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Abstract

This paper describes computations of the circumradius of cyclic polygons given by the
lengths of the sides. Extending the results of Robbins (1994) and Pech (2006), we succeeded
in explicitly computing the defining polynomials of the radius of cyclic hexagons and hep-
tagons, with degrees 14 and 38 respectively. We discuss efficient algorithms for elimination by
resultants, and characterize the obtained polynomials to confirm their correctness, considering
equilateral cases.

1 Introduction

In this study, we consider a classic problem in Euclidean geometry for cyclic polygons; that is,
polygons inscribed in a circle. In particular, we focus on computing the circumradius r of cyclic
n-gons given by the lengths of sides a1, a2, . . . , an. Recently, the case for cyclic pentagons was solved
by elaborate computations. D. P. Robbins [4] showed that the defining polynomial of r2 has degree
7, and P. Pech [3] computed the actual form of this polynomial.

In our previous paper [2], it was pointed out that Japanese mathematicians in the 17th century
had already derived the identical equation with degree 14 for the circumdiameter of cyclic pentagons,
even though the equation itself was not explicitly described. In addition, the author briefly reported
the circumradius of cyclic hexagons at the ISSAC2010 poster session [1].

In this paper, we show the details of computations for cyclic hexagons and heptagons to give an
efficient algorithm. Using these computations, we have explicitly obtained polynomials that define
the circumradius of hexagons and heptagons, with degrees 14 and 38, respectively, supporting the
conjecture by Robbins. Moreover, we elucidate the actual forms of these polynomials and confirm
their correctness considering degenerated or equilateral cases.

To the best of our knowledge, there exist no other reports in which the circumradii of hexagons
and heptagons are explicitly computed. However, the result for heptagons is already so huge that it
seems impossible to handle cyclic octagons by analogous algorithms using existing computer algebra
systems.

∗This work was supported by a Grant-in-Aid for Scientific Research (22500004) from the Japan Society for the
Promotion of Science (JSPS).
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2 Previously known results

2.1 Circumradius of cyclic quadrilateral

Firstly, we consider the circumradius r of a triangle with side lengths a1, a2, and a3. It is straight-
forward to obtain the following relation using cosine and sine rules

(a41 + a42 + a43 − 2a21a
2
2 − 2a22a

2
3 − 2a23a

2
1)r

2 + a21a
2
2a

2
3 = 0. (1)

In the following, we let x := r2 and consider the defining polynomial in x for each inscribed polygon.
From the above equation, we express the defining polynomial for a cyclic triangle as

Φ3(a1, a2, a3; x) := (a41 + a42 + a43 − 2a21a
2
2 − 2a22a

2
3 − 2a23a

2
1)x+ a21a

2
2a

2
3. (2)

Solving Equation (1) with r, we obtain the formula of Heron

r =
a1a2a3√

(a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 + a3)(a1 + a2 − a3)
. (3)

We compute the circumradius of a cyclic (n+1)-gon by recurrently using the result for an n-gon.
In this process, we use an auxiliary polynomial F3 by replacing a2i with bi in Φ3 for computational
efficiency

F3(b1, b2, b3; x) := (b21 + b22 + b23 − 2b1b2 − 2b2b3 − 2b3b1)x+ b1b2b3. (4)

Secondly, we divide a given cyclic quadrilateral by a diagonal with length u into two triangles
with lengths of sides {a1, a2, u} and {a3, a4, u}. Since these triangles have a circumcircle in common,
we compute the following resultant to eliminate v(:= u2)

F4(b1, b2, b3, b4;x) := Resv(F3(b1, b2, v;x), F3(b3, b4, v;x))/x
2, (5)

where the redundant factor x2 is removed. When we let Φ4(a1, a2, a3, a4;x) := F4(a
2
1, a

2
2, a

2
3, a

2
4;x),

this polynomial is factored as follows

Φ4(ai; x) = ((−a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)(a1 + a2 + a3 − a4)x
−(a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3))

× ((a1 + a2 + a3 + a4)(a1 − a2 − a3 + a4)(a1 − a2 + a3 − a4)(a1 + a2 − a3 − a4)x
−(a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3)) .

(6)
Solving the first factor, we obtain the classic result of Brahmagputa

r =

√
(a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3)

(−a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)(a1 + a2 + a3 − a4)
. (7)

This result means that the polynomial Φ4(a1, a2, a3, a4;x) in Equation (6) defines the circumradii of
a cyclic quadrilateral including convex and non-convex cases for a given set of lengths {a1, a2, a3, a4}.
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2.2 Circumradius of cyclic pentagon

From the computation in the previous subsection, we straightforwardly obtain the following recur-
rence relation for n > 3{

Fn(b1, . . . , bn;x) := Resv(Fn−1(b1, . . . , bn−2, v; x), F3(bn−1, bn, v; x))/x
ℓ

Φn(a1, . . . , an;x) := Fn(a
2
1, . . . , a

2
n; x).

(8)

We should note that the power ℓ of the redundant factor xℓ cannot be predicted before computing
the resultant.

Similarly to computing Φ4(ai; x), we compute Φ5(ai; x) for the circumradius of a cyclic pentagon
as follows

F5(b1, . . . , b5; x) := Resv(F4(b1, b2, b3, v;x), F3(b4, b5, v;x))/x
Φ5(a1, . . . , a5; x) := F5(a

2
1, . . . , a

2
5; x)

= A7x
7 + · · ·+ A1x+ A0 (Ai ∈ Z[a1, . . . , a5]).

(9)

In this paper, we put aside the reduction of Φn(ai;x) using the symmetry among ai’s, and focus on
the number of terms in the expanded form of the defining polynomials Φn(ai;x). If we expand all
the Ai’s, this Φ5(ai; x) has 2,922 terms in Z[a1, . . . , a5, x].

We characterize the polynomial Φ5(ai; x) by considering special cases of side lengths a1, . . . , a5
to confirm its correctness.

• If we consider the case degenerated to a quadrilateral letting a5 := 0, we obtain

Φ5(a1, a2, a3, a4, 0;x) = x3 {Φ4(a1, a2, a3, a4; x)}2 . (10)

• If we consider the equilateral case, we obtain the following equation

Φ5(1, 1, 1, 1, 1;x) = 1215x7 − 3240x6 + 3618x5 − 2205x4 + 795x3 − 170x2 + 20x− 1
= (5x2 − 5x+ 1)(3x− 1)5 = 0.

(11)
Therefore, the radii of the circumcircles are

r =

√
1

2
+

√
5

10
,

√
1

2
−

√
5

10
,

1√
3
, (12)

which respectively correspond to the cases of regular pentagon, regular pentagram, and (five
degenerated) regular triangles.

3 Circumradius of cyclic hexagon

The degrees of defining polynomials Φn(ai;x) are conjectured by Robbins as follows [3][4]. Let

km :=
m−1∑
j=0

(m− j)

(
2m+ 1

j

)
; (13)

that is, let ki := 1, 7, 38, 187, 874, . . . (i = 1, 2, 3, . . .). Then,
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• the degree in x of Φ2m+1(ai; x) is km, and

• the degree in x of Φ2m+2(ai;x) is 2km, where Φ2m+2 is factored into the product of two
polynomials with each degree km.

We computed the case of cyclic hexagon (m = 2), using the recurrence relation of Equation (8).
As a result, we obtained a polynomial with degree 14 as conjectured by Robbins

F6(b1, . . . , b6;x) := Resv(F5(b1, b2, b3, b4, v; x), F3(b5, b6, v; x))/x
8

Φ6(a1, . . . , a6; x) := F6(a
2
1, . . . , a

2
6;x)

= B14x
14 + · · ·+B1x+B0 = 0 (Bi ∈ Z[a1, . . . a6]).

(14)

This computation required 95 seconds of CPU time in the following environment: Maple14 (Win64),
Xeon (2.93 GHz)×2, 24 GB RAM.

Next, we factorized Φ6(ai; x), and obtained

Φ6(ai;x) = ϕ(ai; x) · φ(ai; x) (degxϕ = degxφ = 7), (15)

using approximately 9.0 hours of CPU time in the above computational environment. Both ϕ and
φ have 19,449 terms and Φ6 has 497,417 terms, in their expanded forms.

Finally, we characterize the polynomial Φ6 considering special cases of given lengths a1, . . . , a6
as in Section 2.2. From the facts shown below, we believe that the obtained Φ6(ai;x) is the correct
polynomial for a cyclic hexagon.

• If we put a6 := 0 in ϕ(ai;x) and φ(ai; x), we have

ϕ(a1, . . . , a5, 0;x) = φ(a1, . . . , a5, 0;x) = Φ5(a1, . . . , a5;x); (16)

hence, the following relation between Φ6 and Φ5 holds

Φ6(a1, . . . , a5, 0;x) = {Φ5(a1, . . . , a5;x)}2 . (17)

• If we consider equilateral cases, we have

ϕ(1, 1, 1, 1, 1, 1;x) = (3x− 1)(2x− 1)6, (18)

each factor of which respectively corresponds to a regular triangle and a regular square (6-
fold), and we also have

φ(1, 1, 1, 1, 1, 1;x) = 0 (identically), (19)

which means that a regular hexagon cannot be expressed by ϕ(ai;x), φ(ai;x), nor Φ6(ai; x).

4 Circumradius of cyclic heptagon

In order to compute the circumradius of a cyclic heptagon, we need to compute the following
resultant using the recurrence relation of Equation (8)

F7(b1, . . . , b7;x) := Resv(F6(b1, b2, b3, b4, b5, v;x), F3(b6, b7, v;x))/x
ℓ. (20)
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Unfortunately, this computation seemed too complicated to handle directly. Hence, we took the
following steps. First, F6 and F3 are expressed as polynomials in v{

f(v) := F6 = p16v
16 + · · ·+ p1v + p0 (pi ∈ Z[b1, . . . , b5, x])

g(v) := F3 = q2v
2 + q1v + q0 (qi ∈ Z[b6, b7, x]) .

(21)

Next, instead of Resv(F6, F3), we compute the pseudo-remainder of f(v) divided by g(v)

h(v) := premv(f, g) = r1v + r0 (ri ∈ Z[b1, . . . , b7, x]) . (22)

Hence, we need to subsequently compute Resv(g, h), but these polynomials are still too large to
handle with the built-in function for resultants in Maple14. On the other hand, we should note that

Resz(az
2 + bz + c, dz + e) =

∣∣∣∣∣∣
a b c
d e

d e

∣∣∣∣∣∣ = ae2 + cd2 − bde, (23)

which simply expresses the resultant of two polynomials with degrees two and one. Therefore, we
obtain

ψ(bi; x) := Resv(g, h) = q2r
2
0 + q0r

2
1 − q1r2r1, (24)

which means that we have eliminated v from f(v) and g(v). This depends on the specification of
Maple14 that holds ψ(bi;x) in an unexpanded form until it is explicitly ordered to expand. These
steps required about 434 seconds of CPU time in the same environment shown in Section 3.

Finally, removing the redundant factor, we obtain
F7(b1, . . . , b7;x) := ψ(b1, . . . , b7;x)/x

21

Φ7(a1, . . . , a7;x) := F7(a
2
1, . . . , a

2
7;x)

= C38x
38 + · · ·+ C1x+ C0 = 0 (Ci ∈ Z[a1, . . . a7]).

(25)

Here we remark that each Ci is so large that we cannot expand Φ7(ai;x) in our computational envi-
ronment. For example, the maximum number of terms among Ci’s is 19,464,837 for C19. However,
we have confirmed that Φ7(ai; x) has degree 38 in x as conjectured by Robbins, and we believe that
the obtained Φ7(ai;x) is correct from its characteristics shown below.

• The coefficients have the following structures{
C38 =

∏64(a1 ± a1 ± a2 ± a3 ± a4 ± a5 ± a6 ± a7) (all combinations),
C0 = a201 a

20
2 a

20
3 a

20
4 a

20
5 a

20
6 a

20
7 .

(26)

• If we put a7 := 0, we have the following relation between Φ7 and Φ6

Φ7(a1, . . . , a6, 0;x) = x10 {Φ6(a1, . . . , a6;x)}2 . (27)

• If we consider equilateral cases, we have

Φ7(1, . . . , 1;x) = (7x3 − 14x2 + 7x− 1)(5x2 − 5x+ 1)7(3x− 1)21. (28)

The first factor 7x3 − 14x2 + 7x− 1 is derived from the formula for a septimal angle

sin 7θ = −64 sin7 θ + 112 sin5 θ − 56 sin3 θ + 7 sin θ, (29)

for θ = π/7 and sin θ = 1/(2r). Therefore, this factor represents a regular heptagon and
two types of star-like heptagons. The second factor corresponds to a regular pentagon and
pentagram (7-fold each), and the third factor corresponds to a regular triangle (21-fold).

5



Radius of Cyclic Hexagons and Heptagons TBA

5 Concluding remarks

n Degree No. of terms
3 1 7
4 2 71
5 7 2,922
6 14 497,417
7 38 337,550,051

Table 1: Defining polynomial Φn(ai;x) of circumradius of cyclic n-gon

In this study, we succeeded in computing the circumradius of cyclic hexagons and heptagons,
and investigated the characteristics of each defining polynomial. We summarize the shapes of
Φn(ai;x) for n = 3, . . . , 7 in Table 1. The degrees 14 for a hexagon and 38 for a heptagon support
the conjecture by Robbins. As a result, we believe that it is a significant breakthrough to have
obtained Φ6(ai;x) and Φ7(ai;x) in explicit forms.

If we try to compute the circumradius of a cyclic octagon, we have to compute the following
resultant

F8(b1, . . . , b8; x) := Resv(F7(b1, b2, b3, b4, b5, b6, v;x), F3(b7, b8, v;x))/x
ℓ. (30)

However, F7 is already so huge (nearly 15 GB) that it seems impossible to handle octagons by a
similar approach to that presented in Section 4 using existing computer algebra systems.
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