DEFINE ISSUE using \ issue

Exact Solutions to Linear Systems of Equations using Output Sensitive Lifting

Daniel Steffy*

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA, 30332-0205, USA

desteffy@gatech.edu

Abstract

Many methods have been developed to symbolically solve
systems of linear equations over the rational numbers. A
common approach is to use p-adic lifting or iterative refine-
ment to build a modular or approximate solution, then apply
rational reconstruction. An upper bound can be computed
on the number of iterations these algorithms must perform
before applying rational reconstruction. In practice such
bounds can be conservative. Output sensitive lifting is the
technique of performing rational reconstruction at interme-
diate steps of the algorithm, and verifying correctness. In
this paper we show how using an appropriate output sen-
sitive lifting strategy can improve several algorithms. We
show this procedure to be computationally effective and in-
troduce a new algorithm that directly combines rational re-
construction and iterative refinement by warm starting the
Extended Euclidean Algorithm.

1 Introduction

Solving rational or integer linear systems of equations is a
well developed area of symbolic computation. Dixon [8] gave
an effective procedure for solving systems exactly by com-
puting & = A7'b mod p* through p-adic lifting and apply-
ing rational reconstruction to recover the exact rational so-
lution. Wiedemann’s black-box method for solving systems
of equations over a finite field can also be used along with
p-adic lifting or the Chinese Remainder Algorithm to solve
systems in the sparse setting [15, 29]. Alternate techniques
include calling a fixed precision numerical solver within an
iterative refinement routine to find an extended precision so-
lution & = A~!'b, sufficient for rational reconstruction to be
applied [25, 27]. Others have further developed these meth-
ods [5, 6, 10, 12, 19].

A core component of these techniques is rational number
reconstruction, which allows an exact rational solution to be
recovered from either a modular or approximate solution.
We define the bitsize of a nonzero rational number p/q to
be bitsize(p/q) = [log(|pq|)] and the bitsize of a rational
vector to be the maximum bitsize over its components. In
order to reconstruct a rational solution x from a modular
solution, the system of equations must be solved modulo a
number M, the size of which depends on bitsize(A™'b). Sim-
ilarly, if a rational solution is to be reconstructed from an
approximate solution, the level of approximation depends
on bitsize(A™'b). The solution vector is unknown before
solving the system so an upper bound on its size is com-

*Research supported by NSF Grant CMMI-0726370 and ONR
Grant N00014-08-1-1104.

puted to guide the rational reconstruction procedure. For
an integer system of equations Ax = b, Cramer’s rule and
the Hadamard determinant bound imply that a solution has
bitsize at most log(]|A||3"||b]|2). This bound can often be
excessive, leading to unnecessary computation, both in the
number of lifting loops that must be performed, and in the
cost of performing rational reconstruction on large integers.
Output sensitive lifting is the technique of attempting ra-
tional reconstruction at intermediate steps of the algorithm.
The term output sensitive lifting is used in [5, 6] and is incor-
porated into their algorithms. The idea of output sensitive
lifting has also been used in several other settings, such as
the computation of determinants by Kaltofen [14] where it
is referred to as early termination. Output sensitive lifting
was also studied in [4] for solving systems of equations over
cyclotomic fields. Use of output sensitive lifting can provide
both theoretical and practical improvements when solving
systems of equations exactly. It is applicable in both the
dense and sparse settings.

The commonly used bounds can be weak for several rea-
sons. Cramer’s rule tells us that the denominator of a so-
lution to an integer system Az = b will divide det(A) and
the Hadamard bound gives det(A) < ||Al|3. While tight in
some cases, the Hadamard bound is often weak, this is ex-
perimentally and probabilistically studied in [1]. Even if the
determinant is well approximated by the Hadamard bound,
or calculated exactly, it only provides an upper bound on
the solution denominator size and there are many situations
in which solutions will not meet this bound. Systems of
equations may have special structure leading to small solu-
tion size, or integral solutions. In [7] it was found that in
systems of equations arising from linear programming appli-
cations, the solution bitsize was often much lower than this
bound. In such cases, application of output sensitive lifting
has a huge impact on solution times.

The bitsize of the solution to a system of equations also
depends on the right hand side. A matrix which has very
complex solutions for particular right hand side vectors will
have trivial or uncomplicated solutions for others. This is
one way in which exact precision linear algebra differs sig-
nificantly from numerical linear algebra. If a matrix can
be successfully factored or inverted numerically, then solv-
ing the system for different right hand sides, represented in
machine precision, will require almost identical amounts of
computation. When solving a system exactly over the ratio-
nal numbers, varying the right hand side can have a drastic
effect on the bitsize of the solution and solve time.

In Section 2 we present background material in rational
reconstruction and give some related results. In Section 3
we review Dixon’s method and show how it is impacted by

Exact Solutions to Linear Systems of Equations using Output Sensitive Lifting

applying output sensitive lifting. In Section 4 we introduce a
new algorithm which integrates the iterative refinement pro-
cedure and rational reconstruction. Section 5 presents com-
putational results and Section 6 contains our conclusions.

2 Rational Reconstruction

2.1 Background

Rational reconstruction is a necessary component of all the
algorithms described in this paper. We briefly describe ra-
tional reconstruction and some related background material.
The following well known result appears in [24] as Corollary
6.3a.

Theorem 2.1. There exists a polynomial algorithm which,
for a given rational number o and natural number By tests
if there exists a rational number p/q with 1 < q < Bq and
| — p/q| < 1/(2B3), and if so, finds this (unique) rational
number.

If an upper bound B, is computed for the denomi-
nators of the components of x and a vector & satisfying
|# — x|eo < 1/(2B3) is computed, this theorem can be ap-
plied component-wise to Z to compute the exact solution x.
The following analogous result is given, in more generality,
as Theorem 5.26 in [26].

Theorem 2.2. There exists a polynomial algorithm which,
for given natural numbers n, M, By, Bq, with 2B, Bqs < M
tests if there exists a rational number p/q with ged(p,q) =1,
|p| < Bn and 1 < q < Bq such that p = nq mod M, and if
so, finds this (unique) rational number.

Using this result a rational system of equations can be
solved by scaling it to be integral, computing a solution to
the system modulo an appropriate integer M and recon-
structing the exact rational solution component-wise.

In both of the preceding theorems, the algorithms to re-
construct rational numbers rely on the Extended Euclidean
Algorithm (EEA) to compute continued fraction conver-
gents. The standard Euclidean Algorithm computes the
greatest common divisor of integers m,n by repeatedly cal-
culating the remainder of integer divisions. The EEA records
additional information along the way, including the con-
tinued fraction expansion of m/n which is computed as a
byproduct of the integer divisions. The continued fraction
convergents provide a sequence of increasingly accurate ra-
tional approximations. They are best approximations in the
sense that each convergent is closer to m/n than any num-
ber with smaller denominator. We use [ao;a1,...,ax] to
denote the continued fraction representation of a rational
number r, and we will call the rational number % repre-

senting [ao; a1, . . .,a;) the i*" convergent of r.

Algorithm 1 Euclidean Algorithm

Input: integers m,n
ro:=mn, r1:=m, i:=1
while r; # 0 do
Ti41 = Ti—1 mod T4
i:=i+1
end while
l:=1—1
Return: r;=ged(m, n)

Algorithm 1 gives a description of the Euclidean Algo-
rithm. The EEA will perform the same operations as the
Euclidean Algorithm and its output will include the remain-
der sequence 7o, ...,r; in addition to the quotient sequence

e T
ag,...,a;—1, where a; := Lw‘l

defined by:

1 0 i 1 .
QO:(O 1) and Q¢:Q¢,1(a11 0) Vi > 1.

There are several equivalent ways to define the matrix
sequence and this notation is the most convenient for our
purposes. We now state some basic results concerning con-
tinued fractions; these appear (with varying notation) in ei-
ther Section 3.2 of [26] or Section 12.2 of [22].

J and the matrix sequence

Remark 2.3. Suppose r = m/n for integers m and n > 1,
let r; be the output of Algorithm 1 and a;, Q; be as defined
above. Also let % be the it" convergent of r, and define

pi—2 =0, gi—2 = f, pi—1 =1, gi—1 = 0. Then the following
relations hold:

1. Fork >0, px = axpr—1+pr—2 and g = arqr—1+qr—2.

1
qiqi4+1 "

pi _ Pitl| _
qi qit1

3. If r >0 then

2.

Ll P L e B2

28R
[~}
-
Sk

P1
Q1<
4o Ifr <O then 22 <2t <o < <o < BB <

5. Q; = (pH p”) Vi>0

s

qi—1 Qgi-2

o (w) = ()
()= (B) = o (42) ().

A straightforward implementation of rational reconstruc-
tion will require O(d?) bit operations where d is the number
of bits used to represent the input. In recent articles, such
as [18, 20, 21], rational reconstruction algorithms that use
O(M(d) log(d)) bit operations where M (d) is the cost of mul-
tiplication of integers with size bounded by 2¢. Using fast
multiplication of [23] we have M (d) = O(dlog(d)loglog(d)).
This speedup of rational reconstruction is achieved using
similar ideas to the fast Extended Euclidean Algorithm.

2.2 Certifying Solution Vectors

We now consider some sufficient conditions that can be effi-
ciently checked to certify correctness of a rational system of
equations. A lemma similar to the following was given by [3]
and was used in [5, 6]. It can be used to certify correctness
of reconstructed solutions while requiring little computation.
Within this section we will use ||A|lmax = max |as;].

Lemma 2.4. Suppose A is a square integer matriz, y,b are
integer vectors, and d > 0 is an integer. If for some integer
M
Ay =bd mod M and
max(d[bloc, nl[Allmax|[yllec) < M/2

then Ay = bd.

Proof. Suppose the conditions hold but Ay — bd # 0. Since
Ay — bd must be integral and Ay = bd mod M we have
||Ay — bd||oc > M. But we also have

1Ay — bd|loo < [|Ay[loo + [|bd]|oo
< 2max(df|bloc, 2l Allmax|[ylloc) < M

which gives a contradiction. O

We also make the observation that the statement of this
lemma can be adjusted by replacing n||Al|lmax||y|lcc with
AT ||2|lyll2, and the proof will carry through identically by
the Cauchy-Schwartz inequality.

Corollary 2.5. Suppose A,b,y,d are as in Lemma 2.4. If
Ay = bd then d # 0 implies x = y/d solves Ax = b, and
d = 0 implies singularity of A.

Suppose a solution to a system of equations is computed
modulo p* for some integer k and rational reconstruction
is attempted without knowledge of valid bounds, by using
guessed bounds such as B, = Bg = [/p*/2] as in Theo-
rem 2.2. In such a case, since B,,, B4 are not known to be
valid, the reconstructed solution may be incorrect. Lemma
2.4 gives a very easily checked condition to certify correct-
ness of the solution. If the solution is known to satisfy the
modular system of equations, then checking the remaining
conditions of the theorem requires only a few multiplications,
in contrast to a high precision matrix-vector multiplication
required to evaluate the linear equations exactly.

We now provide an analogue for the case when rational
numbers are reconstructed from approximate solutions.

Lemma 2.6. Suppose A is a square integer matriz, b is an
integer vector and x s a rational vector that is known to
satisfy ||z — A7 0| < €. If & = y/d, where y is an integer
vector, and d is an integer satisfying d < 1/(n||Al|max€), then
Ax =0b.

Proof. Suppose & = A7'b and Az # b. Since Ay — bd # 0
is integral, ||Ay — bd||oc > 1. Next d < 1/(n||A|lmaxe) and
|l — Z|loo < € implies ||z — Z|loc < 1/(nd||Al|max). So we
have

1Ay — bdl|co = dl| Az = bllec = d[|A(z —)|
< dnf[Allmax||z — e <1

which gives a contradiction. O

The preceding lemma implies that if a rational solution
x is reconstructed from an approximate solution, where the
common denominator of the vector z is small enough, and its
accuracy is known to satisfy a required bound, then its cor-
rectness can be certified without evaluating the equations.

While Lemmas 2.4 and 2.6 provide conditions to quickly
certify correctness of solutions that have been reconstructed,
their conditions are not necessary, and a correct rational
solution may fail to satisfy them. The following example
illustrates that this gap can depend on both the dimension
and size of the data entries.

Example 2.7. Suppose A = al, for an integer a and I,
is the n dimensional identity matriz. For an n dimensional
vector b = [a,a,...,a]", z = y/d =[1,1,...,1]7/1 is a so-
lution to Az = b for all positive integers a,n. After solving
this system modulo M > 2 for a number M not dividing a,
the correct solution will be reconstructed successfully. How-
ever, the conditions in Lemma 2.4 will not be met unless a
solution is computed modulo M > 2na.

D. Stefty

This example also can be applied to Lemma 2.6, where we
see that any value of € < 1/2 is sufficient for the correct solu-
tion to be determined using rational reconstruction, however
the conditions are not satisfied unless the system is solved
to within an error € < 1/(2na).

Therefore, to design an algorithm that will compute and
certify the correct rational solution as soon as possible,
these techniques have both practical and theoretical draw-
backs. We also mention that if an incorrect solution vector
is checked for correctness by evaluating the linear equations
of the system, its incorrectness can likely be discovered after
evaluating only a small number of the equations. Therefore,
although evaluating all of the linear equations could be com-
putationally expensive, we expect identifying incorrectness
of solutions to be considerably faster.

We now provide some necessary and sufficient conditions
that can be used to verify correctness of a reconstructed
solution. While these conditions are not as easily checked as
those in the previously discussed results they can be easier
to verify than evaluating the equations using full precision.

Lemma 2.8. Suppose A is a square integer matriz, y,b are
integer vectors, d is a positive integer and x = y/d. Then
Az = b if and only if there exists an integer M > 1 such that

Ay=0bd mod M and |Az—b|_ < M/d.

Proof. If Az = b then for any integer M > 1 the modular
equation must hold and ||Az — bll.c = 0 < M/d. For the
reverse direction suppose Az # b, then for any positive in-
teger M Ay = bd mod M implies ||Ay — bd||cc > M, which
means ||Az — b||s > M/d so both conditions can not hold
at once. O

Thus, if solution y/d is known to satisfy Ay = bd
mod M, to check Az = b it is necessary and sufficient that
|[Az — b||ooc < M/d, which can be verified using approxima-
tions or truncated data. Similarly, if we have computed a
rational solution z = y/d satisfying ||Az — blj < €, this
result tells us that instead of explicitly checking Ax = b, it
is sufficient to select any positive integer M > d/e and ver-
ify that Ay = bd mod M. Evaluating this modular system
will require less computation than verifying the full precision
equations, especially when d/e is reasonably small.

Related results appear in [13] who observes that under
some assumptions, if the solutions at two (or more) consecu-
tive lifting steps are the same, then there is a high probability
that they give the correct answer. As our focus here is on
deterministic algorithms we refer the reader to this reference
for more information.

2.3 Warm Starting Rational Reconstruc-
tion

For the algorithm presented in Section 4 it is of interest to
understand how the output of the Extended Euclidean Al-
gorithm, and rational reconstruction, can change when its
input is slightly perturbed. Understanding this will help us
to perform warm starts for the rational reconstruction algo-
rithm corresponding to Theorem 2.1. The following appears
as Theorem A in [17]; related results appear in [20, 18].
Theorem 2.9. Let 2:—:1, Z—: be two consecutive convergents
to a number 8. Then these fractions are consecutive conver-
gents to « if and only if

1
ar(qe + qu—1)’

o P

gk

Exact Solutions to Linear Systems of Equations using Output Sensitive Lifting

This theorem gives conditions which can be used to ver-
ify that a sequence of continued fraction approximations is
correct up to a certain point. The following result applies
this theorem to the framework of rational reconstruction.

Theorem 2.10. Let x,« be a rational numbers satisfying
|z — a| < 1/(2B?) for some integer B. Suppose Z—: s any

continued fraction convergent of x such that qu < B. If

k > 3 then either Z:fz, z:*i Pl DPe gre two consecutive

dk—1" 9k

convergents of a.

Proof. Without loss of generality we may assume Z:—:i

Pk et s o [y PE—1 1
x < £&. First suppose la v | < sa— - Then by Remark

23ifk>1, g > qr—1 + qr—2, so we have

Pk—1
dk—1

1 < 1

a— <
kqe—1 — GQr—1(qr—1 + qr—2)

and by Theorem 2.9, 2=2 'Ph=1 510 two consecutive conver-

P ak—2’ k-1
gents of . So we may assume that | — Z::\ > qkqiq'
From |B& — PE=1) — and 2= < gz it follows that
qk dr—1 q}c‘,Qk—ll dr—1
2] _ 1 Pk g
7 < a. Finally |2 — af < 557 and o < 7E gives
1 1 1
‘ S s <53 V7T
q 2B 27 ~ qr(qr + qr—1)

By Theorem 2.9 we have f;’;—j, ’q’—: as two consecutive con-
vergents of o, which establishes our desired result. O

Thus, if rational reconstruction is performed using an ap-
proximate input z &~ «, the intermediate steps of the EEA
will be correct in all but possibly the last step. If x is later
refined to a more accurate approximation of & then in order
to apply rational reconstruction again, we can start the al-
gorithm where it left off, with the need for at most one step
backward.

3 Output Sensitive Lifting

Algorithm 2 describes Dixon’s well known algorithm for solv-
ing a integer system of equations Az = b [8]. His algorithm

Algorithm 2 Standard Dixon Algorithm

Input: A,b {Az = b is system to be solved}
Determine p not dividing det(A)
Compute A~ mod p
&:=0,i:=0,d:=0b, B :=2||A|2"7||b]|2
while p’ < B do
y:=A"'d modp

&=+ yp' {This will set £ = A~'b mod p*** }
= (=)

p
=1+ 1

end while)
x:=Reconstruct(z, p*)

Return: x {Solution to system}

has three steps; first an inverse of A mod p is computed,
second p-adic lifting is used to find a solution mod p*, then
the rational solution is reconstructed. Dixon showed that
if Ax = b is an n by n integer system of equations and
| Allmax, ||b]]cc are bounded by a constant, then the algorithm

terminates with at most O(n®log?(n)) bit operations. We
will review how that figure was obtained. For simplicity it is
assumed the entries of A and b are bounded by a constant.
He first finds a word sized prime p not dividing det(A). The
inversion of A mod p will require O(n®) operations. There
will be O(log(B)) lifting steps. In each lifting step, the com-
putational cost is dominated by computing d, which has in-
tegral entries that have bitsize at most O(log(n)). Thus
each lifting step will cost O(n?log(n)) giving a total cost
of O(n?log(n)log(B)) for all the lifting steps. The final
rational reconstruction, using the Extended Euclidean Al-
gorithm component-wise will cost O(nlog?(B)), (or faster
using recent accelerated rational reconstruction techniques).
We also have log(B) = log(2||A||l3"~!||b]|2) = O(nlog(n)), so
the bit complexity is

O(n® 4+ n?log(n) log(B) + nlog*(B)) = O(n®log® n).

Algorithm 3 describes the output sensitive version of
Dixon’s Algorithm. In this variant of the algorithm, in-
stead of waiting until the modulus of the intermediate solu-
tion T exceeds the bound B, rational reconstruction is at-
tempted at intermediate steps. Success of the rational re-
construction is not theoretically guaranteed at these steps,
so the reconstructed solution must be verified. By Theo-
rem 2.2, the reconstruction routine is guaranteed to suc-
ceed when p'*' exceeds the (unknown) quantity 25 where
log(S) = bitsize(A™'b). Using this notation, S represents
the largest value which is the product of a numerator and
denominator of a component of the solution vector, and we
have 28 < B = 2||A||3™!||b|l2. The bit complexity of the
output sensitive Dixon algorithm will depend on which steps
are specified as reconstruction steps. Here we will make the
choice that reconstruction is attempted at steps for which
i = 2% for some integer k. This choice of frequency is impor-
tant. For example, if reconstruction is attempted at prede-
termined constant length intervals the bit complexity of the
algorithm would change. For simplicity of the analysis we
will assume we are working with systems whose entries are
bounded by a constant.

Algorithm 3 Output Sensitive Dixon Algorithm

Input: A,b {Axz = b is system to be solved}
Determine p not dividing det(A)
Compute A~ mod p
z:=0,i:=0,d:=b
while solution not found do
y:=A"d mod p
T:=T+yp'
if reconstruction step then
x:=Reconstruct(z, p' ™)
Check Az =b
end if
d:= (d;Ay)

P
=1+ 1

end while

Return: x

{Solution to system}

Theorem 3.1. Let Ax = b be a square nonsingular inte-
ger system of equations. If the entries of A,b are bounded
by a constant and log(S) = bitsize(A™'b) then the Out-
put Sensitive Dixon Algorithm terminates with O(n® +
n?log(n) log(S)) bit operations.

Proof. Determining p and computing A mod p will cost
O(n®) operations. The number of loops will be O(log(S)) be-
cause our choice of reconstruction frequency ensures we will
perform at most twice the necessary number of loops. The
number of operations performed in each loop, excluding the
cost of the rational reconstruction attempts, is O(n? log(n))
as in the standard Dixon Algorithm. The computational
cost of performing rational reconstruction while in loop ¢ is
O(ni?). The cost of checking the solution in loop ¢ will be
O(n?i), since it requires performing a matrix-vector multi-
plication where the entries of the matrix are bounded by
a constant, and the entries of the vector are bounded by
200 Thus, since reconstruction will be attempted and ver-
ified at steps i = 2F for k = 1,2,..., O(loglog(S)) we have
the following bound on the total combined cost of rational
reconstruction and checking the solutions:

O(loglog(S))

3 (O(n(?k)2) + O(n22k))

k=1

= O(nlog?(S) 4+ n?log(9)).

Using log(S) = O(nlog(n)) we have the following bound
on the number of bit operations O(n® 4 n”log(n) log(S) +
nlog?(S) + n?log(S)) = O(n® + n?log(n)log(S)), which is
our desired result. O

We see that even if S = Q(B), this matches the worst case
complexity for the standard Dixon algorithm. If log(S) is
bounded by a constant, or is O(n/log(n)), the bit complexity
becomes O(n®) which is the best we could hope for.

4 An Integrated Approach

When used to find exact solutions to linear equations, ratio-
nal reconstruction is typically used as a separable routine,
called after or within an iterative lifting procedure. We show
a procedure to directly integrate rational reconstruction into
an iterative refinement procedure. Although this will not im-
prove the bit complexity of the output sensitive algorithm,
it is theoretically interesting and reduces the number of op-
erations.

The iterative refinement procedure for solving linear sys-
tems of equations calculates a highly accurate approximate
solution in order to apply Theorem 2.1 to reconstruct the
rational solution. The solution is first calculated approxi-
mately using numerical methods, then the error is computed
exactly and iteratively corrected. In order to guarantee cor-
rectness of the reconstructed solution, Cramer’s rule and the
Hadamard bound are used, as in Dixon’s method, to bound
the denominators of the solutions. The iterative structure of
this algorithm is similar to Dixon’s method and rational re-
construction can also be attempted at intermediate steps to
make it output sensitive. Algorithm 4 gives a description of
the iterative refinement algorithm similar to the algorithm
of Wan [27]. This algorithm does require the assumptions
that the final solution can be approximately represented as
a floating point number, and that the matrix can be success-
fully numerically factored or inverted.

By Theorem 2.10, if rational reconstruction is attempted
component-wise at an intermediate step of the lifting algo-
rithm, then many steps of the EEA performed will be cor-
rect, even if the reconstructed solution is not correct. Thus,
if rational reconstruction is performed at an intermediate

D. Stefty

Algorithm 4 Iterative Refinement Method

Input: A,b {Az = b is system to be solved}
Compute numerical LU factorization of A

N:=0 {Numerator of the approximation}
D=1 {Common denominator of approximation}
B = 2| 3"

A:=b {Error measure of solution at each step}

while D < B do
Compute & :~ A7'A
factorization}

{Using numerical LU
Choose an integer a < m where aZ is within
floating point range
Set [2] = a
A= aA — Al7]
D:=Dxa«a
N := N X a+ [%]
end while
Reconstruct z using N/D
Return: z

{Round to the nearest integer}
{Update the residual}
{Update the denominator}

{Solution to system}

step and it fails to find the correct rational solution, the in-
termediate steps of the EEA calculated can be stored and
used to warm start rational reconstruction in a later loop.
The following lemma gives an explicit formula for updating
the intermediate work of the EEA when a solution is refined.

Lemma 4.1. Let 7/ be a rational number and suppose at
the i'" step of the EEA the following have been computed

N _ (Pi-1 Pi-2 .
Qi (infl in72)’ i Titl-

Let m/n be a rational number for which Q; = Ql is known
to be a matriz_encountered in the application of the EEA.
Then if 7 = matd yhe following relation gives the values

no

of ri,Tit1, the remainders encountered at the i*" step of the
EFEA when applied to m,n:

(1) = (i) + a2,

Proof. By Remark 2.3 we have the following

(1) = () = (3) +2a ()
—a (o)+ eva(fe)

which gives our proposed formula. O

This gives us a nice way to update the remainder se-
quence, 7;,Tit+1, from 7;, #;41 without requiring to access m
or n. We need only know a scale factor o and difference A,
which might have a much smaller representation than m or
n.

Algorithm 5 gives a description of the iterative refinement
with integrated rational reconstruction. The basic structure
of this algorithm follows the methods of [27], but has been
modified to incorporate rational reconstruction within the
routine.

Observe that the numerator of the current approximate
solution which was stored as N in Algorithm 4 is no longer

Exact Solutions to Linear Systems of Equations using Output Sensitive Lifting

Algorithm 5 Integrated Iterative Refinement Method

Input: A,b {Az = b is system to be solved}

Compute numerical LU factorization of A

D:=1 {Common denominator of approximation}

(Qb,ré, i) = (I2,0,1) Vie1,...,dim(A) {Data for

EEA for each component}

A:=b {Error measure of solution at each step}

while solution not found do
Compute & :~ A71A
factorization}

{Using numerical LU

. A W
Choose an integer a < 1 lAllee where ad is within

TA—Aille
floating point range
Set [Z] = ad
A = aA — Alz]
D:=DXxa«a
approximation }
Update Q}, 74,7541 Vi using [#];, @ and Lemma 4.1
Perform additional steps of EEA on (Q},, 7%, 7},41) main-
taining ¢i_, < V2D
{The intermediate reconstructed solution z is defined
by, Ti = pl_1/dk1-}
Check Az =b {Use full precision check
if step in loop is a power of 2, otherwise use the quick
check of Lemma 2.6}

end while

Return: =

{Round to the nearest integer}
{Update the residual}
{Update the common denominator of

{Solution to system}

explicitly stored, but is implicitly represented by the par-
tially reconstructed solution components and remainders
which are updated at each step. At each step we know that
the approximation of the i*" solution component which was
represented by N;/D in Algorithm 4 is stored implicitly as

N; i :
(5)-a (1)

in Algorithm 5. Since the intermediate reconstructed solu-
tions are always available and updated, it makes sense to
apply the quick correctness check of Lemma 2.6 frequently.
We still apply the expensive full precision system check, but
with the same frequency as in Algorithm 3 so we do not
increase the worst case complexity but still guarantee the
algorithm terminates after O(log(S)) loops.

Remark 4.2. If A is square matriz which can successfully
be numerically factored, the entries of A,b and A™'b are
bounded by a constant and log(S) = bitsize(A™'b) then the
integrated iterative-refinement method as described in Algo-
rithm 5 will terminate with the correct solution to Ax = b
after performing O(n® + n?log(n) log(S)) bit operations.

The structure of the algorithm here mirrors the Output
Sensitive Dixon’s method which was analyzed in the previous
section, so we only note the differences here. The non-output
sensitive version of the iterative-refinement method is shown
to be correct and analyzed in [27]. The only significant dif-
ference here is the rational reconstruction, and by Theo-
rem 2.10 we will perform asymptotically the same amount
of computation as if rational reconstruction had been applied
a single time to each component at the time of termination.
Doing the additional checks if Az = b using Lemma 2.6 at
every loop of the refinement procedure can be done in con-
stant time in each loop. We note that for p-adic lifting, this

approach can not be applied in the same way. Iterative re-
finement computes an approximate solution in a top down
fashion, with each refinement making smaller and smaller ad-
justments leaving the leading digits unchanged. For p-adic
lifting, the solution is computed from the bottom up, and
the leading digits of the modular solution change at every
iteration.

5 Computational Results

In this section we present computational results to compare
the performance of the methods described in this paper.
Source codes for the methods tested here and scripts to gen-
erate the test problems are freely available at

www.isye.gatech.edu/~dsteffy/rational/

for any research purposes.

5.1 Implementation

Output sensitive lifting can be applied in both the sparse
and dense case. It can be applied in both the modular (i.e.
Dixon) or numerical (iterative refinement) settings. For our
computations we have chosen to evaluate it in the dense
setting using both a Dixon based solver and an iterative
refinement based solver. The reason we have chosen to con-
sider both these methods is that the Dixon based solver can
be tested on some well known problems which are too ill-
conditioned for a numerical solver to handle, and testing
the iterative refinement solver allows us to evaluate the inte-
grated iterative-refinement method in comparison with the
standard and output sensitive methods. Moreover, in [7]
output sensitive lifting was tested within many methods in
the sparse setting and found it to be highly successful for a
large class of applied problems.

In all of the implementations we have produced code
that works for dense rational systems of equations. The ra-
tional inputs are scaled to be integer before applying the
algorithms. We use a standard implementation of ratio-
nal reconstruction, employing a technique referred to as
the DLCM method in Section 3.2.3 of [7]. This technique
amounts to storing the LCM of the denominators of the re-
constructed solution vector and using this information to
accelerate component-wise reconstruction by fixing factors
of the component denominators or terminating early if this
LCM grows too large.

Our implementation of Dixon’s algorithm is written in
C/C++ and uses the FFLAS and FFPACK packages [11],
which provide fast BLAS and LAPACK routines for finite
fields in C+4. We implemented both the standard Dixon
algorithm as described in Algorithm 2 along with the output
sensitive Dixon algorithm as given in Algorithm 3.

The implementation of the iterative-refinement methods
is written in C and uses the BLAS [9, 16] and LAPACK 2]
routines for the dense numerical linear algebra. We have
used the ATLAS package [28] which provides automatically
tuned BLAS and a subset of LAPACK routines. We imple-
mented three strategies for rational reconstruction for the
iterative-refinement method. First, we use the Hadamard
bound as in Algorithm 4; second, we attempt reconstruction
at loops which are a power of two, analogous to Algorithm
3; third, we implement a version of Algorithm 5 where the
partially reconstructed solutions are stored from step to step.

We also comment that the purpose of our implementa-
tions were to accurately compare ideas described in this ar-
ticle in a straightforward implementation. The implementa-
tions are not expected to be competitive with state of the
art solvers such as LinBox [10].

5.2 Test Problems

The goal of our computational experiments is two fold. We
seek to evaluate how output sensitive lifting can accelerate
linear system solving on problems for which the bitsize of
the final solution is small, problems where it should have
a distinct advantage. Additionally, we seek to compare the
speed of the standard and output sensitive algorithms on
problems whose output is very large, to verify that in the
worst, case there is no significant drawback to using output
sensitive lifting.

In order to meet these goals and adequately compare the
algorithms we chose a variety of problems in our test set.
Table 1 provides descriptions of the classes of dense matrices
which we use to test our methods.

Table 1: Description of test matrices

Matrix Type Construction

Hodaard Do for Dy = (1) and Do =(G2/2 - 5312)

Random R, {Rn}i;j € [-100,100] if ¢ # j, and
{Rn}si = 10,000

Hilbert H,, {Hn}ij = 1/(Z +35— 1)

Vandermonde V,, {Vp}i; = P

Lehmer L, {L»}:; = min(s, j)/ max(z, j)

We mention that there was some difficulty in choosing
which problems to look at. It is difficult to find an explicit
linear system of equations for which the bitsize of the so-
lution meets the Hadamard bound exactly. The Hadamard
matrices have determinants which meet the Hadamard de-
terminant bound tightly. However, the solution bitsize will
not meet this bound, because although det(D,,) = 2", for
any right hand side vector with bounded bitsize the solution
will not have bitsize ©(n) because D' = %Dn.

We also consider randomly generated dense matrices. For
these matrices we choose the entries uniformly at random
from integers with absolute value at most 100, and assign
the diagonal entries all to 10,000 to ensure numerical stabil-
ity. The Hilbert matrix is a famous and often cited example
of an ill-conditioned matrix, and it is impossibly difficult for
numerical solvers to tackle, even at low dimension. We use
a type of Vandermonde matrix with the rows generated by
increasing integers as described in the table. The Lehmer
matrices are also a well known class of ill-conditioned ma-
trices.

Choosing right hand sides for the systems of equations is
also an important consideration. Some computational lin-
ear algebra studies use arbitrary right hand sides, such as
setting b equal to the sum of the columns in A, giving a
solution of all ones. While in the numerical setting, this is
a perfectly reasonable right hand side to consider, it is not
appropriate in our case because the algorithms studied here
have run times depending on the bitsize of the solutions.
For our evaluations we will use the unit vector e; as the
right hand side for each system. This is a reasonable choice

D. Stefty

because it corresponds to computing the first row of the in-
verse matrix, which should be adequately representative of
the typical solution complexity.

5.3 Computations

Computations were performed on a linux machine with a
2.4 GHz AMD Opteron 250 processor and 4GB of RAM.
Table 2 compares the standard Dixon algorithm and the
output sensitive Dixon algorithm on the entire problem set;
the solve times are given in seconds. The table also in-
cludes the log of the Hadamard bound on the solution bitsize
log(B) = log(2||Al|2""||b]|2), along with the actual value
log(S) = bitsize(A™'b) < log(B) — 1. In addition to the to-
tal solution time for each method we include a profile of how
the time was spent in different stages of the algorithm. We
divide the solution time between the following three tasks:
the finite field matrix factorization, the p-adic lifting steps,
and the rational reconstruction.

The first observation we make from the table is that in all
problem classes, other than the randomly generated matri-
ces, the Hadamard bound was a very weak upper bound on
the solution size. On the set of randomly generated matrices,
the Hadamard bound does provide a fairly tight bound on
the final solution bitsize, and it is on these problems where
we might expect the standard Dixon algorithm to have an
advantage over the output sensitive Dixon. We see that even
on these problems, the output sensitive Dixon algorithm has
approximately the same solution times. This implies that
even if the Hadamard bound is nearly tight our strategy for
output sensitive lifting only performs a negligible amount of
additional computation.

For the remainder of the problem set we see the output
sensitive method having an advantage of several orders of
magnitude. For example, we are able to compute the first
row of the inverse of the dimension 2000 Hilbert matrix in
just over 20 minutes. For some of these special systems, the
representation of the matrices, and the representation of the
scaled integer matrices, becomes very large and can be a
limiting factor in the computation. In order to perform such
special purpose computation the programs could be modified
to perform the necessary calculations with out storing the
matrix explicitly.

When testing the iterative refinement solver the Hilbert,
Vandermonde and Lehmer matrices are were too numeri-
cally difficult for the numerical LAPACK solver to handle.
We found that the integrated method described in section
4 did not make the solver any faster than using the basic
output sensitive lifting strategy. Comparing the versions of
the iterative refinement method using and not using output
sensitive lifting led to very similar solve times and timing
profile breakdowns as Dixon’s algorithm so we omit these
results. We also note that the portion of the time the itera-
tive refinement spent on rational reconstruction was similar
to that of the Dixon solver, so at least for this test set the
actual time spent on rational reconstruction was not a bot-
tleneck and thus any speedups would not be expected to
improve the speed.

6 Conclusion

We have shown how output sensitive lifting can improve
algorithms for symbolically solving systems of linear equa-
tions. Output sensitive algorithms allow for systems of ra-
tional linear equations to be solved very quickly when the

Exact Solutions to Linear Systems of Equations using Output Sensitive Lifting

Table 2: Solve times for Dixon algorithms in seconds

Problem Details

Standard Dixon

Output Sensitive Dixon

Matrix log(B) log(S) Total Factor Lift R.R. Total Factor Lifting R.R.
Dio24 12284 10 30.07 0.46 29.03 0.58 1.10 0.45 0.07 0.58
Dooas 24572 11 231.09 2.81 225.90 2.39 5.37 2.74 0.29 2.33
D006 57339 12 2211.46 18.86 2183.30 9.30 28.98 18.25 1.22 9.51
Rao0 5588 5297 3.08 0.02 0.71 2.34 3.08 0.02 0.70 2.35
Rs00 13988 13267 57.99 0.18 9.84 47.97 57.81 0.18 9.65 47.98
R1000 27988 26555 611.11 0.87 73.92 536.31 610.11 0.87 73.23 536.02
Hs00 1432292 1269 5221.53 0.18 5220.76 0.59 6.45 0.18 5.95 0.32
Hioo00 5742567 2540 188255.63 0.86 188249.50 5.27 85.32 0.86 82.54 1.92
Hs000 22997129 5084 - - - - 1224.31 4.34 1202.31 17.65
Vioo 130944 793 13.53 0.00 13.40 0.12 0.16 0.00 0.07 0.09
V300 1474141 3205 4145.62 0.06 4138.51 7.04 8.54 0.06 4.43 4.05
V500 4469528 5948 71704.65 0.18 71654.01 50.45 69.46 0.18 44.73 24.55
Lso0 727997 3 280.74 0.18 280.41 0.15 0.31 0.18 0.01 0.12
L1000 2885996 3 3493.41 0.87 3491.85 0.70 1.40 0.87 0.04 0.50
L2000 11531996 3 56750.15 4.39 56742.39 3.37 6.49 4.36 0.13 2.00

final solutions are small in size, while maintaining the same
worst, case bit complexity even when solutions are large in
size. Our tests were performed on several types of dense
systems with a variety of characteristics.

We introduced a way to warm start the rational recon-
struction portion of the iterative refinement method. While
this did not give a performance increase over the output sen-
sitive version of this algorithm there may be other settings
in which warm starting the EEA or rational reconstruction
could prove helpful.

Throughout this paper we have primarily focused on out-
put sensitive lifting applied to dense systems of equations;
this technique is also fully applicable in the sparse setting.
Output sensitive lifting an important tool for solving sys-
tems of linear equations exactly. Our computations suggest
that any exact precision solver relying on iterative methods
should employ output sensitive lifting.

References

[1] J. Abbott and T. Mulders. How tight is Hadamard’s
bound? Ezperiment. Math., 10(3):331-336, 2001.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, third edition, 1999.

[3] S. Cabay. Exact solution of linear equations. In SYM-
SAC ’71: Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, pages 392-398,
New York, NY, USA, 1971. ACM.

[4] L. Chen and M. Monagan. Algorithms for solving linear
systems over cyclotomic fields. Submitted, 2008.

[5] Z. Chen. A BLAS based C library for exact linear al-
gebra over integer matrices. Master’s thesis, School of
Computer Science, University of Waterloo, 2005.

[6] Z. Chen and A. Storjohann. A BLAS based C library
for exact linear algebra on integer matrices. In ISSAC
’05: Proceedings of the 2005 International Symposium
on Symbolic and Algebraic Computation, pages 92-99,
New York, NY, USA, 2005. ACM.

[7] W. J. Cook and D. E. Steffy. Solving very sparse ratio-
nal systems of equations. Submitted, 2009.

[8] J. D. Dixon. Exact solution of linear equations using
p-adic expansion. Numerische Mathematik, 40:137-141,
1982.

[9] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S.
Duff. A set of level 3 basic linear algebra subprograms.
ACM Transactions on Mathematical Software, 16(1):1-
17, 1990.

[10] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. J. Turner,
and G. Villard. LinBox: A generic library for ex-
act linear algebra. In A. M. Cohen, X.-S. Gao, and
N. Takayama, editors, Mathematical Software: ICMS
2002, pages 40-50, Singapore, 2002. World Scientific.

[11] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear al-
gebra over word-size prime fields: the FFLAS and FF-
PACK packages. ACM Transactions on Mathematical
Software, 35(3):Article 19, 2008.

[12] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann,
and G. Villard. Solving sparse rational linear sys-
tems. In ISSAC ’06: Proceedings of the 2006 inter-
national symposium on Symbolic and algebraic compu-
tation, pages 63-70, New York, NY, USA, 2006. ACM.

[13] I. Z. Emiris. A complete implementation for computing
general dimensional convex hulls. International Journal
of Computational Geometry and Applications, 8:223—
253, 1998.

(14]

(15]

(22]
23]
[24]

(25]

E. Kaltofen. An output-sensitive variant of the baby
steps/giant steps determinant algorithm. In ISSAC
’02: Proceedings of the 2002 international symposium
on Symbolic and algebraic computation, pages 138-144,
New York, NY, USA, 2002. ACM.

E. Kaltofen and B. D. Saunders. On Wiedemann’s
method of solving sparse linear systems. In Proceed-
ings of the Ninth International Symposium on Applied,
Algebraic Algorithms, Error-Correcting Codes, Lecture
Notes in Computer Science 539, pages 29-38, Heidel-
berg, Germany, 1991. Springer.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for fortran
usage. ACM Transactions on Mathematical Software,
5(3):308-323, 1979.

D. H. Lehmer. Euclid’s algorithm for large numbers.
The American Mathematical Monthly, 45(4):227-233,
1938.

D. Lichtblau. Half-gcd and fast rational recovery. In
ISSAC ’05: Proceedings of the 2005 international sym-
posium on Symbolic and algebraic computation, pages
231-236, New York, NY, USA, 2005. ACM.

T. Mulders and A. Storjohann. Diophantine linear sys-
tem solving. In ISSAC ’99: Proceedings of the 1999 in-
ternational symposium on Symbolic and algebraic com-
putation, pages 181-188, New York, NY, USA, 1999.
ACM.

V. Y. Pan and X. Wang. Acceleration of Euclidean
algorithm and rational number reconstruction. SIAM
Journal of Computing, 32:548-556, 2003.

V. Y. Pan and X. Wang. On rational number recon-
struction and approximation. SIAM Journal of Com-
puting, 33:502-503, 2004.

K. Rosen. Elementary Number Theory. Addison Wesley
Longman, New York, 2000.

A. Schonhage. Schnelle berechnung von kettenbruchen-
twicklungen. Acta Inform., 1:139-144, 1971.

A. Schrijver. Theory of Linear and Integer Program-
ming. Wiley, Chichester, UK, 1986.

S. Ursic and C. Patarra. Exact solution of systems of
linear equations with iterative methods. SIAM Jour-
nal on Matriz Analysis and Applications, 4(1):111-115,
1983.

J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, Cambridge, UK,
2003.

Z. Wan. An algorithm to solve integer linear systems
exactly using numerical methods. Journal of Symbolic
Computation, 41:621-632, 2006.

R. C. Whaley and A. Petitet. Minimizing develop-
ment and maintenance costs in supporting persistently
optimized BLAS. Software: Practice and Ezxperience,
35(2):101-121, 2005.

D. H. Wiedemann. Solving sparse linear equations over
finite fields. IEFEE Trans. on Inf. Theory, 32:54—62,
1986.

D. Stefty

