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Abstract

Some changes of the traditional scheme for finding rational solutions of linear differ-
ential, difference and q-difference homogeneous equations with rational coefficients are
proposed. In many cases these changes allow one to predict the absence of rational solu-
tions in an early stage of the computation.

1 Introduction
Finding rational solutions (i.e., rational-function solutions) of linear differential, difference

and q-difference equations is a part of various algorithms. Investigations of new ways to con-
struct such solutions are quite valuable for computer algebra. The first algorithms for con-
structing rational solutions were proposed in [12] (the differential case) and in [2], [3] (the
difference and q-difference cases). Later, further algorithms were proposed ([6], [10], [7] etc).
The algorithms fit in the following scheme that we call RS:

RS1: Construct a rational function R(x) such that any rational solution of the original equation
can be represented as R(x)f(x) with polynomial f(x).

RS2: Transform the original equation into such an equation that a polynomial f(x) is a solution
of the transformed equation iff R(x)f(x) is a solution of the original equation.

RS3: Construct all polynomial solutions of the transformed equation.

Many equations (even a "majority" of them) have no (non-zero) rational solutions. However
if one uses the above scheme then the absence of such solutions will be recognized only in the
last step of computation when steps RS1, RS2 are completely executed (strictly speaking in
the differential case the algorithms from [6], [7] are an exception; we will say more about this
in the end of Section 3). Below we discuss some changes in the scheme RS for the case of
homogeneous equation L(y) = 0 with rational coefficients. In any case these changes do not
increase the computation cost, but allow one quite often to predict the absence of rational
solutions in an early stage of computation and to stop the work.

We suppose that the original linear operator L (differential, difference or q-difference) has
coefficients which are rational functions over a field k of characteristic 0, and consider non-
zero polynomial and rational solutions of L(y) = 0, i.e., solutions belonging to k[x] \ {0} and
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k(x) \ {0}. For short, we will refer to these solutions as the polynomial and rational solutions
of the operator L.

The so-called indicial equation at infinity I(λ) = 0 is associated with the operator L. In
the difference and differential case I(λ) is a polynomial in λ over k , and I(λ) is a polynomial
in qλ in the q-difference case. The known algorithms use the indicial equations to find a bound
for degrees of all polynomial solutions of an operator and finds all polynomial solutions of the
operator using this bound ([1], [4], [11], [8] etc). However this indicial equation gives more
information on the operator L than just a bound for degrees of polynomial solutions. The fact
is that if L has a solution S(x) = s1(x)

s2(x)
, s1(x), s2(x) ∈ k[x], then the integer number

val∞S(x) = deg s1(x)− deg s2(x)

(the valuation of F (x) at infinity), is a root of the indicial equation. For the differential case
this was noted in [6, Lemma 1]. It is possible that this fact is (well) known for the difference
and q-difference cases as well, but our attempts to find corresponding references have not met
with success. That is why we incorporate to this paper the preliminary Section 2 where a proof
of this fact (in a unified way for three types of operators) as well as a formal definition of the
indicial equation are given. The mentioned fact is the main property of the indicial equation in
the context of our paper. Of course, if f(x) is a polynomial solution of L then it follows from
this property that deg f(x) is a root of the indicial equation, since val∞f(x) = deg f(x) in this
case. But moreover this property allows us to improve the traditional scheme RS (Section 3).
In Section 4 some additional changes related to the difference case are proposed.

2 Indicial equations at ∞
We will suppose that the operator is of the form

an(x)δn + · · ·+ a1(x)δ + a0(x), (1)

where a1(x), . . . , an−1(x) ∈ k(x), a0(x), an(x) ∈ k(x) \ {0}, δ = D = d
dx

in the differential case,
δ = ∆ in the difference case (∆(y(x)) = y(x + 1) − y(x)), and δ = Q in the q-difference case
(Q(y(x)) = y(qx)). If F (x) ∈ k(x) and

F (x) = c
f(x)

g(x)
, (2)

where c ∈ k and f(x), g(x) are monic polynomials then we write c = lc F (x).

Proposition 1. Let L be as in (1). Let in differential and difference cases the number ω and
the polynomial I(λ) be

ω = max
06j6n

(val∞aj − j), I(λ) =
∑

06j6n
val∞aj−j=ω

lc(aj)λ
j (3)

(λj = λ(λ− 1) . . . (λ− j + 1)), and in the q-difference case

ω = max
06j6n

val∞aj, I(λ) =
∑

06j6n
val∞aj=ω

lc(aj)q
λj. (4)

Then val∞L(F ) 6 val∞F (x) + ω for any F (x) ∈ k(x) \ {0}, and strict inequality takes place iff
I(val∞F (x)) = 0.
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Proof. Let F (x) be as in (2) and deg f = u, deg g = v, m = u−v. One can prove by induction
on j that

Dj(F (x)) = c
mj xu+j(v−1) + . . .

gj+1(x)
= c

mj xu+nv−j + . . .

gn+1(x)
,

∆j(F (x)) = c
mj xu+j(v−1) + . . .

g(x)g(x + 1) . . . g(x + j)
= c

mj xu+nv−j + . . .

g(x)g(x + 1) . . . g(x + n)
,

Qj(F (x)) = c
f(qjx)

g(qjx)
= c

q
n(n+1)

2
v+jmxu+nv + . . .

g(x)g(qx) . . . g(qnx)

for j = 0, 1, . . . (dots in the numerators hide lower terms). Suppose that all aj(x) are polyno-
mials. We have then for j = 0, 1, . . . , n:

aj(x)Dj(F (x)) = c
lc(aj)m

j xu+nv+deg aj−j + . . .

gn+1(x)
,

aj(x)∆j(F (x)) = c
lc(aj)m

j xu+nv+deg aj−j + . . .

g(x)g(x + 1) . . . g(x + n)
,

aj(x)Qj(F (x)) = c
lc(aj)q

n(n+1)
2

v+jmxu+nv+deg aj + . . .

g(x)g(qx) . . . g(qnx)
.

The corresponding expression for L(F (x)) has the numerator cI(m)xu+nv+ω + . . . , in the dif-
ferential and difference cases and cq

n(n+1)
2

vI(m)xu+nv+ω + . . . in the q-difference case. This
proves the case of polynomial coefficients. Let aj(x) =

ãj(x)

w(x)
, where w(x) all ãj(x) are polyno-

mials, w(x) is a monic polynomial, L̃ = ãn(x)δn + · · ·+ ã1(x)δ + ã0(x), and ω̃, Ĩ(λ) correspond
to L̃. The statement holds for L̃, ω̃, Ĩ(λ). Since val∞L(F (x)) = val∞L̃(F (x)) − deg w(x) 6
val∞F (x) + ω̃ − deg w(x) = val∞F (x) + ω and I(λ) = Ĩ(λ), it holds also for L, ω, I(λ). 2

Definition 1. Let L be as in (1) and I(λ) as in (3), (4). Then the equation I(λ) = 0 is the
indicial equation of L at infinity.

Let S(x) ∈ k(x). Then S(x) is non-zero iff val∞S(x) ∈ Z (by definition val∞0 = −∞).
Therefore L(F (x)) = 0 iff val∞L(F (x)) /∈ Z. As a consequence of the proven proposition we
get the main statement of this section:

Proposition 2. Let L be of the form (1) and L(F (x)) = 0 for F (x) ∈ k(x) \ {0}. Let I(λ) = 0
be the indicial equation of L at ∞. Then I(val∞F ) = 0.

Remark 1. Let K = LF , where F is a non-zero rational function, and IL(λ) = 0, IK(λ) = 0
be the indicial equations of L and K. Then one can prove that up to a constant non-zero factor

IL(λ + val∞F (x)) = IK(λ). (5)

In the q-difference case this follows directly from the formula for aj(x)Qj(F (x)) given above.
In the differential and difference cases the corresponding version of Leibniz rule together with
the equality (λ + µ)n =

∑n
i=0

(
n
i

)
λi µn−i is used for this. Evidently L(F ) = 0 iff K(1) = 0. So

if L(F ) = 0 then the equation K(y) = 0 has a polynomial solution of degree 0, and therefore
IK(0) = 0. By (5) we have IL(val∞F (x)) = 0. This is another proof of Proposition 2.

Example 1. Let L = (x + 2)φ − x. We have I(λ) = λ + 2. Therefore if L has a non-zero
rational solution y(x) then val∞y(x) = −2. One can check that any rational function C

x(x+1)

with constant C is a solution of L. Since ord L = 1 this operator has no extra rational solution.
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3 A new scheme
Step RS2 results in the equation with the operator M = LR (the product of L and the zero

order operator R). The polynomial solutions of M have to be found in step RS3. As we have
mentioned, this search is as follows. First an upper bound d > 0 for degrees of all polynomial
solutions has to be found using the indicial equation of M , and, second, one finds all polynomial
solutions of M using this bound.

In the sequel we will denote the indicial equations of L and M = LR at ∞ by IL(λ) = 0
and IM(λ) = 0, respectively.

Proposition 3. If IL(λ) = 0 has no integer roots then M has no polynomial solutions and L
has no rational solutions. If this indicial equation has integer roots and λ0 is the maximal one
then the inequality deg f(x) 6 λ0 − val∞R(x) is valid for any polynomial solution f(x) of M
(if λ0 − val∞R(x) < 0 then there is no polynomial solutions).

Proof. If IL(λ) = 0 has no integer roots then, by the main property of the indicial equation,
M has no rational solutions and hence no polynomial solutions. Assume that y(x) is a rational
solution of L. Then it follows from RS1 and RS2 that y(x) = R(x)f(x) for some polynomial
f(x), and so M(f(x)) = (LR)(f(x)) = L(R(x)f(x)) = L(y(x)) = 0. But M has no polynomial
solutions, a contradiction. So we conclude that L has no rational solutions.

Now let us prove the second part. If M has a polynomial solution f(x) then L has the
rational solution R(x)f(x). Thus

deg f(x) + val∞R(x) = val∞f(x) + val∞R(x) = val∞(R(x)f(x)) 6 λ0.

The inequality deg f(x) 6 λ0 − val∞R(x) follows. 2

This proposition makes feasible an improvement of the scheme RS given in Introduction.
One can start with constructing the indicial equation IL(λ) = 0 of the original operator L. We
get the scheme RS′:

RS′0: Construct the equation IL(λ) = 0; if it does not have integer roots then STOP otherwise
define λ0 as its maximal integer root.

RS′1: Construct a rational function R(x) such that any rational solution of L can be represented
as f(x)R(x) with polynomial f(x); set d = λ0 − val∞R(x); if d < 0 then STOP.

RS′2: Construct M = LR.

RS′3: Construct all polynomial solutions of M taking into account that degree of each of them
is 6 d.

Note that on the step RS1 of the scheme RS some of algorithms related to the differential
case L = an(x) dn

dxn +· · ·+a1(x) d
dx

+a0(x) (the coefficients are polynomials) one can recognize that
the rational solutions do not exists, due to the absence of integer roots of the indicial equations
of L of another kind, i.e., the indicial equations at irreducible factors of an(x) ([6]). This can be
combined with the step RS′1. (For example the indicial equations at those irreducible factors
and at ∞ can be considered in a random order.)

However the known algorithms for the difference case always produce a rational function
R(x) on the step RS1. In the next section we propose another additional trick for the differential
case.
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4 Additional STOPs in the difference case
Now we turn to the step RS′1. On occasion in the difference case the conclusion that

rational solutions of L do not exist may be made in the beginning of constructing R(x). The
operator L of the form (1) with δ = ∆ can be transformed into a′n(x)φn + · · ·+ a′1(x)φ + a′0(x),
where φ(y(x)) = y(x + 1), and a′1(x), . . . , a′n−1(x) ∈ k(x), a′0(x), a′n(x) ∈ k(x) \ {0}. After left
multiplication of L by a suitable polynomial we get an operator

un(x)φn + · · ·+ u1(x)φ + u0(x), φ(y(x)) = y(x + 1),

with polynomial coefficients. Numerous algorithms ([2], [3], [8], [9], [5] etc) in a preliminary
stage of constructing R(x) compute the dispersion dis (un(x−n), u0(x)) of polynomials un(x−n)
and u0(x), i.e., the maximal non-negative integer h such that un(x− n) and u0(x + h) are not
co-prime. If there are no such non-negative integers then h = −∞. It is proven in [2] that if
h = −∞ then L has no solutions in k(x) \ k[x] (one can use 1 as R(x) in RS′3). Otherwise
it is possible to construct R(x) in the form 1

U(x)
with a polynomial U(x) which is a universal

denominator (but in some cases other functions R(x) can also be taken).

Proposition 4. Let h = dis (un(x − n), u0(x)) > 0, and let λ0 be as in Proposition 3. In this
case, if the inequality

λ0 + (h + 1) min{deg u0(x), deg un(x)} > 0 (6)

is not valid then L has no rational solutions.

Proof. Considering the algorithm from [3] it is easy to see that this algorithm results in the
universal denominator U(x) such that deg U(x) 6 (h + 1) min{deg u0(x), deg un(x)}. We do
not suppose that R(x) is computed by the algorithm from [3], but nevertheless the rational
function R(x) = 1

U(x)
may be used in RS′2. By Proposition 3 the inequality (6) has to be valid

if L has rational solutions. 2

Therefore in the difference case the step RS′1 can be used in the following form:

RS′1: Execute a preliminary stage of constructing R(x) which includs the computation h =
dis (un(x− n), u0(x)); if h = −∞ and λ0 > 0 then set M = L, d = λ0 and go to RS′3; if
h = −∞ and λ0 < 0 then STOP; if (6) is not valid then STOP; terminate constructing
R(x); set d = λ0 − val∞R(x); if d < 0 then STOP.

Example 2. For L = 2(x + 2)φ + (2x + 3) the indicial equation is 2λ + 1 = 0. There are no
integer roots. Thus L has no rational solutions.

For L = (x + 1)(x2 + 1)φ − x(x2 − 4x + 1) the indicial equation is λ + 5 = 0. We have
λ0 = −5, h = 0. Inequality (6) is not valid. Thus L has no rational solutions.

For L = (x + 2)φ − x (the same operator as in Example 1) we have λ + 2 = 0, λ0 = −2,
h = 1. Inequality (6) is valid. If the algorithm from [3] is used, then we get R(x) = 1

x(x+1)
.

We have −2− val∞R(x) = 0. Thus 0 is an upper bound for degrees of polynomial solutions of
LR = 1

x+1
φ− 1

x+1
. Any constant is a polynomial solution of this operator.

Note that the situation is similar in the q-difference case.
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