ACM Communications in Computer Algebra, TBA Formally reviewed communication

Some definite integrals containing the Tree T function

Robert M. Corless, Junrui Hu and D. J. Jeffrey
Department of Applied Mathematics, Western University, London, Canada
{jhu93,djeffrey}tQuwo.ca

Abstract

We take up a numerical challenge regarding definite integrals, recently considered by Walter
Gautschi. We show that symbolic computation can contribute to the evaluation of many special
cases of the integrals.

1 Introduction

The paper [3] examines, in effect, numerical schemes for the evaluation of the integrals

In(a, B) = /1OO To (ze )" 2" dx (1)

and
Ii(a,B) = / Ty (ve ™) 2 P dx . (2)
0

Here, Ty is the Tree T function, satisfying T'(z)exp(—T(z)) = z. Also, o and 8 are restricted
to values ensuring convergence!. The Tree T function is a cognate of the Lambert W function
through T (2) = —W_j(—2); see [1] for more discussion. The notation in this paper makes a new
convention for the signs of the branches: we realized with this work that the indices of the branches
of the Tree T function should also be negated, as in the equation above. This means that while
for Lambert W the only real-valued branches have indices £ = 0 and £ = —1, the corresponding
indices for the Tree T function are k = 0 and k = 1. See figure 1.

One should note that in (1), Ty (ze™*) # x. The equation ye ¥ = xe ® has two real solutions
for positive x, namely y = Tj(ze™*). It might seem natural to define one branch of T' to be the
trivial solution y = x and to find a method to denote (and compute) the other, nontrivial, solution;
but if we are to re-use the predefined Tree T function or equivalently the Lambert W function,
then the branch definitions for those functions impose a nondifferentiable corner at x = 1 for each
branch. See figure 2. As we shall see, the nontrivial branch can be described parametrically by
y =vexp(v)/(exp(v) — 1) and = v/(exp(v) — 1) where the branch difference v = y — 2 runs from
—00 to oo.

'We make two changes in notation from Gautschi [3]. Gautschi used the Lambert W function while we use the
Tree T function; we omit a subscript specifying the range of integration.
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Figure 1: The Tree T function Ty(z) = —W_i(—2). The principal branch Tj(z)
satisfies To(z) < 1, while the only other branch with real values has Ti(z) > 1. The
branch point is at z = 1/e, where T'(z) = 1. Note that the branch indices change sign
from those of Lambert W.

1.1 Properties
We have

To(z) = Z nn! 2" (3)

for —1/e < z < 1/e. The Tree T function is the generating function for the number of rooted trees
with n nodes. The series for 77(z) near z = 0 is also of interest:

1 1

lnln% lnln% -5 ln21n;
Ini * In%1 T (4)

z z

1 1
Ti(z) = ln;+lnln;+

and the higher-order terms can be expressed in terms of Stirling numbers. This series converges for
small enough 2z > 0, as proved first by Comtet in a different context.

1.2 Change of variables relating the integrals

Note that in equation (1) x > 1, allowing the simplification T} (z exp(—z)) = x. Thus the integral
can be written

Iy(a, B) = /OO Tg (we™™) T ? (ze™®) du . (5)

1

Similarly, for equation (2) we have x < 1, implying Ty(z exp(—z)) = z. Thus the integral can be
written

Li(a,p) = /0 Ty (we™™) T, " (ze™™) da. (6)

This shows the relationship between Iy and I;.



Corless, Hu & Jeffrey

Figure 2: The equation yexp(—y) = xexp(—z) has two solutions for y, which we
may write as y = Ty(xexp(—=z)) for k = 0 (solid line) and & = 1 (dashed line).
Notice that each curve has a corner at x = 1; at that point the trivial solution y = x
crosses the nontrivial solution, and the descriptions of each solution in terms of the
Tree T function changes. A parametric description of the nontrivial solution is given
by y = vexp(v)/(exp(v) — 1) and & = v/(exp(v) — 1) where v runs from —oo to co.
If v > 0, we recover the branch with x < 1, whereas if v < 0 then z > 1.

2 Branch Differences

In some applications, the difference between the branches is interesting. In [4] the series at the
branch point was studied in terms of this difference. Here we use it to simplify the integrals.
In equation (5), put
v="T; (ze™™) = Ty (ze ™) . (7)
Since x > 1, we have T} (zexp(—z)) = z, implying v = v — To(x exp(—=z)) or Ty = x — v. Suppose
v # 0. Then, since Tyexp(—Ty) = (x — v) exp(—x + v) = rexp(—x), we cancel exp(—x) on both
sides and get (r — v) exp(v) = x, which is a linear equation in x that is easily solved. Therefore

v v

. _m ve
T (:136 ) = and T (:176 ) == (8)
where we used again x = T} (x exp(—x)), and
ve’ v
T Tl T e )
1 —e v — —v
dx = ‘ . (10)

(1 —ev)?

The limit x = 1 corresponds to v = 0 and x = oo corresponds to v = co.
Using equations (9) and (10), the integral (5) becomes

wen = [T (75) (25) S e
B /0°° " (1 —Ue—”)a_ﬁ - _(16—1};”1;5@) - -
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By inspection, the terms have at most removable singularities at the origin. A sufficient condition
for convergence is a > 0. If &« = 0, then the integral converges if and only if g > 1.

Turning our attention to the second integral, we have x = Ty(z exp(—x)) because now z < 1
and this time, we put v = Tj(z exp(—z)) — x, which is again greater than or equal to zero, and find
that the equations (8) still hold?, but now x = Ty(x exp(—z)) and so the substitution is different:

)
ev — 17
e’ —1—wve?

dx = W dv . (13)

xr = (12)

Now when z = 0 we have v = co and when x = 1 we have v = 0. Using this substitution the
integral (6) becomes

o= (25 () e

_ /Ooo (81 (1 _“ev)aﬁ % dv . (14)

Again this integral contains only removable singularities at v = 0 and a sufficient condition for
convergence is that 5 < 1. If § =1, then the integral converges if and only if a < —1.

These definite integrals no longer contain the Tree T function and will be amenable to direct
methods or contour integration methods. Note that although several definite integrals for Iy and
I, were given in [3], the expressions given here appear to be new.

Because the integrals for Iy and I; are so similar, we can easily establish that

1—ev

oo v a—pB+1
Iy(e, B) + L(1 — 3,1 — ) :/0 e ( > dv . (15)

In the case o = ( this can be shown to be ¥;(«), the trigamma function. One method to see this
is to write 1/(1 —exp(—v)) as a geometric series and then integrate term by term to get 1/(a + k)?;
summing over k gives the trigamma function. Similarly, one can see with one integration by parts
that Ip(c, @) = a¥y(«), and from thence that I1(a, a) = a¥(1 — ).

3 Curiosities

As just discussed, the paper [3] notes that the integral is a trigamma function if @ = /3. Neither
Maple nor Wolfram Alpha can identify the trigamma function from the integrals presented here.
However, both systems can evaluate the integrals for a variety of integer values of o and 5. For
instance, Maple easily evaluates

_ [Tt =(+v)e),
Iy(1,2) _/o o (1= o) dv=1-7, (16)

2That is, T} = vexp(v)/(exp(v) — 1) and Ty = v/(exp(v) — 1) as before, but remember now that = > 1 and
v = Ti(xexp(—x)) — x instead of v = x — Tp(x exp(—=x)); this change is the same as reversing the sign of the
parametrization of the nontrivial branch.
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oo —2v —v
1o(2,3) = /0 ¢ (Ul(; (_1€+v”)) ) gy = 8y _In2, (17)
and o 3w .
16(3,2) :/ cv(l-( +3“)e )i — 5 6¢(3) + in2. (18)
0 (1—e)
Similarly, [; is easily evaluated in Maple if @ and [ are integer values (or are equal).
1(2,0) = —/wvge (1(1 _ef’v;f Do = 1+ 2¢(3) + 1. (19)
0 _

An interesting variation is that Maple can sometimes evaluate the integrals if o and g differ by
an integer but are not themselves integers:

IO (%7

N[

) - /Ooo 67311/2 (1 _(16—Uet112;§v) dv = _% + %71.2 B %g(?)) ’ <20>

This does not always work, however. If « = 1/4 and 8 = —3/4, then the difference is an integer
but neither Maple nor Mathematica is able to evaluate the integral. For the simpler integral
I =1Iy(a,B)+ (1 — 8,1 — «) this also happens.

At the time of writing, we do not know if any computer algebra system can evaluate these
integrals for values of a and  that have non-integer differences, or even merely for arbitrary o and
[ whose difference is an integer.

4 Series

We pointed out earlier that when o = [ the integrals for Iy and I; could be identified as containing
¥y, the trigamma function, by using a series expansion. One is tempted to try the same thing for
a # B. We are successful in writing Iy(«, §) + I1(1 — 5,1 — ) as a series, as follows.

The integrand in equation (15) can be expanded in a convergent series if v > 0.

—B+1
e~ W ( v ¢ — Ua—,(3+1€—av (1 o e—v)ﬁ_l_a
(=v)

1 —exp
_ Uoc—ﬁ+1€—av Z <5 o 2 o Oé) (_1>€€—(o¢+€)v ) (21)

>0
o - Plo—5+2)
a—B+1 —(atty 4, _ Lla— b+
/0 v e dv = (o 1 Do (22)

so the series for the sum Iy(a, 8) + I1(1 — 5,1 — «) is

B (B—1—a\T'(a—p+2)
Y A e

>0

:r(a—ﬁ+2)2(o‘_?+é)m. (23)

£>0
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Notice that we need o — 8 > —2 for the integral (22) to converge and for the series to be valid.
This is a new restriction, additional to the o > 0 needed for convergence of the original integrals
I(o, B) and I;(1 — 5,1 — «).

When o = (3 this reduces, as claimed, to

Uy (a) = Z ! : (24)

If we introduce a new variable m with the definition = o — m, this sum becomes

m—+ L 1

S(m):Z( )ﬁ (25)

= l (o + £)m+
For explicit integers m, Maple can evaluate this sum in terms of known special functions such as
the polygamma functions ¥;(«) for j < m + 1. For example,
SMA) =5 Vi(a) + (Ha—2) Uala) + (-2 a+ 50 + 25) Us(w)

+ 55 (2a =5) (&® —=5a+5) Uy(w)

+ 55 (@ = 1) (a—2) (o= 3) (a — 4) U5() . (26)

Indeed, for explicit integers m > 0, this sum is proportional to the value of a hypergeometric

function:
1 a,0,...,H +1
( T P 1) (27)

(m) qmtz a2 a+l,a+1,...,a+1

To show this, we recall that

F a1, 0,...,0p
P ﬂl?ﬁ%"'aﬁq

= afos .. .al 2
VA :ZTE.E
CENAN:

k=0 M1

<m + é) 1 (m+ 1) of "
¢ ) la+rgmez ! ala+1)° ’

and the result (27) follows.
Finally, at least one of the integrals with a = 1/4 and = —3/4 that Maple was unable to
integrate explicitly before can be found using these sums, namely

() e (1 ()

=25(1) = 2414 (P3(—i) — Ps3(4)) + 27 + 16C + 42¢(3) (28)

Then we can write

where F,(2) =), -, 2"/n® is the polylogarithm function and

_ (="
¢= %; (2n +1)2

is Catalan’s constant. This last example, of which we are sure there are many more, points the way
to improve some of Maple’s evaluation of definite integrals.

6
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5 Comparison with Examples from [3]

We have seen here a reference solution for some examples in which a and g differ by an integer.
For those integrals for which we cannot derive a symbolic solution, we could use numerical methods
such as those in Maple’s evalf/Int, but this is less interesting. The tables show that Gautschi’s
results are as accurate as he claimed.

6 Concluding Remarks

One aim of this paper is to provide reference expressions for the integrals (1) and (2) in terms
of quantities such as ~, the Euler-Mascheroni Constant, and evaluations of functions such as the
Riemann ¢ function, which we consider to be known and partially understood.?

Since the discovery of these special forms was the result of examining the properties of the two
real branches of the Tree T function, as well as the properties of their difference, the exploration
of branch relations in other Lambert W integrals may lead to further development of solutions to
special cases.
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Table 1: The relative error of Gautschi’s approximations G(a, ) when compared
with exact values for y(a, ). Note that a dash indicates integrals for which we do

not have symbolic expressions.

Io(a,8)~G(a,B)
« /8 ° ]0(0‘76)
2 2 3.5804 x 10732
0 2.0444 x 10731
-2 1.3960 x 10732
1 1 7.4593 x 10733
0 2.2001 x 10732
-1 2.3135 x 10732
L9 -
2
() _
-2 _

Table 2: The relative error of Gautschi’s approximations G(a, ) when compared
with exact values for I;(a, ). Note that a dash indicates integrals for which we do

not have symbolic expressions.

I (avﬁ)_G(anB)

@ ﬂ : Il(aaﬂ) ’
2 1 -

0 2.7055 x 10733

-2 1.3116 x 10732
T L 1.0897 x 1072

0 -

-1 -

1

-1 0 _

1 i}

9 i}




