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Abstract

Most computer algebra systems incorrectly simplify

z − z√
w2

w3
− 1

w
√
w2

to 0 rather than to 0/0. The reasons for this are:
1. The default simpli�cation doesn't succeed in simplifying the denominator to 0.
2. There is a rule that 0 is the result of 0 divided by anything that doesn't simplify to

either 0 or 0/0.
Many of these systems have more powerful optional transformation and general purpose

simpli�cation functions. However that is unlikely to help this example even if one of those
functions can simplify the denominator to 0, because the input to those functions is the result
of default simpli�cation, which has already incorrectly simpli�ed the overall ratio to 0. Try it
on your computer algebra systems!

This article describes how to simplify products of the form wα
(
wβ1

)γ1 · · · (wβn)γn correctly
and well, where w is any real or complex expression and the exponents are rational numbers.

It might seem that correct good simpli�cation of such a restrictive expression class must
already be published and/or built into at least one widely used computer-algebra system, but
apparently this issue has been overlooked. Default and relevant optional simpli�cation was
tested with 86 examples on 5 systems with n = 1. Using a spectrum from the most serious
�aw being a result that is not equivalent to the input somewhere to the least serious being not
rationalizing a denominator when that doesn't cause a more serious �aw, the overall percentage
of most �aw types is alarming:

�aw: 6≡ 0-recognition cancelable
singularity

extra
factor excessive |γ1| ¬ canonical ¬ idempotent ···√

···

%: 11 50 25 16 32 39 0.4 6

1 Introduction

�When you are right you cannot be too radical;�
� Martin Luther King Jr.

First, a few crucial de�nitions:
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De�nition. Default simpli�cation is what a computer-algebra system does to a standard math-
ematical expression when the user presses Enter or Shift Enter , using factory-default
mode settings without enclosing the expression in an optional transformational function such as
expand(. . .), factor(. . .), or simplify(. . .).

Default simpli�cation is the minimal set of transformations that a system does routinely. Default
simpli�cation is called evaluation in Mathematica® and in some other systems. Any �xed set of
default transformations is likely to omit ones that are wanted in some situations and to include
ones that are unwanted in other situations. Therefore:

� Most systems also provide optional transformations done by a function such as expand (. . .)
or by assigning a certain value to a control variable such as trigExpand← true.

� Some systems provide a way to disable default transformations. For example the Maxima as-
signment simp : false suppresses most simpli�cation, whereas the Maxima box(. . .), Mathe-

matica Hold[. . .] and Maple freeze(. . .) functions suppress most or all transformations on their
argument.

De�nition. Simpli�cation is idempotent for a class of input expressions if simpli�cation of the
result (by the same default or optional transformations) yields the same result.

De�nition. A conveniently cancelable singularity is a removable singularity that can be re-
moved exactly by functional identities such as sin(2w) ≡ 2 sin(w) cos(w) together with transforma-
tions such as a common denominator followed by factoring out the gcd of any resulting numerator
and denominator, then using the law of exponents wµwν → wµ+ν .

For example, z3z−2 → z, sin(2z)/ sin(z)→ 2 cos(z), and

1

c (cx− 1)
+

1

c
→ x

cx− 1
,

which cancels the removable singularity at c = 0, leaving the non-removable singularity along the
hyperbola cx = 1. However the removable singularity in sin(z)/z is not conveniently cancelable be-
cause it can't be canceled exactly except inconveniently by means such as introducing the piecewise
function

sin(z)

z
→

1, if z = 0,
sin(z)

z
, otherwise,

or the in�nite series
sin(z)

z
→

∞∑
k=0

(−1)kz2k

(2k + 1)!
.

De�nition. A nested power product is an expression or a sub-expression of the form

wα
(
wβ1
)γ1 · · · (wβn)γn , (1)

with n ≥ 1, rational exponents, and α possibly 0 or 1.
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This article describes simple algorithms that can be used in default and/or optional transfor-
mations to simplify nested power products correctly and well. The abstract presents one example
of why this is important.

Default and relevant optional transformations for Derive® 6.00, TI-CAS version 3.101, Maxima
5.24.0, Mapletm 15.00 and Mathematica 8.0.4.0 were tested on 86 examples for the simplest case
where n = 1. The table in the Abstract shows the overall percentages for each of eight di�erent
decreasingly serious �aw types described in Section 3.

Those large percentages for the six most serious kinds of �aws are alarming, and so are many
corresponding percentages for each of the �ve systems.2 Wikipedia currently lists 29 other computer
algebra systems, and I strongly suspect that most or all of them also have substantial room for
improvement in this regard.

Here is an outline of the rest of the article: Section 2 de�nes three more crucial terms. Section 3
describes eight prioritized goals for results that are nested power products, why they are important,
and the reasons for their priorities. Section 4 describes the tables of results at the end of this article
and how the listed result �aws were measured. Section 5 describes four good forms for nested power
products and how to obtain them:

1. Form 1 merely standardizes the outer fractional exponents to the interval (−1, 1) in a way
that doesn't introduce removable singularities, but instead tends to reduce their magnitude �
perhaps completely.

2. Form 2 further reduces many outer fractional exponents to [−1/2, 1/2] in a way that cancels
as much of any removable singularity as can be done without resorting to form 4. Form 2 is
an improvement on form 1 at the expense of more computation.

3. Form 3 absorbs wα into one of the nested powers just prior to display if wα can thus be totally
absorbed, giving a result with one less factor. Form 3 is an aesthetic improvement on form 2
at the expense of more computation.

4. Form 4 completely cancels any cancelable singularity and nicely collapses all of the exponents
into a single unnested exponent. However, this form often entails a complicated unit magni-
tude piecewise constant factor that is -1 raised to a complicated exponent. Unsophisticated
users might be ba�ed by this factor, and even sophisticated users might abhor the mess.
However, this form must be addressed because it can occur in input, it is valuable for some
purposes, and some computer algebra systems generate this form for some inputs.

Section 6 suggests how to extend the algorithms to recognize syntactically di�erent but equiva-
lent instances of w in nested power products and how to extend the algorithms to some kinds of
non-numeric exponents. Section 7 is an overall summary. The Appendix lists about one page of
Mathematica rewrite rules that implement most of the third result form. Tables of results and their
�aw numbers for the �ve systems and for the rewrite rules are at the end of the article.

1The computer algebra embedded in a succession of TI handheld calculators, Windows and Macintosh computers
has no name independent of the product names, the most recent of which is TI-Nspiretm.

2I am guilty as a coauthor of Derive and TI-computer algebra.
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2 More key de�nitions

In this article:

� Unless stated otherwise, an indeterminate is a variable that has no assigned value, rather
than a result such as 0/0.

� Any �nite or in�nite-magnitude complex value can be substituted for indeterminates in ex-
pressions.

� Fractional powers and square roots denote the principal branch.3

De�nition. A canonical form for a class of expressions is one for which all equivalent expressions
in the class are represented uniquely.

Canonical forms help make cancellations of equivalent sub-expressions automatic. For example, if
a computer algebra system always makes arguments of functional forms such as sin(. . .) canonical,
then an input sub-expression such as sin ((x+ 1)2) − sin (x2 + 2x+ 1) automatically simpli�es to
0 rather than remaining unchanged as a bulky land mine that might make a subsequent result
incorrect. Without canonical arguments, recognition of cryptically similar factors and terms requires
costly tests such as determining if the di�erence in corresponding arguments can be simpli�ed to
0. This might happen every time the same two functional forms meet during processes such as
expansion of an integer power of a sum containing two sines, which can be often. In contrast,
canonical arguments permit a much faster mere syntactic comparison of functional forms.

As discussed in [1, 6, 10], canonical forms are unnecessarily costly and rigid for the entire class of
expressions addressed by general-purpose computer algebra systems. However, canonical forms are
acceptable and good for default simpli�cation of some simple classes of irrational sub-expressions
such as nested power products.

De�nition. Zero-recognizing simpli�cation for a class of expressions is simpli�cation for which
all expressions in the class equivalent to 0 are transformed to 0.

As illustrated by the example in the Abstract, a failure to recognize that a sub-expression is
equivalent to 0 can lead to dramatically incorrect results. Therefore it is desirable for default sim-
pli�cation to have at least a zero-recognition property. It has been proven impossible to guarantee
this even for some rather simple classes of irrational expressions, but a strong e�ort should be made
to achieve at least zero recognition for as broad a class of expressions as is practical.

De�nition. Candid simpli�cation produces results that are not equivalent to an expression that
visibly manifests a simpler expression class.

For example, in a candid result there are no super�uous variables, degree magnitudes are not
larger than necessary, there are no unnecessary irrational sub-expressions, and irrationalities are
nested no more deeply than necessary. Thus without being as rigidly constrained as canonical forms,
candid simpli�cation yields more desirable properties than mere zero-recognizing simpli�cation.

3By default some systems assume that indeterminates represent real values and/or use the real branch wherein
for reduced integers m and n, (−1)m/n → 1 for m even, and (−1)m/n → −1 for m and n odd. However, most
computer algebra systems provide a way to force the principal branch if it isn't the default � and to declare that an
indeterminate is complex if that isn't the default.
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De�nition. In this article unde�ned means an unknown point in the entire in�nite complex plane,
such as the result of 0/0.4

De�nition. A conveniently representable subset of the in�nite complex plane is one that is
reasonably representable using constant expressions extended by sets, intervals and the symbol ∞.

Conveniently representable proper subsets of the in�nite complex plane are regarded here as
de�ned. Particular computer algebra systems might not be able to represent the full range of
possibilities, but this article is suggesting what should be done as well as reporting the current
situation. These ideas are discussed in more detail in [9], but for this article the major de�ned
subset of interest that isn't a single point is the result of u/0 for any particular non-zero complex
constant u. This result should be some representation of complex in�nity. Among many other
bene�ts it permits the correct computation

1

1 +
1

0

→ 0.

Does your computer algebra system do this?

� For Mathematica, 1/0→ ComplexInfinity.

� For Derive, with its default real domain, 1/0→ ±∞.

� For TI-CAS, regrettably 1/0→ undef.

� Maxima and Maple inconveniently throw an error.

When a proper subset of the in�nite complex plane isn't conveniently representable, then the next
best thing is to degrade it to 0/0. However, that shouldn't be done for subsets that are as easily
represented as complex in�nity.

If �nite or in�nite magnitude complex numbers are substituted for all of the indeterminates in
an unsimpli�ed input expression, then that input expression is unde�ned at that point if and only
if the result is 0/0.

De�nition. A generalized limit is the set of uni-directional limits of an input expression from
all possible directions in the complex plane.

When the generalized limit of an input expression at a conveniently cancelable singularity is
a conveniently representable proper subset of the entire in�nite complex plane, then this article
regards it as not only acceptable but commendable to cancel the singularity and thereby produce a
result expression whose substitutional value is that conveniently representable subset at that point.

Reasons for this attitude about mathematics software include:
4It is of course audacious to de�ne unde�ned. Although unnecessary for this article, systems could usefully also
� display 0/0 as 0/0 rather than a vague controversial word such as �unde�ned�, and
� contract functions of 0/0 to strict subsets of the complex plane wherever possible, such as arg(0/0)→ (−π, π].

Having arg(0/0)→ 0/0 snatches defeat from the jaws of compromise. Try this on your systems! Many systems
throw an error, which is worse because it requires even amateur authors of functions to know about all the
potential throws, catch them or vet to prevent them, and respond appropriately to make their functions robust.
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� Otherwise the results tend to be unacceptably complicated.5

� There is a high likelihood that the physical problem is actually continuous there too � Nature
abhors a removable singularity. Removable singularities are often an artifact of the modeling
such as using a polar or spherical coordinate system.

� Cancelable singularities are often a result of an unnecessary previous transformation unavoid-
ably done by a system (such as inappropriate rationalization of a denominator) or a result of
a previous transformation such as monic normalization, a tangent half angle substitution, or
expansion into partial fractions deemed necessary to obtain an anti-derivative.

� Cancellation to simplify nested power products is consistent with quiet transformations such
as w/w → 1 that are currently unavoidable in most computer algebra systems;

� Symbolic cancelation tends to reduce rounding errors near removable singularities for subse-
quent substitution of �oating-point numbers.

However, this transformation of expressions has the composability consequence that substitution of
numeric values doesn't necessarily commute with simpli�cation. To accommodate either treatment
of expressions, computer algebra systems could and should build in provisos such as �|w 6= 0� that are
optionally attached automatically to intermediate and �nal results containing canceled removable
singularities, as suggested in [3, 10]. Meanwhile, implementers who do not want to completely cancel
cancelable singularities for simplifying nested power products can adapt the algorithms presented

here to merely reduce the magnitude of cancelable singularities, such as (z2)
5/2
/z3 → (z2)

3/2
/z

rather than transforming all the way to z
√
z2.

3 A list of goals for simplifying nested power products

The most important concern is correctness, followed by candidness, then aesthetics and compliance
with custom. More speci�cally, here is a list of desirable but partially con�icting goals for simplifying
nested power product and their di�erences, in decreasing order of importance:

1. The result should be equivalent to the input wherever the input is de�ned. (It is acceptable
for the result to be a generalized limit of the input where the input is 0/0.)

2. A linear combination of two or more equivalent nested power products should simplify to a
multiple of a single power product � or to 0 if the linear combination is equivalent to 0.

3. Let the net exponent of
(
wβk
)γk be

4k := βkγk,

5Canceling a gcd occasionally increases bulk signi�cantly, such as (x99− 1)/(x− 1)→ x98 + x97 + · · ·+ x+1, but
the algorithms described here consider only syntactic cancellation, which always decreases bulk.
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and for a product of nested powers of w let the total positive nested exponent and the
total negative nested exponent be

4+ :=
n∑
k=1

max (4k, 0) , (2)

4− :=
n∑
k=1

min (4k, 0) . (3)

When possible, use the transformation(
wβk
)γk → wmkβk

(
wβk
)γk−mk (4)

with appropriate integers mk to minimize min (max (α, 0) +4+, −min (α, 0)−4−), thus
canceling as much of any removable singularity as is possible by this means.

4. When possible, fully absorb the wα into the nested powers of
(
wβk
)γk to have fewer factors.

5. Otherwise use transformation (4) to minimize 4+−4− to minimize the contributions of the
troublesome nested powers.

6. Inputs that are equivalent where both are de�ned should produce the same (canonical) result.

7. Results should be idempotent: Reapplying the same default or optional simpli�cation to the
result should leave it unchanged.

8. To help achieve goal 6, rationalize a denominator in a nested power product when this doesn't
introduce a removable singularity or increase its magnitude.

A larger numbered goal should not be ful�lled if the only way to ful�ll it is to violate a smaller
numbered goal. For example, ful�llment of goals 5 or 8 can often violate goals 1, 2 and/or 3.

The reasons for this ranking of the goals are:

1. A violation of goal 1 is most unsatisfactory because it is a result that is not equivalent to
the input everywhere the input is de�ned. For example, if expression w can be 0, then
rationalizing the denominator of 1/

√
w to give

√
w/w makes an input that is a well-de�ned

complex in�nity at w = 0 become 0/0 there. A more serious example is the mal-transformation
(w−2)−1/2 → (w2)1/2, because the two sides di�er along the entire positive and negative
imaginary axis. For example (i−2)−1/2 = −i, whereas (i2)1/2 = i.

2. The example in the Abstract shows the importance of zero recognition. For example if default
simpli�cation of one nested power product produces

√
z/z and default simpli�cation of another

nested power product produces the equivalent expression z/
√
z, then the latter violates goal

8 and together they violate goal 6. These violations are minor; but if default simpli�cation
doesn't simplify their di�erence to 0, then that is a violation of goal 2, which is serious.
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3. A violation of goal 3 is next most serious because it is a squandered opportunity to improve
the result by canceling a conveniently cancelable singularity and thereby making the result
have the limiting value at w = 0 rather than be unde�ned there. For example,

(w2)
5/2

w
→ w2 (w2)

3/2

w
→ w

(
w2
)3/2

, (5)

w

(
1

w2

)5/2

→ w

w2

(
1

w2

)3/2

→ 1

w

(
1

w2

)3/2

. (6)

4. A violation of goal 4 is more complicated than need be. For example, most people would

agree that w4 (w2)
1/2

is more complicated than (w2)
5/2

, which has one less factor.

5. Goal 5 is important because when there is more than one factor of the form
(
wβ
)γk , there

might be more than one way to distribute only some of wα into the nested powers. In contrast
if γk is a half-integer power then there are only two ways to minimize |γk| by factoring an
integer power of wα out of (wα)γ, or only one way for other fractional powers. Moreover,
unnested exponents are less specialized and can therefore interact more freely with other
factors in a product. For example, for intermediate results (5) and (6),

w
(
w2
)3/2 → w2

(
w2
)1/2

,

1

w

(
1

w2

)3/2

→ 1

w2

(
1

w2

)1/2

.

6. For a given w, the above goals tend to yield the most concise possible nested power product
in terms of w. Therefore it is better to have the consistency of having two inputs that are
equivalent where they are de�ned return the same most concise form. More importantly a
canonical form for nested power product sub-expressions greatly facilitates achieving goal 2 �
a major bene�t for very little e�ort.

7. Without idempotency, an unaware user could obtain inconsistent results, and a cautious aware
user would have to re-enter such results as inputs until they cycle or stop changing.

8. Goal 8 complies with the custom of rationalizing denominators and helps achieve canonicality
goal 6. For example,

w√
w2
→ w

√
w2

w2
→
√
w2

w
.

But rationalization should not be done at the expense of lower-numbered goals. For example,

1

w (w2)2/3
6→ (w2)

1/3

w3
,

because although it reduces the absolute value of the outer exponent (goal 5), it violates goal
1 by making an input that is complex in�nity at w = 0 become a result that is 0/0 there.
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4 Important information about the tables

Tables at the end of this article show the results that occurred for each example with each system
and with the Appendix rewrite rules. In all of the tables the numbers of the Section 3 goals that
aren't satis�ed but could be satis�ed without violating a lower-numbered goal are listed beside each
result. Unmet goal numbers 1 and 2 are boldface to emphasize their extreme seriousness.

4.1 Examples, test protocol and table interpretation

Tables 2 through 7 report default and relevant optional transformation results for test family

1: multiplying wm by (w2)
n+2/3

for successive integer m = −3 through 3 in combination with
successive integer n = −3 through 2. For comparison with results that meet all of the goals, Table
1 has corresponding results for form 3 described in Section 5, as produced by the one page of
Mathematica rewrite rules listed in the Appendix.

Tables 9 through 15 report default and relevant optional transformation results for test family

2: multiplying wm by (w−2)
n+1/2

for the same combinations ofm and n. For comparison with results
that meet all of the goals, Table 8 has corresponding form 3 results produced by the Appendix
rewrite rules.

To help assess compliance with goal 8, Table 16 compares results for all of the systems with
the Appendix rewrite rules on the particularly simple input w/

√
w2 . Some of the examples in test

families 1 and 2 also test this goal.
Table 17 tests only whether or not the expression

√
w2

w
− (−1)

1
2(arg(w2)−2 arg(w))/π

simpli�es to 0. This is the di�erence between equivalent expressions in form 3 and form 4. This
is a more di�cult but not impossible problem. All systems fail � including the Appendix rewrite
rules, which do not address this issue.

Here is how compliance with the goals was assessed:

1. Most of the results that violated goal 1 did so only at w = 0. However, the goal 1 violations
in Tables 13 and 14 instead or also are not equivalent to the input where it is de�ned along
the entire positive and negative imaginary axis. This is caused by an outlaw of exponents:
transforming

(
w−λ

)µ
to
(
wλ
)−µ

for fractional µ, which is not valid along these semi-axes.

2. For test family 1, each input is equivalent to the input two rows down and one column left
wherever both are de�ned, and their omnidirectional limits are identical wherever one of
the inputs is 0/0. Therefore to assess compliance with goal 2 (zero-recognition), for every

entry in the table I computed the di�erence wm (w2)
n+2/3 −wm+2 (w2)

n−1+2/3
or the optional

transformation thereof and the di�erence wm (w2)
n+2/3 − wm−2 (w2)

n+1+2/3
, then considered

it a �aw for the entry if either of these two di�erences was non-zero. Thus compliance with
this goal is not discernible from merely inspecting the result entries. Compliance is a property
of the default simpli�cation or optional transformation when given the di�erence of two non-
identical but equivalent nested power products. For test family 2, each input is equivalent
to the input two rows down and one column right wherever both are de�ned, so I did an
analogous test for that. It is of course possible for an entry to pass these limited tests but fail

9
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for more widely separated equivalent inputs.6 For Table 16 the result is equivalent to
√
w/w

and w2/(w2)3/2, so I tested whether or not the corresponding two di�erences or optional
transformation thereof simpli�ed to 0. Table 17 tests zero recognition directly, and only than
� but with only one particular di�erence in equivalent forms rather than only two.

3. To comply with goal 3 without violating lower-numbered goals, a result wα̂
(
wβ
)γ̂

should have

α = 0 ∨
(sign (α̂) = sign (βγ̂) ∧ |γ̂| < 1) ∨

(α 6= 0 ∧ sign (α̂) 6= sign (βγ̂) ∧ |γ̂| < 1 ∧
min(|βγ̂| , |α̂|) ≤ min(|β (γ̂ − sign (γ̂))| , |α̂ + β sign (γ̂)|)).

4. To comply with goal 4, α̂ should not be an integer multiple of β.

5. To comply with goal 5 without violating lower numbered goals,

α̂ = 0 ∨ (sign (α̂) = sign (βγ̂) ∧ |γ̂| < 1) ∨
(
α 6= 0 ∧ sign (α̂) 6= sign (βγ̂) ∧ |γ̂| ≤ 1

2

)
.

6. For compliance with goal 6, every result entry for test family 1 should be identical to the
entry 2 rows down and one column left, whereas every result entry for test family 2 should
be identical to the entry 2 rows down and one column right. To equally assess the top two
rows, the bottom two rows, the leftmost column and the rightmost column, I computed extra
neighbors bordering those shown. When there were di�erences, I did not penalize the best
displayed results for equivalent entries unless their was a better displayed result one column
and one or two rows outside the table. However, I did penalize all of the not-best members for
equivalent entries. I similarly tested the result in Table 16 against the equivalent expressions√
w/w and w2/(w2)3/2. It is of course possible for an entry to pass these tests but fail for

more widely separated equivalent inputs.

7. To test compliance with goal 7, I resimpli�ed each result with either default simpli�cation
or the optional transformation used for the original input, then checked for identical results.
Compliance with this goal is not discernible from merely inspecting the result entries.

8. To test compliance with goal 8, I manually rationalized the results having a fractional power
in the denominator and α 6= 0 by multiplying the numerator and denominator by (w−2)1/3

for test family 1 or
√
w2 for test family 2. It was counted as a �aw if and only if that forced

rationalization did not introduce a removable singularity or increase its magnitude.

6This happens for Tables 13 and 14: All of the columns would exhibit �aw 2 if one of the two equivalent expressions
was always taken from the correct results in columns 3 or 4. The results are not equivalent to the inputs for columns
1, 2, 5 and 6, so the only reason the di�erence simpli�ed to 0 for columns 1 and 6 was the subtraction of incorrect
but identical results � an instance where two wrongs make a right.
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4.2 Remarks about particular results.

Maxima also has a relevant rat(. . .) function. For these examples, it generally produces the same
result as default simpli�cation, except that fractional powers are represented as an integer power
of a reciprocal power � or an integer power of

√
. . . for half-integer powers. Thus a default result

w3 (w2)
5/3

would instead be w3((w2)1/3)5, and a default result w3 (w2)
5/2

would instead be w3
√
w2

5
.

The standard de�nition of um/n for reduced integers m and n is
(
u1/n

)m
, which is consistent with

the alternate de�nition eln(u)m/n.7 Consequently, the Maxima rat (. . .) function makes the standard
interpretation of the result more explicit at the expense of clutter. Nonetheless, it might be helpful

as a precursor to semantically substituting a new expression for (w2)
1/3

via syntactic substitution

in a expression containing (w2)
m/3

for several di�erent integer m. For the sake of brevity, results
are not included for the rat(. . .) function because its �aws were very nearly identical to default
simpli�cation, regarding ((w2)1/n)m as (w2)m/n.

Mathematica, Maxima and Maple also respectively have relevant PowerExpand[...], radcan(...)
and simplify(..., symbolic) functions. However, they always transform (wβ)γ to wβγ, which is not
equivalent along entire rays from w = 0. I didn't test these functions because their purpose is
presumably partly to allow these risky unconditional transactions for consenting adults. However,
these three systems, Derive and TI computer algebra also have safe ways to enable such desired
transformations, when justi�ed, by declaring, for example, that certain variables are real or positive.

� . . . a man who thought he could somehow pull up the root without a�ecting the power.�
�adapted from Gilbert K. Chesterton

To make sure that w is regarded as a complex variable and the principal branch is used rather
than the real branch:

� All of the Derive results follow a prior declaration w :∈ Complex.

� All of the TI-CAS results necessarily used w_ rather than w to manifestly declare it as a
complex indeterminate. However for consistency w_ is displayed in all of the tables as w
because Table 12 is shared with Maple for brevity.

� All of the Maxima results followed a prior assignment domain : complex and a prior declaration
declare(w, complex).

As illustrated by Tables 15 through 17, the Maple simplify(. . .) function expresses half-integer
powers of squares or of reciprocals of squares using the Maple csgn(. . .) function de�ned by

csgn(w) :=

{
1, if <(w) > 0 ∨ <(w) = 0 ∧ =(w) ≥ 0,

−1, otherwise.
(7)

The right side of this de�nition is a simpli�ed special instance of form 4, for which csgn(w) is a
convenient abbreviation for those familiar with it.8

Regarding Table 17:

7This is not generally equivalent to (um)
1/n

: �be faithful to your roots� � Mason Cooley.
8Je�rey [5] uses the unwinding function to generalize csgn to a Cn that works for all fractional powers. If and

when implemented in Maple, that will avoid unwelcome mixtures of csgn(. . .) with other form 4 notations for results
containing both half-integer and other nested powers.

11
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� Mathematica (hence also the Appendix rewrite rules) did the automatic transformation

(−1)(1/2)(Arg[w2])−2Arg[w])/π → i(Arg[w2])−2Arg[w])/π.

Although it eliminates the 1/2 factor from the exponent in this case, it does so at the expense
of candidness by introducing i into an expression that is real for all w.

� For TI-CAS the arg function is spelled �angle� and regrettably angle(0) is returned unchanged
rather than transforming to 0. Therefore the input was√

w_2

w_
− (−1)when(w_=0, 0, (1/2)(angle(w_2)−2angle(w_))/π).

As indicated in Table 17, the real power of -1 in the input was changed to an imaginary power
of e in the result. This has the candidness disadvantage of introducing i into an expression
that is real for all real w_.

� For Derive the arg function is spelled �phase� and regrettably phase(0) returns π/2 ± π/2,
which denotes an unknown element of {0, π}, which are the only two possibilities for real

arguments. Therefore the input was

√
w2

w
− (−1)IF(w=0, 0, (1/2)(PHASE(w2)−2PHASE(w))/π).

� For Maple, the arg function is spelled �argument�, and for Maxima it is spelled �carg�.

If you are interested in results for some other systems, then try a few of the examples that are
heavily �awed for most of the �ve tested systems.9 First do whatever is necessary so that fractional
powers use the principal branch and w is regarded as a complex indeterminate.

5 Four alternative forms

Section 1 explains the reasons for four separate forms.

5.1 Form 1: Reduction of outer fractional exponents to (-1, 1)

De�nition. For x ∈ R the integer part function

Ip (x) :=

{
bxc , if x ≥ 0,

dxe , otherwise.

De�nition. For x ∈ R the fractional part function Fp(x) := x− Ip(x).

9If you are familiar enough with those systems, then most of them probably have a quick way to generate all of
the results for test families 1 and 2 by entries analogous to the following one for Mathematica:

Table [Table [wj(w2)k, {k, −7/3, 8/3} , {j, −3, 3} //TableForm

I am interested in knowing your results.

12



DEFINE SHORT AUTHOR HEADER USING \ authorhead

Proposition 1. For β ∈ Q, γ ∈ Q− Z, and arbitrary expression w ∈ C,(
wβ
)γ ≡ wβ Ip(γ)

(
wβ
)Fp(γ)

. (8)

Proof. We have (
wβ
)γ ≡ (wβ)Ip(γ) (wβ)Fp(γ) (9)

because:
1. With γ ∈ Q− Z, Ip(γ) = 0 ∨ sign (Ip(γ)) = sign (Fp(γ)).
2. For any expression u ∈ C and r1, r2 ∈ Q | r1 = 0 ∨ sign r1 = sign r2,

ur1+r2 ≡ ur1ur2 , (10)

even at u = 0 with r1 and r2 both negative, making both sides of (10) be complex in�nity.

3. By Proposition 4 we also have
(
wβ
)Ip(γ) ≡ wβ Ip(γ) because Ip (γ) ∈ Z.

Therefore Form 1 is simply to transform wα
(
wβ1
)γ1 · · · (wβn)γn toward canonicality by trans-

forming every positive fraction γk to the interval (0, 1) and every negative fraction γk to the interval
(−1, 0). The various wIp(γk)βk are combined with the original wα, giving a transformed expression

Ŵ := wα̂
(
wβ1
)γ̂1 · · · (wβn)γ̂n (11)

where α̂ might be 0.
This form 1 satis�es goals 1 and 7, while possibly contributing progress toward goals 2, 3, 5 and

6. This form also has the advantage that if
(
wβ
)γ̂

is subsequently raised to any power λ, then we

can simplify it to the simpli�ed value of
(
wβ
)γλ

by Proposition 3 because −1 < γ̂ < 1. For example,((
w2
)3/4)7/6 → (

w2
)7/8

.

Although there is no such thing as a free radical in computer algebra, this transformation of each
nested power is fast and easy to implement because it occurs only for certain fractional powers of
powers, which are relatively rare, and very little work is done even when it does occur. There is no
good reason why default simpli�cation shouldn't do at least this much.

However, default simpli�cation for many systems unavoidably collects similar factors, resulting
in a partial reversal of this transformation whenever a resulting unnested exponent α̂ is identical to
one of the inner nested exponents. This happens for Derive, TI-CAS and Mathematica, but not for
Maple or Maxima. With unavoidable collection, unconditional magnitude reduction of fractional
outer exponents can lead to an in�nite recursion such as

w
(
w2
)5/3 → w2

(
w2
)2/3 → w

(
w2
)5/3 → · · · .

Therefore in the Appendix Mathematica rewrite rules:

� Transformation
(
wβ
)γ → wIp(γ)β

(
wβ
)Fp(γ)

is used unconditionally only prior to default sim-
pli�cation.

13
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� The rewrite rules that are active during default and optional transformations do not reduce
the magnitude of γ if doing so would give an unnested exponent α̂identical to β.

� This transformation is used after default simpli�cation only if there is an unnested factor wα

and the transformation would not be reversed by unavoidable collection of similar powers.

Implementations for other systems might have to overcome this di�culty in some other way, or
compromise and not always produce a form with outer fractional exponents in the interval (−1, 1)
when wα can't be fully absorbed into some nested power.

5.2 Form 2: Further reducing some outer exponents to (-1/2, 1/2]

Form 2 is form 1 supplemented by an additional transformation.
Expression Ŵ given by de�nition (11) is equivalent to expression W everywhere that W is

de�ned, because at the only questionable point w = 0:

1. Expressions W and Ŵ are both 0 if α ≥ 0 and all of the βkγk are positive.

2. Otherwise expression W and Ŵ are both complex in�nity if α ≤ 0 and all of the βkγk are
negative.

3. Otherwise if α̂ ≥ 0 and all β̂kγ̂k > 0, then W is 0/0 but Ŵ has improved to 0.

4. Otherwise if α̂ ≤ 0 and all β̂kγ̂k < 0, then W is 0/0 but Ŵ has improved to complex in�nity.

5. Otherwise both W and Ŵ are 0/0. However, the magnitude of the multiplicity of the remov-

able singularity is less for Ŵ if for any γk, |γk| ≥ 1.

Expression Ŵ is canonical in cases 1 through 4, but not necessarily for case 5. For example,

1. The di�erent equivalent expressions z−1 (z2)
2/3

and z (z2)
−1/3

both have outer exponents in
(-1, 1). Of these two alternatives, the latter is preferable for most purposes because the
|−2/3| < |4/3|, making multiplicity of the uncanceled portion of the removable singular-
ity have a smaller magnitude. Thus a rationalized numerator is sometimes preferable to a
rationalized denominator.

2. The di�erent expressions z−3 (z2)
1/2

and z−1 (z2)
−1/2

both have outer exponents in (-1, 1), and
they are equivalent wherever the �rst alternative is de�ned. However, the latter unrationalized
denominator is preferable because the former is 0/0 at z = 0 where the latter is de�ned and
equal to the complex in�nity limit of the former.

3. The di�erent equivalent expressions z (z2)
−1/2

and z−1 (z2)
1/2

both have outer exponents in
(-1, 1), and the multiplicities of the uncanceled portion of their removable singularity at
z = 0 are both 1. Of these two alternatives, the latter is slightly preferable because it has a
traditionally rationalized denominator rather than a rationalized numerator.

Thus after producing form 1 we can sometimes add 1 to a negative γ̂k or subtract 1 from a positive
γ̂k, then adjust α accordingly to reduce the magnitude of the overall removable singularity � perhaps

14
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entirely. If not, perhaps we can at least contribute toward goals 2, 6 and 8 by rationalizing a square
root in the denominator.

Let

∆k := βkγ̂k,

∆ := α + ∆1 + · · ·+ ∆n.

Transforming any of the
(
wβk
)γk to wmkβk (wβk)γk−mk for any integer mk leaves ∆ unchanged.

Our primary goal is, whenever possible, to make all of the ∆k have the same sign and for α to
have either the same sign or be 0. A secondary goal is to prefer −1/2 < γ̂k ≤ 1/2. Therefore, the
algorithm to convert form 1 to form 2 is:

1. If ∆ > 0, then for each ∆k < 0, add sign (βk) to γ̂k and subtract |βk| from α, then return the
result.

2. If ∆ < 0, then for each ∆k > 0, subtract sign (βk) from γ̂k and add |βk| to α, then return the
result.

3. For each γ̂k > 1/2, subtract 1 from γ̂k and add βk to α.

4. For each γ̂ ≤ −1/2, add 1 to γ̂k and subtract βk from α.

5. Return the result.

This canonical form 2 satis�es all of the goals except for the aesthetic goal 4.
For brevity the Appendix rewrite rules consider only one ∆k at a time. This is su�cient for all

of the test cases, which have only one nested power. For an industrial-strength implementation,
each time we multiply a fractional power of a power by a product of one or more factors, we should
inspect those factors for identical expressions w and apply the above algorithm if that subset if non-
empty. The cost is O (nc) where nc is the number of cofactors. The opportunity occurs only when
multiplying a fractional power of a power, which is rare; and the number of factors in a product is
typically quite small. Therefore it also quite reasonable to do this in default simpli�cation.

5.3 Form 3: Finally, fully absorb wα into a fractional power if possible

Form 3 is form 2 followed by an additional transformation.

Form 2 can result in an expression such as z4 (z2)
1/2

, for which many users would regard (z2)
5/2

as a simpler result because it has one less factor. We can often absorb at least some of zα into one
of the

(
zβk
)γk by the transformation

zα
(
zβk
)γk → zβk Fp(α/βk)

(
zβk
)γk+Ip(α/βk) ,

which doesn't change the domain of de�nition. However, this transformation seems inadvisable
unless Fp (α/βk) = 0, because otherwise it increases the contribution of a troublesome nested
power without reducing the number of factors. Also, this transformation is problematic during

intermediate computations even if Fp (α/βk) = 0, because when there is more than one nested
power, then more than one might be eligible, making it awkward to maintain canonicality achieved
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by form 2. Moreover, absorption con�icts with transformations done to obtain form 1 or 2, thus
risking in�nite recursion.

A solution to this dilemma is to fully absorb wα only just before display � after all other default
and optional simpli�cation. This does have the minor disadvantage that what the user sees doesn't
faithfully represent the internal representation. However, that bridge has already been crossed by
most systems, which for speed and implementation simplicity internally use, for example, (. . .)1/2

to represent a displayed
√
. . . and a+−1 ∗ b to represent a displayed a− b.

When there is more than one nested power of w, then there might be more than one way to
absorb α completely into those nested powers. For example,

w6
(
w2
)1/2 (

w3
)1/2 (

w4
)1/2 ≡ (

w2
)7/2 (

w3
)1/2 (

w4
)1/2

≡
(
w2
)1/2 (

w3
)5/2 (

w4
)1/2

(12)

≡
(
w2
)3/2 (

w3
)1/2 (

w4
)3/2

.

In general, the possible resulting expressions are given by(
wβ1
)γ1+m1

(
wβ2
)γ2+m2 · · ·

(
wβn

)γn+mn
,

where the tuple of integers 〈m1,m2, . . . ,mn〉 is a solution to the linear Diophantine equation

m1β1 +m2β2 + · · ·+mnβn = α.

Solutions exist if and only if α is an integer multiple of gcd (β1, β2, . . . βn), in which case there
might be a countably in�nite number of tuples. However, to avoid introducing removable singular-
ities or increasing the magnitude of their multiplicity, we are only interested in solutions for which
sign (mjβj) ≡ sign (α) for j = 1, 2, . . . , n. Papp and Vizvari [7] describe an algorithm for solving
such sign-constrained linear Diaphantine equations, and the Mathematica Reduce [. . .] function can
solve such equations. For example, suppose our canonical form 2 result is

z14
(
z6/7

)1/2 (
z10/7

)1/3
. (13)

In Mathematica, we can determine the family of integers m1 ≥ 0 to add to 1/2 and m2 ≥ 0 to
add to 1/3 that together absorb z14 as follows:

In[1] : = Reduce

[
6

7
m1+

10

7
m2 == 14 &&

6

7
m1 ≥ 0 &&

10

7
m2 ≥ 0, {m1, m2} , Integers

]
//TraditionalForm

Out[1]//TraditionalForm = (m1 = 3 ∧m2 = 8) ∨ (m1 = 8 ∧m2 = 5) ∨ (m1 = 13 ∧m2 = 2)

Regarding the choice between alternative absorptions, canonicality is not as important for a �nal
displayed result as it is during intermediate calculations where it facilitates important cancellations.
However, with more than one solution, we could choose one in a canonical way as follows: Order
the βj in some canonical way, such as the way they order in

(
wβ1
)γ1 · · · (wβn)γn , then to choose the

solution for which m1 is smallest, with ties broken according to which m2 is smallest, etc.
Solution of sign-constrained linear Diophantine equations can be costly � probably too costly

for default simpli�cation. Consequently, the rewrite rules in the Appendix simply absorb wα if and
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only if it can be completely absorbed into a single power of a power, in which case the particular
one is the �rst one encountered by the pattern matcher. This is canonical, but it doesn't absorb wα

for examples such as (13). However, this transformation is inexpensive because it is done only once
in one pass over the expression just prior to display, and the transformation requires comparing a
power of a power with its cofactors only in products where powers of powers occur.

All but this absorption rule are automatically applied before default simpli�cation so that, for
example, the input

w − w√
z2

z3
− 1

z
√
z2

correctly simpli�es to indeterminate, meaning 0/0, rather than to 0.
The rewrite rules in the Appendix are not much more than the minimal amount necessary to

generate the form 3 results in Tables 1 and 8, together with the relevant rows in Tables 16 and 17.

5.4 Form 4: One unnested power times a unit-magnitude factor

Form 4 is quite di�erent from forms 1 through 3.
A universal principal-branch formula for transforming a nested power to an unnested power is(

wβ
)γ → (−1)τ wβγ, (14)

where

τ :=

0, if arg(0) = 0,

γ
(
arg
(
wβ
)
− β arg (w)

)
π

, otherwise,
(15)

with short-circuit evaluation so that the �otherwise� result expression is not evaluated when the �if�
test is true.

The transformation given by formulas (14) and (15) can be derived from the identities

|p| ≡ (−1)− arg(p)/πp for p 6= 0, (16)

|qα|β ≡ |q|αβ . (17)

Notice that the unit-polar factor (−1)τ is unit magnitude because arg(. . .) is always real, as
are the rational numbers γ and β. Moreover, (−1)τ is piecewise constant with pie-shaped pieces
emanating from w = 0 because arg

(
wβ
)
and β arg (w) have the same derivative with respect to w

everywhere they are both continuous, and each of them has a �nite number of discontinuities.
An imaginary exponential eiπτ is an alternative to (−1)τ , but it has the candidness disadvantage

of introducing i into a factor that can be real and always is for the common case where the outer
exponent γ is a half-integer.

If arg(0) is de�ned as 0, as it is in Mathematica, Maple, and Maxima, then we can de�ne τ more
concisely and unconditionally as

τ :=
γ
(
arg
(
wβ
)
− β arg (w)

)
π

. (18)

Proposition 2. If w ≥ 0, then τ = 0.
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Proof. When w = 0, τ = 0 follows immediately from expression (15), and
w > 0 ⇒ arg

(
wβ
)

= 0 ∧ arg (w) = 0 ⇒ γ
(
arg
(
wβ
)
− β arg (w)

)
/π = 0 ⇒ τ = 0.

Proposition 3. If −1 < β ≤ 1, then τ = 0.

Proof. −1 < β ≤ 1 ⇒ arg
(
wβ
)

= β arg (w) ⇒ γ
(
arg
(
wβ
)
− β arg (w)

)
/π = 0 ⇒ τ = 0.

Proposition 4. If γ is integer, then (−1)τ = 1.

Proof. arg
(
wβ
)
is β arg (w) plus an even integer multiple of 2π. Thus when γ is an integer, then

γ
(
arg
(
wβ
)
− β arg (w)

)
/π is an even integer, making τ be an even integer, making (−1)τ = 1.

The simpli�cation a�orded by these three propositions should have already been exploited with
bottom-up default simpli�cation, in which case

(
wβ
)γ

will have already been simpli�ed to wβγ. If it
isn't, then that is another opportunity to improve the system for very little e�ort.10 Thus, because
β and γ are explicit non-zero rational numbers, without loss of generality this article assumes that
w isn't known to be nonnegative, and that β ≤ −1 or β > 1, and that γ is non-integer.

Using transformation (14) on every
(
wβk
)γk in W de�ned by (1) then collecting powers of −1

gives
W = (−1)σ wα+β1γ1+···+βnγn , (19)

where σ is a simpli�ed sum of terms of the form (15) or (18).
The factor (−1)σ is also unit magnitude with pie-shaped piecewise constant pieces because it is

the product of such factors. This form has two great advantages over the other three forms:

� All of the exponents have been combined into a single unnested exponent.

� Cancelable singularities are always completely canceled.

Unfortunately this comes at the expense of a form that is usually bulkier than the other forms
Simpli�cation of individual piecewise expressions and combinations of such expressions is cur-

rently rather weak in most systems, but Carette [2] describes a canonical form for such expressions,
so we can hope for improvement. In our case the piecewise expressions all have the same tests.
Therefore we can add all of the 0s together and add all of the expressions involving arg(. . .) to-
gether into a single piecewise function. For example,

(z2)
3/2

(z3)
4/3

z6

→

(−1)


0, if arg z=0,
3
2(arg(z2)−2 arg z)

π
, otherwise


(−1)


0, if arg z=0,
4
3(arg(z3)−3 arg z)

π
, otherwise

 z
3
2
2+ 4

3
3−6

→

(−1)


0, if arg z = 0,
3
2
arg(z2)+ 4

3
arg(z3)−7 arg z
π

, otherwise

 z. (20)

10Do your computer algebra system's default and optional transformations de-nest
(
wβ
)γ

for such β, γ, and w
declared non-negative?
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If arg(0) → 0, then simpli�cation of piecewise expressions isn't an issue here and the resulting
exponent of −1 is simply

(
3
2

arg (z2) + 4
3

arg(z3)− 7 arg z
)
/π. However, the result is not canonical

either way, because starting with the equivalent canonical form 2,

√
z2 (z3)

1/3

z
→

(−1)


0, if arg z = 0,
1
2
arg(z2)+ 1

3
arg(z3)−2 arg z
π

otherwise

 z, (21)

which has smaller magnitude coe�cients. Thus for canonicality we could precede this transformation
with a transformation to form 2. Equivalently we can adjust the coe�cients of the arg

(
wβk
)
and

arg(w) analogous to how we adjusted exponents to arrive at form 2. This is preferable because it
also canonicalizes expressions of form 4 that are entered directly or generated by the system.

With pie-shaped pieces, (−1)σ can always be expressed in the more candid canonical form
c1, if − π < argw :: θ1,

c2, if θ1 :: argw :: θ2,

. . . . . .

cm, otherwise,

where c1 through cm are unit-magnitude complex constants, θ1 through θm−1 are real constants in
(−π, π), and each instance of �::� is either �<� or �≤�.11 Moreover:

1. When w is real, then the positive and negative real axes are each entirely within one pie slice,
enabling us to simplify(−1)σ to one unconditional constant or piecewise expression of the form{

c1, if w :: 0,

c2 otherwise,

where �::� is one of the comparison operators �>�, �≥�, =, �≤�, �<�, or � 6=�.

2. For half-integers or quarter-integer fractional powers, (−1)τ can be expressed as a piecewise
expression depending on the real and imaginary parts of w rather than arg(w). For example,

(w2)
1/2

w
→

{
1 if < (w) > 0 ∨ < (w) ≥ 0 ∧ = (w) ≥ 0,

−1 otherwise;
(22)

(w4)
1/4

w
→


1 −< (w) < = (w) ≤ < (w) ,

−i if −= (w) < < (w) ≤ = (w) ,

−1 < (w) < = (w) ≤ −< (w) ,

i otherwise.

(23)

Notice that the right side of result (22) is the de�nition of the Maple csgn function.
Without an abbreviation such as csgn(. . .), Most implementers will probably want to avoid form

4 as a default even when arg (0)→ 0, because (−1)σ is likely to be rather complicated nonetheless:

11In a degenerate case, one or more of the pieces of pie might be a ray � very dietetic.
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1. It will probably contain complicated square roots and arctangents if the real and imaginary
parts of w are given as exact numbers.

2. It will probably also contain piecewise sign tests if given real and imaginary parts that are
non-numeric, such as for w = x+ iy with non-numeric real indeterminates x and y.

3. It will probably contain radicals nested at least one deep if arg (w) is a simple enough rational
multiple of π.

4. Otherwise it will contain perhaps bulky sub-expressions arg (w) and arg
(
wβ
)
� or, worse yet,

expressions involving square roots, arctangents, piecewise sign tests, and sub-expressions of
the form < (w) and = (w).

As espoused by Corless and Je�rey [4], expression τ can alternatively be de�ned in terms of the
unwinding function κ as:

τ := 2γκ (β lnw) . (24)

This is more concise than de�nition (15), but a function that computes unwinding numbers isn't
currently available externally in most computer algebra systems. Also, unless the system automat-
ically transforms ln 0 to −∞, as is done in Mathematica and Derive, then de�nition (24) has the
same disadvantages as using arg (. . .).12

5.5 Simplifying mixtures of form 4 with form 1, 2 or 3

If an expression contains a mixture of forms, then we should unify the forms to facilitate collection
and cancelation. For example with arg(0)→ 0, the three expressions

(z2)
1/2

z
, (25)

(−1)(arg(z
2)/2−arg z)/π, (26){

1 if < (w) > 0 ∨ < (w) ≥ 0 ∧ = (w) ≥ 0,

−1 otherwise
(27)

are equivalent. Therefore the result of any linear combination of them should transform either to 0
or a multiple of one of them. The rewrite rules in the Appendix don't address this issue.

In general it is easy to transform form (25) to form (26), which is only slightly more di�cult to
transform to either form (25) or form (27).

6 Unimplemented extensions

6.1 More semantic pattern matching for w

The Mathematica pattern matcher is mostly syntactic rather than semantic, and the rules in the
Appendix do almost no transformation of the radicand expressions w or any cofactors thereof. Thus
recognition of opportunities relies mostly on the default transformations together with any optional
transformations done by the user. Consequently, opportunities for the rules to simplify nested power

12For TI-CAS, ln(0)→ undef. An error is inconveniently thrown by Maple for ln(0) and by Maxima for log(0).
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products might not be recognized for radicands that aren't indeterminates. The rules work for most
functional forms that have syntactically identical forms for the di�erent instances of w, such as(

Log [x2 (x+ y)]
2
)5/3

Log [x2 (x+ y)]
→ Log

[
x2 (x+ y)

] (
Log

[
x2 (x+ y)

]2)2/3
.

However the rules don't apply to all such functional form opportunities. For example,

(Cos[θ]2)
5/3

Cos[θ]
→
(
Cos[θ]2

)5/3
Sec[θ]

because default simpli�cation transforms Cos[θ]−1 to Sec[θ].
Even more opportunities are unrecognized when w is a sum. As an example of how to overcome

this, the Appendix includes one extra rule that square-free factors radicands that are sums so that,
for example,

(z2 + 2z + 1)
5/3

z + 1
→
(
(z + 1)2

)5/3
z + 1

→ (z + 1)
(
(z + 1)2

)2/3
.

Factored over the integers or square-free factored form is a good choice for radicands for other
reasons too, and these forms are canonical when the radicand is a rational expression. However,(

z2 + 2z + 1
) (

(z + 1)2
)5/3 → (z + 1)2

(
(z + 1)2

)5/3 → (
(z + 1)2

)8/3
,

would require another rule that factors the cofactor of a power of a power of a sum. Then, perhaps
we would want another rule to factor sums containing such radicands so that

z2
(
(z + 1)2

)5/3
+ 2z

(
(z + 1)2

)5/3
+
(
(z + 1)2

)5/3 → (
(z + 1)2

)8/3
.

It is impossible to implement equivalence recognition for all possible expressions w representable in
general purpose systems, but it is worth expending a modest amount of execution time for default
simpli�cation and more time for optional transformations.

The Appendix leaves most such opportunities unimplemented because the simpli�cations de-
scribed here are so fundamental and low level that they should be part of the built-in transfor-
mations. Good simpli�cation of nested power products is more appropriately built into a system
rather than provided as an optionally loaded package that most users are unlikely to know about
and load into every session. So rather than implementing a comprehensive package for one system,
the intent of this article is to inspire implementers of all systems to improve some very fundamental
transformations � at least to the extent that it can be done economically.

6.2 Non numeric exponents

Although not implemented in the rules of the Appendix, more generally the exponents for forms
1 through 4 can be Gaussian fractions or even symbolic, in which case we can still apply these
transformations to the rational numeric parts of the exponents. For example,

w3ξ+ρ
(
wξ
)3/2+ωπi → (

wξ
)3
wρ
(
wξ
)1+1/2+ωπi →

(
wξ
)4
wρ
(
wξ
)1/2+ωπi → w4ξ+ρ

(
wξ
)1/2+ωπi

.
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As another example, if a user has declared the variable n to be integer, then

w−n
(
w2
)n+1/2 → wn

(
w2
)1/2

.

To some extent, the methods can also be extended to handle �oating-point and symbolic real
expressions for exponents α and βk. For example,

w4.321
(
w1.234

)3/2 → w5.555
√
w1.234,

w2−π (wπ)3/2 → w2
√
wπ.

7 Summary

This article:

1. shows that many widely-used computer algebra systems have signi�cant room for improvement
at simplifying sub-expressions of the form wα

(
wβ1
)γ1 · · · (wβn)γn ;

2. de�nes four di�erent simpli�ed forms with good properties;

3. explains how to compute these forms;

4. includes a demonstration implementation of form 3 via Mathematica rewrite rules.
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Appendix: Mathematica rewrite rules for wα
(
wβ1
)γ1 · · · (wβn

)γn
(* EXTRA SIMPLIFICATION DONE BEFORE ORDINARY EVALUATION: *)

PreProductOfPowersOfPowers [(w_Plus)^(g_Rational /; !IntegerQ[g])] :=

Block[{squareFree = FactorSquareFree[w]},

squareFree^g /; Head[squareFree] =!= Plus];

PreProductOfPowersOfPowers [(w_^b_)^(g_Rational /; g <= -1 || g >= 1)] :=

w^(IntegerPart[g]*b) * (w^b)^FractionalPart[g];

PreProductOfPowersOfPowers [(w_^b_)^(g_Rational /; g<=-1 || g>=1) * w_^a_. * u_]:=

PreProductOfPowersOfPowers[w^(a+IntegerPart[g]*b) * (w^b)^FractionalPart[g] * u];

PreProductOfPowersOfPowers [(w_^b_)^g_ * w_^a_. * u_. /; Sign[a] != Sign[b*g] &&

(Sign [a+b*Sign[g]] == Sign [b*(g-Sign[g])] ||

Min [Abs[a], Abs[b*g]] > Min [Abs [a+b*Sign[g]], Abs [b*(g-Sign[g])]] ||

g == -1/2 && Min [Abs[a], Abs[b/2]] == Min [Abs[a-b], Abs[b/2]])] :=

w^(a+b*Sign[g]) * (w^b)^(g-Sign[g]) * u;

PreProductOfPowersOfPowers [f_[args__]] :=

Apply [f, Map [PreProductOfPowersOfPowers, {args}]];

PreProductOfPowersOfPowers [anythingElse_] := anythingElse;

(* EXTRA SIMPLIFICATION DURING ORDINARY EVALUATION: *)

Unprotect [Times];

(w_^b_)^g_ * w_^a_. * u_. /; Sign[a] != Sign[b*g] &&

(Sign [a+b*Sign[g]] == Sign [b*(g-Sign[g])] ||

Min [Abs[a], Abs[b*g]] > Min [Abs [a+b*Sign[g]], Abs [b*(g-Sign[g])]] ||

Min [Abs[a], Abs[b*g]] == Min [Abs [a+b*Sign[g]], Abs [b*(g-Sign[g])]] &&

Abs[g] > Abs [g-Sign[g]] ||
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g == -1/2 && Min [Abs[a], Abs[b/2]] == Min [Abs[a-b], Abs[b/2]]) :=

w^(a+b*Sign[g]) * (w^b)^(g-Sign[g]) * u;

(w_^b1_)^g1_ * (w_^b2_)^g2_ * u_. /; Sign[b1*g1] != Sign[b2*g2] &&

Abs[b2] > Abs[b1] && Sign [b2*(g2-Sign[g2])] == Sign [b1*g1 + b2*Sign[g2]] :=

(w^b2)^(g2-Sign[g2]) * ((w^(b2*Sign[g2]) * (w^b1)^g1) * u);

Protect [Times];

(* EXTRA SIMPLIFICATION DONE AFTER ORDINARY EVALUATION: *)

PostProductOfPowersOfPowers [w_^a_ * (w_^b_)^g_ * u_. /; IntegerQ [a/b]] :=

PostProductOfPowersOfPowers [(w^b)^(g+a/b) * u];

PostProductOfPowersOfPowers [w_^a_.*(w_^b_)^(g_Rational /; g<=-1 || g>=1)*u_.

/; !IntegerQ [(a + b*IntegerPart[g])/b]] :=

PostProductOfPowersOfPowers[(u*w^(a+b*IntegerPart[b]))*(w^b)^FractionalPart[g]];

PostProductOfPowersOfPowers [f_[args__]] :=

Apply [f, Map [PostProductOfPowersOfPowers, {args}]];

PostProductOfPowersOfPowers [anythingElse_] := anythingElse;

$Post = PostProductOfPowersOfPowers; $Pre = PreProductOfPowersOfPowers;

Tables 1 through 17

Table 1: Un�awed results of Appendix rewrite rules for 1st row × 1st column.
Compare with Tables 2 through 7

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3 1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3
w (w2)

2/3

w−2 1

(w2)10/3
1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3

w−1 1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3
w (w2)

2/3
w3 (w2)

2/3

w0 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3

w1 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3
w (w2)

2/3
w3 (w2)

2/3
w5 (w2)

2/3

w2 1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3
(w2)

11/3

w3 1

w(w2)1/3
w

(w2)1/3
w (w2)

2/3
w3 (w2)

2/3
w5 (w2)

2/3
w7 (w2)

2/3
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Table 2: Mathematica 8 default simpli�cation for 1st row × 1st column, with �aw
numbers. Compare with Table 1.

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3 1

w3(w2)7/3
2
5
6

1

w3(w2)4/3
2
5
6

1

w3(w2)1/3
2

(w2)
2/3

w3

2
3
5
6

(w2)
5/3

w3

2
3
5
6

(w2)
8/3

w3

2
3
5
6

w−2 1

w2(w2)7/3

2
4
5
6
7

1

w2(w2)4/3

2
4
5
6
7

1

w2(w2)1/3

2
4
6
7

(w2)
2/3

w2

2
3
4
5
6

(w2)
5/3

w2

2
3
4
5
6

(w2)
8/3

w2

2
3
4
5
6

w−1 1

w(w2)7/3
2
5
6

1

w(w2)4/3
2
5
6

1

w(w2)1/3
2

(w2)
2/3

w

2
3
5
6

(w2)
5/3

w

2
3
5
6

(w2)
8/3

w

2
3
5
6

w0 1

(w2)7/3
2

1

(w2)4/3
2

1

(w2)1/3
2 (w2)

2/3
2 (w2)

5/3
2 (w2)

8/3
2

w1 w

(w2)7/3

2
3
5
6

w

(w2)4/3

2
3
5
6

w

(w2)1/3
2 w (w2)

2/3
2 w (w2)

5/3 2
5
6
w (w2)

8/3 2
5
6

w2 1

(w2)4/3
2

1

(w2)1/3
2 (w2)

2/3
2 (w2)

5/3
2 (w2)

8/3
2 (w2)

11/3
2

w3 w3

(w2)7/3

2
3
5
6
8

w3

(w2)4/3

2
3
5
6
8

w3

(w2)1/3
2
3
6
w3 (w2)

2/3
2 w3 (w2)

5/3 2
5
6
w3 (w2)

8/3 2
5
6

Table 3: Mathematica 8 FullSimplify[...] for 1st row × 1st column, with �aw
numbers. Compare with Table 1.

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3
(w2)

2/3

w9

1
3
5

(w2)
2/3

w7

1
3
5

(w2)
2/3

w5

1
3
5

(w2)
2/3

w3
3
5

w

(w2)1/3
w (w2)

2/3

w−2
(w2)

2/3

w8

1
3
4
5
6

(w2)
2/3

w6

1
3
4
5
6

1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3

w−1
(w2)

2/3

w7

1
3
5

(w2)
2/3

w5

1
3
5
6

(w2)
2/3

w3

1
3
5
6

w

(w2)1/3
w (w2)

2/3
w3 (w2)

2/3

w0 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3

w1 w

(w2)7/3
3
5

w

(w2)4/3
3
5

w

(w2)1/3
w (w2)

2/3
w (w2)

5/3 5
6

w (w2)
8/3 5

6

w2 1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3
(w2)

11/3

w3 w3

(w2)7/3

3
5
6
8

w

(w2)1/3
w (w2)

2/3
w3 (w2)

2/3
w3 (w2)

5/3 5
6
w3 (w2)

8/3 5
6
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Table 4: Derive 6 default simplify for 1st row × 1st column, with �aw numbers.
Compare with Table 1.

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3
(w2)

2/3

w9

1
3
5

(w2)
2/3

w7

1
3
5

(w2)
2/3

w5

1
3
5

(w2)
2/3

w3
3
5

(w2)
2/3

w
3
5

w (w2)
2/3

w−2 1

(w2)10/3
1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3

w−1
(w2)

2/3

w7

1
3
5

(w2)
2/3

w5

1
3
5

(w2)
2/3

w3

1
3
5

(w2)
2/3

w
3
5

w (w2)
2/3

w3 (w2)
2/3

w0 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3

w1 (w2)
2/3

w5
3
5

(w2)
2/3

w3
3
5

(w2)
2/3

w
3
5

w (w2)
2/3

w3 (w2)
2/3

w5 (w2)
2/3

w2 1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3
(w2)

11/3

w3 (w2)
2/3

w3
3
5

(w2)
2/3

w
3
5
w (w2)

2/3
w3 (w2)

2/3
w5 (w2)

2/3
w7 (w2)

2/3

Table 5: TI-CAS 3.1 default simplify for 1st row × 1st column, with �aw numbers.
Compare with Table 1.

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3 1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3
2

(w2)
2/3

w3

2
3
5
6

(w2)
2/3

w

3
5
6

w (w2)
2/3

w−2 1

(w2)10/3
1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3

w−1 1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3
2

(w2)
2/3

w

2
3
5
6

w (w2)
2/3

w3 (w2)
2/3

w0 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3

w1 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3
2 w (w2)

2/3
2 w3 (w2)

2/3
w5 (w2)

2/3

w2 1

(w2)4/3
1

(w2)1/3
(w2)

2/3
(w2)

5/3
(w2)

8/3
(w2)

11/3

w3 1

w(w2)1/3
w

(w2)1/3
w3

(w2)1/3
2
3
6
w3 (w2)

2/3
2 w5 (w2)

2/3
w7 (w2)

2/3
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Table 6: Maple 15 and Maxima 5.24 default simpli�cation for 1st row × 1st
column, with �aw numbers. Compare with Table 1.

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3 1

w3(w2)7/3
2
5
6

1

w3(w2)4/3
2
5
6

1

w3(w2)1/3
2

(w2)
2/3

w3

2
3
5
6

(w2)
5/3

w3

2
3
5
6

(w2)
8/3

w3

2
3
5
6

w−2 1

w2(w2)7/3

2
4
5
6

1

w2(w2)4/3

2
4
5
6

1

w2(w2)1/3
2
4
6

(w2)
2/3

w2

2
3
4
5
6

(w2)
5/3

w2

2
3
4
5
6

(w2)
8/3

w2

2
3
4
5
6

w−1 1

w(w2)7/3
2
5
6

1

w(w2)4/3
2
5
6

1

w(w2)1/3
2

(w2)
2/3

w

2
3
5
6

(w2)
5/3

w

2
3
5
6

(w2)
8/3

w

2
3
5
6

w0 1

(w2)7/3
2

1

(w2)4/3
2

1

(w2)1/3
2 (w2)

2/3
2 (w2)

5/3
2 (w2)

8/3
2

w1 w

(w2)7/3

2
3
5
6

w

(w2)4/3

2
3
5
6

w

(w2)1/3
2 w (w2)

2/3
2 w (w2)

5/3 2
5
6
w (w2)

8/3 2
5
6

w2 w2

(w2)7/3

2
3
4
5
6
8

w2

(w2)4/3

2
3
4
5
6
8

w2

(w2)1/3

2
3
4
6

w2 (w2)
2/3 2

4
6
w2 (w2)

5/3
2
4
5
6

w2 (w2)
8/3

2
4
5
6

w3 w3

(w2)7/3

2
3
5
6
8

w3

(w2)4/3

2
3
5
6
8

w3

(w2)1/3
2
3
6
w3 (w2)

2/3
2 w3 (w2)

5/3 2
5
w3 (w2)

8/3 2
5
6

Table 7: Maxima 5.24 fullratsimp(...) and Maple 15 simplify(...) for 1st row
× 1st column, with �aw numbers. Compare with Table 1.

↓−→× (w2)
−7/3

(w2)
−4/3

(w2)
−1/3

(w2)
2/3

(w2)
5/3

(w2)
8/3

w−3 1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3
(w2)

2/3

w3

3
5
6

(w2)
2/3

w

3
5
6

w (w2)
2/3

w−2 1

w6(w2)1/3
4

1

w4(w2)1/3
4

1

w2(w2)1/3
4

(w2)
2/3

w2

3
4
5
6

(w2)
2/3

w2 (w2)
2/3

4

w−1 1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3
(w2)

2/3

w

3
5
6

w (w2)
2/3

w3 (w2)
2/3

w0 1

w4(w2)1/3
4

1

w2(w2)1/3
4

1

(w2)1/3
(w2)

2/3
w2 (w2)

2/3
4 w4 (w2)

2/3
4

w1 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3
w (w2)

2/3
w3 (w2)

2/3
w5 (w2)

2/3

w2 1

w2(w2)1/3
4

1

(w2)1/3
w2

(w2)1/3
3
4
6
w2 (w2)

2/3
4 w4 (w2)

2/3
4 w6 (w2)

2/3
4

w3 1

w(w2)1/3
w

(w2)1/3
w3

(w2)1/3
3
6
w3 (w2)

2/3
w5 (w2)

2/3
w7 (w2)

2/3
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Table 8: Un�awed results of Appendix rewrite rules for 1st row Ö 1st column.
Compare with Tables 9 through 15.

↓−→× (w−2)
−5/2

(w−2)
−3/2

(w−2)
−1/2

(w−2)
1/2

(w−2)
3/2
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Table 9: Mathematica 8 default simplify for 1st row Ö 1st column, with �aw
numbers. Compare with Table 8.

↓−→× (w−2)
−5/2

(w−2)
−3/2

(w−2)
−1/2

(w−2)
1/2

(w−2)
3/2

(w−2)
5/2

w−3 1

( 1
w2 )

5/2
w3

2
3
5
6
8

1

( 1
w2 )

3/2
w3

2
3
5
6
8

1√
1
w2w

3

2
3
6
8

√
1
w2

w3 2
( 1
w2 )

3/2

w3

2
5
6

( 1
w2 )

5/2

w3

2
5
6

w−2 1

( 1
w2 )

3/2 2
1√
1
w2

2

√
1
w2 2

(
1
w2

)3/2
2

(
1
w2

)5/2
2

(
1
w2

)7/2
2

w−1 1

( 1
w2 )

5/2
w

2
3
5
6
8

1

( 1
w2 )

3/2
w

2
3
5
6
8

1√
1
w2w

2
6
8

√
1
w2

w
2

( 1
w2 )

3/2

w

2
5
6

( 1
w2 )

5/2

w

2
5
6

w0 1

( 1
w2 )

5/2 2
1

( 1
w2 )

3/2 2
1√
1
w2

2

√
1
w2 2

(
1
w2

)3/2
2

(
1
w2

)5/2
2

w1 w

( 1
w2 )

5/2

2
5
6

w

( 1
w2 )

3/2

2
5
6

w√
1
w2

2

√
1
w2w 2

(
1
w2

)3/2
w

2
3
5
6

(
1
w2

)5/2
w

2
3
5
6

w2 w2

( 1
w2 )

5/2

2
4
5
6

w2

( 1
w2 )

3/2

2
4
5
6

w2√
1
w2

2
4
6

√
1
w2w

2
2
3
4
6

(
1
w2

)3/2
w2

2
3
4
5
6

(
1
w2

)5/2
w2

2
3
4
5
6

w3 w3

( 1
w2 )

5/2

2
5
6

w3

( 1
w2 )

3/2

2
5
6

w3√
1
w2

2

√
1
w2w

3 2
3
6

(
1
w2

)3/2
w3

2
3
5
6

(
1
w2

)5/2
w3

2
3
5
6

28



DEFINE SHORT AUTHOR HEADER USING \ authorhead

Table 10: Mathematica 8 FullSimplify[...] for 1st row Ö 1st column, with �aw
numbers. Compare with Table 8.
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Table 11: Derive 6 default simplify for 1st row Ö 1st column, with �aw numbers.
Compare with Table 8.
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Table 12: TI-CAS and Maple default simpli�cation for 1st row Ö 1st column,
with �aw numbers. Compare with Table 8.
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Table 13: Maxima 5.24 default simplify for 1st row Ö 1st column, with �aw
numbers. Compare with Table 8.
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Table 14: Maxima 5.24 fullratsimp(...) for 1st row Ö 1st column, with �aw
numbers. Compare with Table 8.
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Table 15: Un�awed results of Maple simplify(...) for 1st row Ö 1st column � a
variant of form 4.
Compare with Table 8.
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Table 16: Simpli�cation of w/
√
w2, with �aw numbers

system transformations input w√
w2

Appendix rewrite rules
√
w2

w

Mathematica default w√
w2

2, 6, 8

Mathematica FullSimplify(...) w√
w2

6, 8

Derive default
√
w2

w

TI-CAS default w√
w2

2, 6, 8

Maple default w√
w2

2, 6, 8

Maxima default w√
w2

2, 6, 8

Maxima fullratsimp(...) w√
w2

6, 8

Maple simplify(...) csgn (w)

Table 17: Simpli�cation of
√
w2/w − (−1)(1/2)(arg(w

2)−2 arg(w))/π, with �aw numbers.

system and transformation result and �aw numbers

Appendix rewrite rules −i(−2Arg[w]+Arg[w2])/π +
√
w2

w
2

Mathematica default −i(−2Arg[w]+Arg[w2])/π +
√
w2

w
2

Mathematica FullSimplify(...) −i(−2Arg[w]+Arg[w2])/π +
√
w2

w
2

Derive default
√
w2

w
− IF

(
w = 0, 0, (−1)(PHASE(w2)−2PHASE(w))/(2π)

)
2

TI-CAS, default
√
w2

w
− e

πi


0, w = 0
(angle(w2)−2 angle(w))1/2

π
else

2

Maple default w√
w2
− (−1)

1
2

argument(w2)−2 argument(z)

π 2

Maxima default w√
w2
− (−1)

atan2(sin(2 carg(w)),cos(2 carg(w)))−2 carg(w)
2π 2

Maxima fullratsimp(...)
√
w2(−1)

carg(w)
π −w(−1)

atan2(sin(2 carg(w)),cos(2 carg(w)))
2π

w(−1)
carg(w)

π

2

Maple simplify(...) csgn (w)− (−1)
1
2

argument(w2)−2 argument(z)

π 2
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