q2 is neither ± a square1 nor a constant does not lead to the
addition of new terms, by Liouville’s principle)

(d) If f is univariate (of degree greater than 2) in α (being x or any of the θi), replace log f
by its summands log(α− RootOf(f, α, i)) with i from 1 to degα(f).

This last case requires a sophisticated RootOf construct, and the author suspects is
unlikely to be implemented in a compact system. Note that, if we have done a complete
factorization in this step, we only need this case to express integrals such as∫

1

x5 + x+ 2
dx =

1

6
log(x+ 1) +

∑
β = RootOf(8376γ4 + 1396γ3 + 206α2 + 21α + 1)

β log (10β + x(1 + 4β)) .

1Up to multiplying by a constant.
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5. Conceptually, express the integral as

I :=

∑
ai,j,k,...x

iθj1θ
k
2 . . .

r
+
∑
fi∈L

cifi. (1)

6. Clear denominators in p
q

= I ′ to get

p−
∑
fi∈L

cif
′
iq =

∑
ai,j,k,...x

iθj1θ
k
2

r′s +
q

r

(
i

x
+
jθ′1
θ1

+
kθ′2
θ2

+ · · ·
)

︸ ︷︷ ︸
see note 7

 (2)

7. The divisions in r′

s
and q

r
should be exact with respect to the leading variables, but there may

be factors corresponding to the num operators in step 3. Similarly, the explicit divisions by x
or θi in (2) are exact, since x or θi appears to a non-zero power in the multiplicand, but there
may be denominators of θ′i which have to be allowed for in the denormalization in step 2.

8. Generate and solve, iteratively, the linear equations for the ai,j,k,..., starting with the leading
monomial on the left-hand side of (2). For the details of this, see [NM77].

At some points, we will determine the ci, and, if we have a contradiction, we see that the integral
is definitely not in the form (1), and therefore probably not integrable in elementary terms (again,
see question 1.

2 g.c.d. (of univariate polynomials)

This has been a bugbear of computer algebra for over forty years, and has given rise to many
solutions, some of them truly heroic (see [CGG84, DP85], where the then ‘compact kernel’ of Maple
did not extend as far as polynomials with modular coefficients, so the primitive parts of univariate
g.c.d.s were computed via the diagram

Z[x] makeprim
−→

gcd
−→ Z[x]

x:=N ⇓ ⇑ N:=x

Z gcd
=⇒

makeprim
=⇒ Z

where ‘makeprim’ is the operation of making a polynomial primitive — content removal).
Though difficult to prove, the subresultant algorithm [Col67] is quite short to program, and its
intermediate expression swell does not manifest itself on small examples. It may well be worth
considering the trial division variant of [Hea79]. However, for multivariate examples, we may wish
to be more subtle — see below.

3 Factoring (of univariate polynomials)

This has been a challenge for almost as long as the g.c.d. problem, and is still far from being
solved, as significant improvements keep on being made (see [vH02] for one of the more recent
major developments). Nevertheless, if log log n is small, we can devise a relatively simple algorithm
on the following lines.
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Algorithm 2 To factor a square-free f(x) over Z.

1. To factor mod p, use Cantor–Zassenhaus [CZ81], after checking that f remains square-free
when reduced modulo p.

2. Possibly use several primes — see question 2 below.

3. Having decided that there is a viable factorization, we have to lift it p-adically. Again, we
note that while an optimal lifting is a very complicated body of code, linear lifting [DST93,
p. 168], with imposed leading coefficients [DST93, pp. 174–5], is not.

4. Obviously, any p-adic factor which divides over the integers is a true factor. If this doesn’t
happen, we have two choices.

(a) Do appropriate recombinations and trial divisions. The code is not lengthy, but the
runnning may well be, since most optimizations ([ABD85] is possibly a counterexample)
will substantially lengthen the code.

(b) Just give up, and declare “I couldn’t find any factors, but they may nonetheless exist”.
In practice, this may well be acceptable on a compact system.

4 Factoring (of multivariate polynomials)

It’s not clear to this author that this is worth implementing. However, if one does, the following
“low brow” algorithm may be worth considering: essentially linear lifting with imposed leading
coefficients. We describe it here in the bivariate case: see section 6 for the general case. Note
that we assume the input is square-free, which implies that we need the g.c.d. of multivariate
polynomials — see the following section.

Algorithm 3 To factor a square-free f(x, y) over Z.

1. Ensure f(x, 0) is square-free, and of the same degree in x as f(x, y). If not, make a substitution
y 7→ y + v for small integer v until it is.

2. Factor f(x, 0) as a product of k factors.

3. Multiply each such factor h by lcx f(x, 0)/ lcx(h), so that we have a factorization of (lcx f(x, 0))k−1 f(x, 0) =∏k
i=1 gi, where each gi has leading coefficient lcx f(x, 0). Replace f by (lcx f(x, y))k−1 f(x, y).

4. Replace gi =
∑

j ai,jx
j by hi =

∑
j (ai,j + bi,jy)xj where the bi,j are unknowns, save that the

leading coefficient of gi has cy added, where c is the coefficient of y1 in lcx f .

5. Equate to zero the coefficients (with respect to x) of f(x,y)−
∏
gi

y

∣∣∣
y=0

.

The leading coefficient need not be computed, since it is forced to be correct by step 3

6. Solve this (linear!) system for the bi,j.

7. Replace gi =
∑

j(ai,j+bi,jy)xj by hi =
∑

j (ai,j + bi,jy + ci,jy
2)xj where the ci,j are unknowns,

save that the leading coefficient of gi has cy2 added, where c is the coefficient of y2 in lcx f .

4



Author’s Name

8. Equate to zero the coefficients (with respect to x) of f(x,y)−
∏
gi

y2

∣∣∣
y=0

.

9. Solve this (linear!) system for the ci,j.

10. Repeat steps 7–9 to find the coefficients of y3, y4, . . . until one of two things happens.

(a) f(x, y)−
∏
gi = 0, when we have a complete factorization.

(b) The computation of
∏
gi starts generating terms in yk where k > degy f , which shows

that our univariate factorization was bad, in the sense that f(x, 0) factors more than
f(x, y).

11. Remove contents from each of the factors, so that we have a factorization of the original f ,
rather than the adjusted version from step 3.

In case 10b, we have two choices, as at the end of section 3.

1. Do appropriate recombinations and trial divisions. The code is not particularly lengthy, but
the runnning may well be, since most optimizations are quite complicated. See also question
3 below.

2. Just give up, and declare “I couldn’t find any factors, but they may nonetheless exist”. In
practice, this may well be acceptable on a compact system.

5 g.c.d. of bivariates

The subresultant algorithm [Col67] is, as we have said, not optimal for univraiates, but in practice
is probably good enough. For multivariates, the expression swell is intolerable, and we need a better
algorithm. We can use the same process as algorithm 3 for the bivariate case: see section 6 for the
general case.

Algorithm 4 To compute gcd(f1, f2) in Z[x, y].

1. Choose a value v for y, checking that substituting this value does not cause the x-degrees of
f1 or f2 to drop.

2. Compute g1 = gcd(f1(x, v), f2(x, v)).

3. If gcd(g1, f1(x, v)/g1) = 1, then h := f1, g2 := f1(x, v)/g1).

4. Else If gcd(g1, f2(x, v)/g1) = 1, then h := f2, g2 := f2(x, v)/g1).

5. Else pick random λ, µ, check gcd(g1, (λf1(x, v) + µf2(x, v))/g1) = 1, then h := λf1 + µf2,
g2 := (λf1(x, v) + µf2(x, v))/g1).

6. Lift the factorization h(x, v) = g1g2 to a factorization of h, when the factor corresponding to
g1 is the required g.c.d.

7. Failure to lift, which is detected by the fact that g1g2 generates powers of y greater than
degy h, implies that v was unlucky, and we go back to step 1.
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6 Multivariate lifting

The lifting processes involved in sections 4 and 5 could be described as “poor man’s Hensel’s
Lemma”. The normal process of lifting a factorization, whether for its own sake or as a g.c.d. com-
putation, would be to lift the coefficients (with respect to x) of our polynomial from being in k[y]
to being in k[y, z]. This would generally be quite a substantial piece of code. It is worth noting
that [MN81] described their multivariate g.c.d./factorization package as being “at least as large” as
their (fairly complete) implementation of the Risch–Norman integration method.
Inspired by the non-recursive nature of the Risch–Norman method, we suggest an alternative.
Rather than engage in lifting of polynomials , we continue with lifting coefficients .

Algorithm 5 Continuation of algorithm 3, to factor f(x, y, z). Assume we have factored f(x, y, 0) =∏
gi(x, y).

11. For each i, if degx(gi) = di, add cxdiz +
∑di−1

j=0 c
(0)
i,j x

jz to gi, where c is the cofficient of zy0 in

lcx(f), and the c
(0)
i,j are unknowns.

12. Equate to zero the coefficients (with respect to x) of f(x,y,z)−
∏
gi

z

∣∣∣
z,y=0

.

The leading coefficient need not be computed, since it is forced to be correct by the term cxdiz
in the previous step.

13. Solve this (linear!) system for the c
(0)
i,j .

14. For each i, if degx(gi) = di, add cxdizy +
∑di−1

j=0 c
(1)
i,j x

jzy to gi, where c is the cofficient of zy1

in lcx(f), and the c
(1)
i,j are unknowns.

15. Equate to zero the coefficients (with respect to x) of f(x,y,z)−
∏
gi

yz

∣∣∣
z,y=0

.

16. Solve this (linear!) system for the c
(1)
i,j .

17. Repeat steps 14–16 for the coefficients of zy2, zy3, . . ., until the termination criteria as in steps
10a, 10b happen, then z2y0, z2y, . . ., then higher powers of z, again using the termination
criteria as in steps 10a, 10b.

18. Repeat for subsequent variables.

Note that we are using “imposed leading coefficients”, which is recognised to be expensive. [Wan78]
has suggestions for avoiding this, but the coding effort (not least arranging for recursive factorization
of the leading coefficient) is substantial. It is not clear that the effort is justified, especially as one
major application of this lifting will be to g.c.d. computations, where there are only two factors, so
the blow-up is less significant. See also question 4 below.
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Open Research Questions

Despite the “not cutting edge” nature of the algorithms being considered, we can see a few open
questions.

Question 1 Assuming we do the further normalizations described in [Dav86], and assuming we
have done a full application of the Risch Structure Theorem [Ris79], under what circumstances does
the Risch–Norman method (algorithm 1) fail to return an integral?

Put another way, we need to attach a ‘health warning’ to algorithm 1 on the following lines, and
the question above asks how to complete it:

If the ‘integrate’ button returns an unevaluated integral expression, this normally means
that no elementary (this expression has a technical definition — see e.g. [DST93, p. 191])
expression can be the desired integral: the exceptions are cases where the system has not
detected hidden dependencies in the integral [i.e. not applied the full Risch Structure
Theorem], or . . .

Question 2 How many primes pi should we factorize modulo in step 2 above before deciding that
we have a compatible factorization, and should proceed to Hensel lifting.

[Mus78] suggests that the answer is 5, though there are heuristic arguments that this should grow
as log log d, where d is the degree of the polynomial to be factored. If d is small, can we get away
with less?

Question 3 For recombinations of bivariate (or indeed multivariate) polynomial factorizations, are
there equivalent simple optimizations to those of [ABD85] in the univariate case?

It seems likely that there are, though the details will probably depend critically on the implemen-
tation.

Question 4 In the g.c.d. case of lifting (algorithms 4, 5), can we do better than “imposed leading
coefficients”?

At least in principle, the answer is affirmative. In the notation of algorithm 4, step 6, we are
trying to lift the factorization h(x,v) = g1g2 to a factorization of h = λf + µg, where the factor
corresponding to g1 is the required g.c.d. of the original f and g. Since

lcx gcd(f, g)| gcd(lcx f, lcx g) = H

it suffices to impose leading coefficients of H on g1 and lcx h on g2, thus effectively lifting a factor-
ization of Hh rather than lcx(h)h.
Whether it is worth it in practice is another question. We note the complexity (rather than the
actual cost, which will almost certainly be recouped on average) of a recursive g.c.d. computation,
and the fact that for square-free decomposition, the main application of g.c.d. computation in
integration, there is no gain.
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Conclusion

Although the optimal versions of modern computer algebra algorithms are pretty lengthy and
complicated objects, there are surprisingly compact ‘low brow’ versions of them which can be
remarkably effective on small examples. Even these low brow versions throw up some interesting
research questions, as in the previous section.
Furthermore, the underlying technology base, which, apart from modular arithmetic to support
Cantor–Zassenhaus and univariate Hensel, consists of polynomial manipulation and linear equation
solving, is fairly small and common across several of the higher-level algorithms.
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