
ACM Communications in Computer Algebra, TBA TBA

Improving incremental signature-based Gröbner basis algorithms

Christian Eder
c/o Department of Mathematics

TU Kaiserslautern
67653 Kaiserslautern, Germany

ederc@mathematik.uni-kl.de

Abstract

In this paper we describe a combination of ideas to improve incremental signature-based Gröbner basis al-

gorithms which have a big impact on their performance. Besides explaining how to combine already known

optimizations to achieve more efficient algorithms, we show how to improve them even further. Although our idea

has a postive effect on all kinds of incremental signature-based algorithms, the way this impact is achieved can

be quite different. Based on the two best-known algorithms in this area, F5 and G2V, we explain our idea, both

from a theoretical and a practical point of view.

1 Introduction

Computing Gröbner bases is a fundamental tool in computational commutative algebra. Buchberger introduced the
first algorithm to compute such bases in 1965, see [2]. In the meantime lots of additional and improved algorithms
have been developed.

In the last couple of years, so-called signature-based algorithms like Faugère’s F5, see [7], and G2V by Gao, Guan
and Volny, see [8], have become more popular. Lots of optimizations for these algorithms have been published, for
example, see [1,5,9,14]. Whereas recently work on the field of non-incremental signature-based algorithms have been
done, we focus our discussion in this paper on the incremental nature of this kind of algorithms, based on Faugère’s
initial presentation of F5 in [7]: Computing Gröbner bases step by step iterating over the generators of the input
system. The intermediate states of this incremental structure can be used to improve performance.

The intention of this paper is not only to cover, to collect, and to compare the various optimizations found recently,
but also to increase the algorithms’ efficiency. As discussed in-depth in [6], signature-based algorithms differ mainly
by their implementation of two criteria used to detect useless critical pairs during the computations, the non-minimal
signature criterion and the rewriting signature criterion; the optimizations presented in this publication have mostly
an impact on the first criterion. We focus our discussion on the two best-known and most efficient incremental
algorithms in this area, namely F5 and G2V. Due to their different, in some sense even opposed, usages of the above
mentioned criteria, their behaviour w.r.t. the presented ideas gives a rather accurate picture of the impact of the
optimizations on the class of incremental signature-based algorithms in general.

In Section 2 we introduce the basic notions of incremental signature-based algorithms. In [5] the idea of in-
terreducing intermediate Gröbner bases between the iteration steps of F5 is illustrated: Speed-ups of nearly 30%
compared to the basic F5 can be achieved by minimizing the computational overhead which is generated due to the
inner workings of signature-based algorithms. Section 3 shortly reviews this idea, from a more general point of view
than it was done in its initial presentation back then, taking its effects on algorithms like G2V into account. G2V
and the idea of using zero reductions actively in the current iteration step is content of Section 4. The idea of using
recent zero reductions in the algorithm goes back to Alberto Arri’s preprint of [1] in 2009, where this optimization
was mentioned for the first time. Combining these two, at a first look rather separated improvements in a clever way
is the main contribution of this paper: We show how a small idea can be used to get a faster detection of useless
critical pairs; in the situation of G2V one even discards more elements, which leads to a huge improvement in the
overall performance of the algorithm.

1



Improving incremental signature-based Gröbner basis algorithms TBA

2 Basic setting

We start with some basic notations. Let i ∈ N, K a field, and R = K[x1, . . . , xn]. Let Fi = (f1, . . . , fi), where each
fj ∈ R, and Ii = 〈Fi〉 ⊂ R is the ideal generated by the elements of Fi. Moreover, we fix a degree-compatible ordering
< on the monoidM of monomials of x1, . . . , xn. For a polynomial p ∈ R, we denote p’s leading monomial by lm (p),
its leading coefficient by lc (p), and write lt (p) = lc (p) lm (p) for its leading term. For any two polynomials p, q ∈ R
we use the shorthand notation

τ(p, q) = lcm (lm(p), lm(q))

for the least common multiple of their leading monomials.
Let e1, . . . , ei be the canonical generators of the free R-module Ri. We extend the ordering < to a well-ordering

≺ on the set {tej | t ∈ M, 1 ≤ j ≤ i} in the following way1: tjej ≺ tkek iff j < k, or j = k and tj < tk. We define
maps

π : Ri → Ii
∑i

j=1 pjej 7→
∑i

j=1 pjfj ,

where pj is a polynomial in R for 1 ≤ j ≤ i. An element ω ∈ Ri with π(ω) = 0 is called a syzygy of f1, . . . , fi.
The module of all such syzygies is denoted Syz(Fi). A syzygy of type fkej − fjek is called a principal syzygy. The
submodule of all principal syzygies of Fi is denoted PSyz(Fi) ⊆ Syz(Fi). Note that if a sequence Fi of polynomials
is regular, then PSyz(Fi) = Syz(Fi).

In [6] the class of incremental signature-based Gröbner basis algorithms is introduced. Those give a new point
of view on the computations taking so-called signatures into account. Let fi+1 ∈ R\Ii. We describe algorithms
that, given a Gröbner basis Gi of Ii, computes a Gröbner basis of Ii+1. Thus we restrict ourselves to an incremental
approach in this paper.

Definition 2.1. Let p ∈ Ii+1, j ∈ N with j ≤ i + 1, and h1, . . . , hj ∈ R such that hj 6= 0 and p = h1f1 + · · ·hjfj.

1. If t = lm (hj), we say that tej ∈ Ri+1 is a signature of p. S denotes the set of all potential signatures,
S = {tej | t ∈M, j = 1, . . . , i + 1}.

2. Using the well-ordering ≺ on S we can identify for each p ∈ Ii+1 a unique, minimal signature.

3. An element f = (tej, p) ∈ S × Ii+1 is called a labeled polynomial. For a labeled polynomial f = (tej , p)
we define the shorthand notations poly(f) = p, sig(f) = tej, and index(f) = j. Talking about the lead-
ing monomial, leading term, and leading coefficient of a labeled polynomial f we always assume the corre-
sponding value of poly(f). In the same sense we define the least common multiple of two labeled polyno-
mials f and g, τ(f, g), by τ (poly(f), poly(g)). Furthermore, for G = {g1, . . . , gℓ} ⊂ S × Ii+1 we define
poly(G) := {poly(g1), . . . , poly(gℓ)} ⊂ Ii+1.

4. A critical pair of two labeled polynomials f and g is a tuple (f, g) ∈ (S × Ii+1)
2
.

5. Moreover, we define the s-polynomial of two labeled polynomials f and g by

spoly(f, g) = (ω, lc(g)uf · poly(f)− lc(f)ug · poly(g))

where uf = τ(f,g)
lm(f) , ug = τ(f,g)

lm(g) ∈M and ω = max {uf sig(f), ugsig(g)}.

Adopting the notions of reduction and standard representation from the pure polynomial setting we get:

Definition 2.2. Let f, g ∈ S × Ii+1 be labeled polynomials, and let G ⊂ S × Ii+1.

1. f reduces sig-safe to g modulo G if there exist sequences j1, . . . , jℓ ∈ N, t1, . . . , tℓ ∈ M, c1, . . . , cℓ ∈ K, and
r0, . . . , rℓ ∈ S × Ii+1 such that for all i ∈ {1, . . . , ℓ} gji

∈ G,

(a) r0 = f , ri = ri−1 − citigji
, rℓ = g,

(b) lm (ri) < lm (ri−1), and

1Note that this differs slightly from the ordering given in [7], but our discussion is mainly based on [6]. Moreover, it simplifies notation.

2



Christian Eder

(c) tisig (gji
) ≺ sig (ri−1).

2. We say that f has a standard representation with respect to G if there exist h1, . . . , hℓ ∈ R, g1, . . . , gℓ ∈ G

such that

(a) poly(f) = h1 poly(g1) + · · ·+ hℓ poly(gℓ),

(b) for each k = 1, . . . , ℓ either hk = 0, or

i. lm (hk) lm (gk) ≤ lm (f), and

ii. lm (hk) sig(gk) � sig(f).

Remark 2.3.

1. If f reduces sig-safe to 0 modulo G, then it has a standard representation modulo G. Moreover, note that the
concept of sig-safeness, that means the restriction of the reducer gji

by tisig (gji
) ≺ sig (ri−1) in each step, is

essential for the correctness (and the performance) of signature-based algorithms.

2. In Fact 24 of [6] it is shown that it is sufficient to consider signatures with coefficient 1. Thus there is no need
to consider lc(hj) in Definition 2.1 resp. module terms in general for signatures.

The following statement is the signature-based counterpart of Buchberger’s Criterion, see [2].

Theorem 2.4. Let Gi+1 = {g1, . . . , gℓ} ⊂ S × Ii+1 such that {f1, . . . , fi+1} ⊂ poly(Gi+1). If for each pair (j, k)
with j > k, 1 ≤ j, k ≤ ℓ, spoly(gj , gk) has a standard representation w.r.t. Gi+1, then poly(Gi+1) is a Gröbner basis
of Ii+1.

Proof. For example, see [5, 6].

In the non-signature-based setting, an algorithm plainly based on the Buchberger Criterion is quite inefficient.
There the Product Criterion and the Chain Criterion, see [2,12] are used to reduce useless computations; a notable
implementation can be found in [10]. On the signature-based side the very same holds: We need criteria to improve
the computations, see [6] for more details on this topic.

As a starting point for our discussion we choose Faugère’s F5 Algorithm. With a view on optimizing incremental
signature-based Gröbner basis algorithms in general we use the notations introduced in [6].

Lemma 2.5. Assume the computation of a Gröbner basis poly(Gi) for Ii.

1. Non-minimal signature criterion (NM): spoly(f, g) has a standard representation w.r.t. Gi if there exists an
element ω ∈ PSyz(Fi) with lm(ω) = tωejh

such that

(a) tω | uhth,

wheretω, th, uh ∈M and uhsig(h) = uhthejh
for either h = f or h = g.

2. Rewritable signature criterion (RW): spoly(f, g) has a standard representation w.r.t. Gi if there exists a labeled
polynomial r such that

(a) index(r) = index(h),

(b) sig(r) ≻ sig(h), and

(c) tr | uhth,

where tr, th, uj ∈ M and sig(r) = trejh
, uhsig(h) = uhthejh

for either h = f or h = g.

Proof. Lemma 2.5 is a slight generalization of Theorem 18 in [5]. There (NM) is considered only for h being an
element generated in the current iteration step, that means index(h) = i. Reviewing the proof given in [5] one
easily sees that the situation of index(h) < i is just a special case already considered by the proof: There the two
signatures ufsig(f) and ugsig(g) refer toM and N , whereM≻N . In our situation uhsig(h) = N , and any principal
syzygy ω with the above mentioned properties can only decrease N . The statement then follows by the very same
argumentation as in the proof given in [5].

3



Improving incremental signature-based Gröbner basis algorithms TBA

Remark 2.6. Note that all signature-based algorithms have in common that they handle their s-polynomials by
increasing signature. This even holds for F5, also there the critical pairs are presorted by the degree of the corre-
sponding s-polynomials. Since F5, as presented in [5,7], works only with homogeneous input, this does not interfere
an ordering w.r.t. increasing signatures. By the discussion in [6] F5 can also be used for inhomogeneous input by
removing the presorting of the pair set by increasing degree.

The crucial fact for the optimization presented in this paper is that whereas checking (NM) is quite easy and
cheap speaking in a computational manner, searching for possible elements r with which we can check (RW) costs
many more CPU cycles.

3 Computational overhead

One of the main problems of signature-based Gröbner basis algorithms is the overhead generated by the following
kind of data:

1. From the point of view of the resulting Gröbner basis the elements are useless, that means the corresponding
leading monomials are superfluous.

2. For the correctness of the algorithm the very same elements are crucial: They are essential for the correct
detection of useless critical pairs w.r.t. (NM) and (RW).

This characteristic is unique to signature-based algorithms and cannot be found in other Buchberger-style Gröbner
basis algorithms. It does not only give a penalty on the performance, but unfortunately also causes problems with
theoretical aspects, for example regarding the termination of F5, see [4] for more details.

Next we state the pseudo code of the main loop of an incremental signature-based Gröbner basis algorithm in
the vein of F5, denoted SigGB. We denote the incrementally subalgorithm IncSig.

Algorithm 1 SigGB, an incremental signature-based Gröbner basis algorithm in the vein of F5

Input: Fm

Ensure: G, a Gröbner basis for Im

1: G1 ← {(e1, f1)}
2: for (i = 1, . . . , m− 1) do

3: fi+1 ← Reduce (fi+1, poly(Gi))
4: if (fi+1 6= 0) then

5: Gi+1 ← IncSig (fi+1, Gi)
6: else

7: Gi+1 ← Gi

8: return poly(Gm)

Let us start the discussion on computational overhead looking at F5 as presented in [7] first, so the following
disussions refers to Algorithm 1. The first drawback is the computation of non-minimal intermediate Gröbner bases.

1. Due to the fact that the signatures of the labeled polynomials must be kept valid during (sig-safe) reductions,
some leading term reductions do not take place immediately, but are postponed. These reductions, needed to
ensure correctness of the algorithm, are computed when generating new critical pairs later on2. Thus at the
end we could have three polynomials poly(f), poly(g) and poly(h) in poly(Gi) such that

(a) lm(g) | lm(f), but the reduction f − ctg has not taken place due to tsig(g) ≻ sig(f), for some c ∈ K,
t ∈ M such that lt(f) = ct lt(g).

(b) h is the result of the later on generated and reduced s-polynomial spoly(g, f) = ctg − f , which is sig-safe
due to swapping g and f .

2In [7] this kind of generation of new critical pairs is not postponed to the end of the current reduction step, but those are added
to the pair set in place. These two variants of handling such a situation are nearly equivalent and do not trigger any difference for the
overall computations, see [6]. The way it is described here makes it easier to see how the computational overhead is produced.

4



Christian Eder

In the end, we only need two out of these three elements for a Gröbner basis; in a minimal Gröbner basis
we would discard poly(f). The problem is that for the correctness of the ongoing incremental step of F5 the
labeled polynomial f as well as its addition to Gi is essential3: Without adding f to Gi the critical pair (g, f)
would not be generated at all, thus the element h, possibly needed for the correctness of the Gröbner basis in
the end, would never be computed. So we are not able to remove f during the actual iteration step.

Clearly, in the same vein the problem of non-reducedness of the Gröbner basis poly(Gi), in particular, missing
tail-reductions, can be understood.

2. Since F5, when reducing with elements generated in the ongoing iteration step, processes complete reductions
only with elements of lower index, elements can enter Gi whose polynomials have tails not reduced w.r.t.
poly(Gi). The main argument for not doing complete reductions in this situation is the requirement of sig-
safeness: Comparing the signatures before each possible tail-reduction can lead to quite worse timings.4 On
the other hand, from the point of view of the resulting Gröbner basis poly(Gi), which consists only of poly-
nomial data, we do not need to take care of sig-safeness and can tail-reduce the elements in poly(Gi) as usual
without any preprocessed signature comparison. This is way faster than implementing tail-reductions during
the iteration step, although we have to use the non-tail-reduced elements during a whole iteration step.

From the above discussion we get the following situation:

1. The computational overhead during an iteration step is prerequisite for the correctness of F5.

2. The set of labeled polynomials Gi returned after the ith iteration step is used as input for the (i+1)st iteration
step, including the signatures.

In [13] Stegers found a way optimizing at least the reduction steps w.r.t. elements of previous iteration steps.
There the fact is used that F5 does not need to look for the signatures, due to the definition of ≺ all such reducers
have a smaller index, and thus, a smaller signature: His variant of F5 computes another set of polynomials Bi after
each iteration step, namely the reduced Gröbner basis of Ii which is computed out of poly(Gi). In the following
iteration step reductions w.r.t. elements computed in previous iteration steps are done by Bi, not by poly(Gi).

In [5] the variant F5C of F5 is presented, which is based on the idea of Stegers, but goes way further: F5C
interreduces the intermediate Gröbner basis poly(Gi) to Bi and uses these polynomial data as starting point for the
next iteration step. At this point we can look at Algorithm 1 from [6], which illustrates one single iteration step of
incremental signature-based Gröbner basis algorithms: Let ℓ = #Bi, any element bj ∈ Bi gets a new signature ej ,
so that we receive elements gj = (ej , bj) in Gi+1 for 1 ≤ j ≤ ℓ. fi+1 is then added to Gi+1 by adjusting the index,
gℓ+1 = (eℓ+1, fi+1). On the one hand, proceeding this way the corresponding signatures of reduced polynomials are
guaranteed to be correct from the algorithm’s point of view. On the other hand, all previously available criteria for
detecting useless critical pairs w.r.t. to labeled polynomials of index ≤ ℓ by (RW) in the upcoming iteration step
are removed. Thus the question, if we pay dearly by less efficient criteria checks in the following iteration steps for
the benefit of having less computational overhead, needs to be asked. Luckily it is shown in [5] that this is not a
problem at all:

Proposition 3.1. Let spoly(f, g) be any s-polynomial considered during an iteration step of F5 with index(g) <

index(f). Assume that τ(f,g)
lm(g) g would be detected either by (NM) or (RW). Then spoly(f, g) is also discarded in F5C.

Corollary 3.2. For an s-polynomial in F5C it is enough to check a generator f by (NM) resp. (RW) if f was
computed during the current iteration step.

Proof. See Theorem 27 resp. Corollary 28 in [5].

Thus it follows that we do not need to recompute any signature after interreducing the intermediate Gröbner
basis poly(Gi) for checks with (RW).

Let us add the above ideas in the pseudo code of Algorithm 2. We highlight the new step of interreducing the
intermediate Gröbner basis, differing from the description of Algorithm 1. There are one main change: Instead of
IncSig we use a new algorithm IncSigR which takes a reduced Gröbner basis Bi−1 as a second argument. Note
that for IncSigR we refer the reader to Algorithm 1 in [6].

Next we see how the initial presentation of G2V improved the field of signature-based computations.

3See [4] for more details, also on termination issues caused by this behaviour of signature-based algorithms.
4Clearly, for reducers of lower index the signatures need not be compared.

5



Improving incremental signature-based Gröbner basis algorithms TBA

Algorithm 2 SigGB with reduced intermediate Gröbner bases

Input: Fm

Ensure: G, a Gröbner basis for Im

1: G1 ← {(e1, f1)}
2: for (i = 1, . . . , m− 1) do

3: Bi ← RedSB (poly(Gi))
4: fi+1 ← Reduce(fi+1, Bi)
5: if (fi+1 6= 0) then

6: Gi+1 ← IncSigR(fi+1, Bi)
7: else

8: Gi+1 ← Gi

9: return poly(Gm)

4 Using reductions to zero

G2V can be seen a variant of F5C using a way more relaxed version of (RW): G2V only checks if the corresponding
s-polynomials of two critical pairs have the same signature when adding the pairs to the pair set. In this situation
only one of these two pairs is kept, the other one is discarded. We refer to [6] for more details.

Thus G2V’s efficiency is mainly based on its optimized variant of (NM). The idea can be explained quite easily:
Whereas F5C uses only principal syzygies for (NM), since they are known beforehand and can be precomputed, G2V
goes one step further.

In the following, let ℓi always be the number of elements in the reduced Gröbner basis Bi of Ii.

Definition 4.1. During the (i + 1)st iteration step of IncSigR let

Si+1 := {teℓi+1 ∈ S | teℓi+1 signature of an s-polynomial that reduced sig-safe to zero }.

Lemma 4.2 (Improved (NM)). Assume that G2V computes a Gröbner basis poly(Gi+1) for Ii+1. spoly(f, g) has a
standard representation w.r.t. Gi+1 if there exists an element ω ∈ PSyz (Bi ∪ {fi+1}) ∪ Sℓi+1 with lm(ω) = tωeℓi+1

such that tω | uhth, where uhsig(h) = uhtheℓi+1 for tω, th, uh ∈ M and either h = f , index(f) = ℓi + 1 or h = g,
index(g) = ℓi + 1.

Proof. See Proposition 16 and Lemma 17 in [6].

Remark 4.3.

1. Switching from PSyz(Fi+1) to PSyz (Bi ∪ {fi+1}) is not a problem at all since 〈Fi+1〉 = 〈Bi ∪ {fi+1}〉 as Bi is
the reduced Gröbner basis of Ii.

2. Note that the restriction to check elements of current index only is influenced by the discussion in Section 3.
Whereas we know that Corollary 3.2 ensures that F5C does not lose any useful information for rejecting useless
critical pairs due to its implementation of (RW), this does not hold for G2V. It is possible that removing the
signatures of the intermediate Gröbner bases leads to a situation where less critical pairs are rendered useless
by the improved (NM).

Correctness of Lemma 4.2 does not depend on the chosen implementation of (RW). Thus the improved (NM) can
be used in any incremental signature-based Gröbner basis algorithm, for example in F5C.

Definition 4.4. We denote the algorithm F5C with (NM) implemented as in Lemma 4.2 by F5A.5

From the previous discussion in Section 3 it is not obvious that there is any benefit of F5A over F5C in terms of
finding useless critical pairs. On the other hand, it is shown in [6] that F5A is faster than F5C, especially when it
comes to non-regular input, that means when F5 and its variants tends to compute zero reductions:

1. Whereas some of the signatures of zero reductions are used in F5C by (RW), not all of them can be used due
to the restriction that sig(r) ≻ sig(h).

5The “A” stands for “actively using zero reductions”.

6



Christian Eder

2. Moreover, even if a corresponding (RW) detection happens in F5C, testing by (NM) in F5A is a lot faster as
already discussed at the end of Section 2.

5 Combining ideas

Until now, the presented ideas of interreducing intermediate Gröbner bases (Section 3) and using zero reductions
actively in (NM) (Section 4) are used without any direct connection:

1. The Gröbner bases are interreduced between two iteration steps. This has an effect on the labeled polynomials
computed in the previous iteration steps.

2. Zero reductions are used actively in a single iteration step only. This has an impact on current index labeled
polynomials only.

Of course, interreducing the intermediate Gröbner basis poly(Gi) to Bi has an influence on the upcoming iteration
step inasmuch as less critical pairs are considered and reductions w.r.t. Bi are more efficient. Besides this we cannot
assume to receive any deeper impact on the (i + 1)st iteration step. On the other hand, it would be quite nice to
use (NM) not only on current index labeled polynomials, but also on those coming from Bi. For this one could just
precompute PSyz(Bi) and check the corresponding lower index generators of critical pairs using PSyz(Bi) in (NM).
By Lemma 2.5 this would be a correct optimization. The crucial point is that we can do even better:

Interreducing poly(Gi) to Bi we try to get some more resp. better signatures for checking (NM): For bj , bk ∈ Bi

we know that spoly(bj , bk) reduces to zero w.r.t. Bi. Thus it makes sense to use these artificial zero reductions to get
more criteria, that means leading monomials of syzygies, to strengthen (NM). Sadly things in the signature-based
world are a bit more complicated: We need to ensure that we store the correct signature for such a zero reduction
w.r.t. the newly generated labeled polynomials (ej , bj) we use in the (i + 1)st iteration step. Since we do not want
to recompute all zero reductions in order to find out the correct corresponding signature, we restrict ourselves to the
signatures of the s-polynomials where one generator is always gℓi

= (eℓi
, bℓi

). Since all other elements gj = (ej , bj)
fulfill j < ℓi we know the signature of the zero reduction of spoly(gℓi

, gj) directly.

Definition 5.1. Assume that the intermediate Gröbner basis poly(Gi) is reduced to Bi = {b1, . . . , bℓi
}. Then we

define

Si :=

{

τ(bℓi
, bk)

lm(bℓi
)

eℓi
| 1 ≤ k < ℓi

}

.

Theorem 5.2 (Strengthening (NM)). Assuming the (i + 1)st incremental step of a signature-based algorithm com-
puting a Gröbner basis poly(Gi+1) for Ii+1. spoly(f, g) has a standard representation w.r.t. Gi+1 if there exists an
element

ω ∈ PSyz (Bi ∪ {fi+1}) ∪ Si+1 ∪ Si ∪ . . . ∪ S2

with lm(ω) = tωejh
such that tω | uhth, where tω, th, uh ∈M and uhsig(h) = uhthejh

for either h = f or h = g.

Proof. There are two types of elements ω in PSyz (Bi ∪ {fi+1}):

1. lm(ω) = teℓi+1, and

2. lm(ω) = tej for 2 ≤ j < ℓi + 1.

ω which are of Type (1) or in Si+1 detect s-polynomial generators of index ℓi + 1. The correctness of this statement
follows from Lemma 4.2.

Next we consider generators of index < ℓi + 1: Let Sj for 2 ≤ j ≤ i. Note that each element in such an Sj is
of type teℓj

, thus only useless critical pairs with generators of index ℓj can be detected. So we can assume Sj for a

fixed j in the following. Let teℓj
∈ Sj , then t =

τ(bℓj
,bk)

lm(bℓj
) for some 1 ≤ k < ℓj. Since Bj is a reduced Gröbner basis we

know that spoly(bℓj
, bk) reduces to zero w.r.t. Bj . Moreover, by construction of Sj this zero reduction corresponds

to a syzygy ω with lm(ω) = teℓj
. Any other syzygy the algorithm constructs that possibly detects a generator of

index ℓj is of Type (2) from PSyz (Bi ∪ {fi+1}). By Lemma 2.5 (1) the statement holds.

Remark 5.3.

7



Improving incremental signature-based Gröbner basis algorithms TBA

1. Note that the sets Si in Theorem 5.2 are computed recursively after the ith iteration step of SigGB. There is
no connection between Si and Si−1 for any i > 3. Plainly speaking we are trying to recover some of the criteria
for (NM) we have used in the ith iteration step, but we would not be able to use in the (i + 1)st one due to the
interreduction process inbetween.

2. It is also crucial to only take the element of highest index ℓi from Bi into account when computing Si, we
cannot ensure that spoly(gj , gk) reduces sig-safe to zero w.r.t. Gi if j 6= ℓi 6= k. There a not sig-safe reduction
could be possible to achieve the zero reduction of spoly(gj , gk), a problem that cannot happen if either j or k is
equal to ℓi.

Of course one is free to reorder the elements in Bi before giving them new signatures in the (i + 1)st iteration
step. We tried several choices for bℓi

, for example lowest leading term or sparsity, but a positive effect on the
overall behaviour of the algorithms was not evident from our tests.

3. The main optimization compared to F5C is to use S2 up to Si not in (RW), as it is described in Section 3,
but in (NM). Compared to G2V’s variant of (NM) lots of new checks are added that detect way more useless
critical pairs as we see in the experimental results presented in Section 6.

Algorithm 3 illustrates the main wrapper for an incremental signature-based Gröbner basis algorithm based on
the idea presented in this section.

Algorithm 3 SigGB with reduced intermediate Gröbner bases and optimized (NM) Criterion

Input: Fm

Ensure: G, a Gröbner basis for Im

1: S ← [], G1 ← {(e1, f1)}
2: for (i = 1, . . . , m− 1) do

3: Bi ← RedSB (poly(Gi))
4: fi+1 ← Reduce(fi+1, Bi)
5: if (fi+1 6= 0) then

6: for (k = 1, . . . , ℓi) do

7: Si,k ←
τ(bℓi

,bk)

lm(bℓi
) eℓi

8: Gi+1 ← IncSigR(fi+1, Bi)
9: else

10: Gi+1 ← Gi

11: return poly(Gm)

On a first look the presented strengthening of (NM) seems to be nearly equivalent to the initial optimization of
(NM) in Lemma 2.5. As we see in the following, the variant presented here is more efficient when it comes to finding
useless critical pairs.

Corollary 5.4. In Theorem 5.2, elements ω ∈ PSyz (Bi ∪ {fi+1}) with lm(ω) = teℓj
for 2 ≤ j ≤ i need not to be

considered at all.

Proof. Assume such an ω with lm(ω) = teℓj
. Then ω = bkeℓj

− bℓj
ek for some k < ℓj fixed. In Sj there exists some

ueℓj
with u =

τ(bℓj
,bk)

lm(bℓj
) . It follows that u | t.

Definition 5.5. We denote the algorithms F5C, F5A, and G2V with (NM) implemented as in Theorem 5.2 by iF5C,
iF5A, and iG2V, respectively.6

Example 5.6. Let p1 = yz + 2, p2 = xy + 1
3 xz + 2

3 , p3 = xz2 − 6x + 2z be three polynomials in Q[x, y, z]. We
want to compute a Gröbner basis for the ideal I = 〈p1, p2, p3〉 w.r.t. the degree reverse lexicographical ordering with
x > y > z using Algorithm 3.

6The “i” stands for “intermediate incremental optimization”.

8



Christian Eder

Due to the incremental structure of the algorithm we start with the computation of a Gröbner basis poly(G2) of
〈p1, p2〉. After initializing f1 := (e1, p1) and f2 := (e2, p2) we construct the s-polynomial of f1 and f2,

spoly(f2, f1) = (ze2, zp2 − xp1).

It does not have a standard representation w.r.t. G2 at the moment of its creation, thus a new element f3 :=
(

ze2, 1
3 xz2 − 2x + 2

3 z
)

is added to G2.
Now we look at the s-polynomials

spoly(f3, f1) = (yze2, 3y poly(f3)− xz poly(f1)) ,

spoly(f3, f2) =
(

yze2, 3y poly(f3)− z2 poly(f2)
)

.

It does not make any difference which of these two s-polynomials we compute: F5 would remove the later one
by its implementation of (RW), whereas G2V would only store one of the two corresponding critical pairs in the
beginning. W.l.o.g. we assume the reduction of spoly(f3, f1):7

spoly(f3, f1) = (yze2,−6xy − 2xz + 2yz)

Further sig-safe reductions with 6f2 and 2f1 lead to a zero reduction, i.e. we can add a new rule, namely yze2, to
the set S2 as explained in Section 4.8

Since there is no further s-polynomial left, SigGB finishes this iteration step with

poly(G2) =

{

yz + 2, xy +
1

3
xz +

2

3
,

1

3
xz2 − 2x +

2

3
z

}

.

We see that for computing the reduced Gröbner basis B2 of 〈p1, p2〉 we only need to normalize poly(f3) to xz2−6x+2.
Most of the time Gi and Bi do not coincide inbetween iteration steps, so we need to remove Si completely, since rules
stored in there might not be correct any more.

Let us have a closer look at how the new rules for S2 would be computed: First of all, any element in B2

corresponds to a module generator of R3, that means we can think of three labeled polynomials fi := (ei, bi) for
i ∈ {1, 2, 3}. During the lines 6 – 7 of Algorithm 3 the signatures corresponding to spoly(f3, f1) and spoly(f3, f2) are
added to S2 respectively: The first one gives the rule ye3, the second one also; thus we have S2 = {ye3}.

Next we see that p3 reduces to zero w.r.t. B2 in Line 4.
Thus the algorithm does not enter another iteration step, but terminates with the reduced Gröbner basis G = B2.

Remark 5.7. Of course as stated in the pseudo code, SigGB would reduce the next generator p3 of the input ideal
w.r.t. intermediate reduced Gröbner basis B2, before it would recompute the syzygy list S2 in the above example. For
the sake of explaining how the recomputation of such a rules list works, using a rather small example, we decided to
trade off efficiency against a complete discussion.

It would be wrong to add the signature of spoly(f2, f1) to S2 once we have interreduced poly(G2) to B2. Of course,
spoly(b2, b1) has a standard representation w.r.t. B2, namely spoly(b2, b1) = b3, but this does not lead to a standard
representation of spoly(f2, f1) w.r.t. labeled polynomials due to the fact that sig(f3) = e3 ≻ sig (spoly(f2, f1)). That
is the one big drawback of interreducing the intermediate Gröbner bases in incremental signature-based algorithms.
Nevertheless, the speed-up due to handling way less elements in Bi compared to poly(Gi) more than compensates this
as shown in [5].

6 Experimental results

We compare timings, the number of zero reductions, and the number of overall reduction steps of the different
algorithms presented in this paper. To give a faithful comparison, we use a further developed version of the imple-
mentation we have done for [6]: This is an implementation of a generic signature-based Gröbner basis algorithm
in the kernel of a developer version of Singular 3-1-5. Based on this version we implemented G2V, iG2V, F5C,
iF5C, F5A, and iF5A by plugging in the different variants and usages of the criteria (NM) and (RW). There are

7Considering instead spoly(f3, f2) is similar and behaves in the very same way.
8Latest at this point spoly(f3, f2) would be removed by the rule yze2 ∈ S2.

9



Improving incremental signature-based Gröbner basis algorithms TBA

no optimizations which could prefer any of the specific algorithms, so that the difference in the implementation
between two of them is not more than 300 lines of code; compared to approximately 3,500 lines of code overall this
is negligible. All share the same data structures and use the same (sig-safe) reduction routines. So the differences
shown in Tables 1, 2, and 3 come from the various optimizations of the criteria mentioned in Sections 3 – 5.

Of course, to ensure such an accurate comparison of various different variants of signature-based algorithms has
a drawback in the overall performance of the algorithms. Since we are interested in impact of the improvements
explained in this paper it is justified to take such an approach. Clearly, implementing a highly optimized iF5A
whithout any restrictions due to sharing data structures and procedures with an G2V can lead to a way better
performance. It is not in focus of this paper to present the fastest implementation of such kind of algorithms, but
to present practical benefits of the presented optimizations, focusing on the fact that all variants of incremental
signature-based Gröbner basis algorithms take an advantage out of them.

The source code is publicly available in the branch f5cc9 at

https://github.com/ederc/Sources.

We computed the examples on a computer with the following specifications:

• 2.6.31–gentoo–r6 GNU/Linux 64–bit operating system,

• INTEL R© XEON R© X5460 @ 3.16GHz processor,

• 64 GB of RAM, and

• 120 GB of swap space.

Our naming convention for examples specifies that “-h” denotes the homogenized variant of the corresponding
benchmark. All examples are computed over a field of characteristic 32, 003 w.r.t. the degree reverse lexicographical
ordering.

First of all let us have a closer look at G2V, F5C and F5A. In Table 1, we see that whereas F5C is faster than
G2V in nearly all example sets, the ones which lead to a high number of zero reductions in F5C are computed way
faster by G2V. This is based on the fact that G2V actively uses such zero reductions adding new checks for (NM),
whereas F5C only partially includes those signatures in its implementation of (RW).

Comparing F5A and F5C we see that F5A is not only way faster than F5C in such highly non-regular examples
like Eco-X10, but also that F5A is faster in other systems like Cyclic-8. Note that F5A is faster and computes less
reductions than G2V in all examples.

The ideas of Section 5 help iG2V to compute much less reduction steps and discard way more useless critical
pairs than G2V does. This comes from the fact that G2V does not implement any rewritable criterion besides its
choice of keeping only 1 critical pair per signature. In most examples iG2V executes only half as much reduction
steps as G2V, in some examples like F-855 it even alleviates to 15%.

By our discussion in Section 3 it is not a surprise that there is no change in the corresponding numbers of
reduction steps and zero reductions for iF5C resp. iF5A compared to the ones of F5C and F5A. Still the timings
improve greatly which is based on the following facts:

1. Altough the rules added to Si in lines 6 – 7 are also checked by F5’s (RW) implementation, checking (RW)
costs more time resp. CPU cycles than checking (NM).

2. To have all possible (RW) rules available, (RW) must be checked directly before the reduction step of the
corresponding critical pair starts. At this point the critical pair can be stored for a long time, using memory
and making the list of critical pairs longer. In iF5C resp. iF5A more useless critical pairs can be found directly
at their creation. Thus they are not kept for a long time, keeping lists shorter, which does not only save
memory, but also speeds up inserting upcoming critical pairs to the list.

Implementing the idea of Section 5 leads to a speed-up in nearly all examples. Katsura-X constitutes an exception,
it is known that (NM) as defined in Lemma 2.5 (1) is already optimal w.r.t. finding useless critical pairs. Thus
all the ideas presented in this paper only add some computations of not needed signatures, but do not affect the
performance in a beneficial way. Nevertheless, this computational overhead is negligible.

9The results presented here are done with the commit key 5c4dc1134a4ab630faab994dbe93d3013b4ccc7e.
10Note that F5C and iF5C cannot compute Eco-11-h.

10



Christian Eder

Test case G2V iG2V F5C iF5C F5A iF5A

Cyclic-7-h 25.714 13.441 5.369 5.255 5.790 5.180
Cyclic-7 24.613 12.782 5.660 5.310 5.216 4.758

Cyclic-8-h 13, 273.487 5, 710.221 6, 881.895 3, 689.003 4, 970.714 1, 907.076
Cyclic-8 12, 386.925 5, 362.307 6, 606.116 3, 482.177 4, 814.173 1, 812.321
Eco-9-h 10.050 6.741 58.935 59.182 6.320 5.550
Eco-9 18.755 10.012 12.899 12.994 13.425 12.899

Eco-10-h 278.663 158.167 2, 472.763 1, 974.163 188.683 133.183
Eco-10 1, 041.896 497.025 491.914 518.346 492.345 497.811

Eco-11-h 10, 169.897 5, 136.465 − − 7, 893.788 4, 815.971
F-744-h 33.244 25.724 35.324 36.740 19.865 19.865
F-744 27.312 20.469 8.198 9.267 8.458 8.198

F-855-h 1, 246.744 290.856 2, 948.138 2, 381.813 600.001 422.219
F-855 971.491 131.134 83.185 86.343 86.558 84.020

Katsura-10-h 4.186 4.193 4.213 4.491 4.248 4.256
Katsura-10 4.150 4.183 4.187 4.217 4.227 4.192

Katsura-11-h 59.004 59.871 58.689 61.496 58.411 58.673
Katsura-11 53.894 53.855 53.464 56.122 53.984 53.118
Gonnet-83-h 12.165 10.617 126.173 25.963 9.811 8.761

Schrans-Troost-h 4.393 4.250 2.970 3.498 3.087 2.970

Table 1: Time needed to compute a Gröbner basis of the respective test case, given in seconds.

Test case G2V iG2V F5C,iF5C F5A,iF5A

Cyclic-7-h 1,750,989 625,815 100,569 83,880
Cyclic-7 1,750,989 625,815 100,569 83,880

Cyclic-8-h 113,833,183 44,663,466 14,823,873 3,403,874
Cyclic-8 113,833,183 44,663,466 14,823,873 3,403,874
Eco-9-h 409,880 238,841 1,996,849 136,842
Eco-9 551,837 310,745 247,434 247,434

Eco-10-h 3,760,244 1,996,573 19,755,560 1,019,439
Eco-10 6,853,713 3,352,474 2,384,889 2,384,889

Eco-11-h 33,562,613 16,695,766 - 7,374,779
F-744-h 1,082,448 693,630 789,072 435,869
F-744 473,838 285,402 179,100 179,100

F-855-h 23,097,574 4,407,938 12,294,951 2,633,666
F-855 7,976,163 1,772,726 835,718 835,718

Katsura-10-h 18,955 18,955 18,343 18,343
Katsura-10 18,955 18,955 18,343 18,343

Katsura-11-h 65,991 65,991 63,194 63,194
Katsura-11 65,991 65,991 63,194 63,194
Gonnet-83-h 113,609 93,137 278,419 93,137

Schrans-Troost-h 19,132 18,352 14,010 14,010

Table 2: Number of all reduction steps throughout the computations of the algorithms.

11



Improving incremental signature-based Gröbner basis algorithms TBA

Test case G2V,iG2V F5C,iF5C F5A,iF5A

Cyclic-7-h 36 76 36
Cyclic-7 36 76 36

Cyclic-8-h 244 1,540 244
Cyclic-8 244 1,540 244
Eco-9-h 120 929 120
Eco-9 0 0 0

Eco-10-h 247 2,544 247
Eco-10 0 0 0

Eco-11-h 502 - 502
F-744-h 323 498 323
F-744 0 0 0

F-855-h 835 2,829 835
F-855 0 0 0

Katsura-10-h 0 0 0
Katsura-10 0 0 0

Katsura-11-h 0 0 0
Katsura-11 0 0 0
Gonnet-83-h 2,005 8,129 2,005

Schrans-Troost-h 0 0 0

Table 3: Number of zero reductions computed by the algorithms.

7 Conclusion

This paper contributes a more efficient usage, generalization, and combination of optimizations for incremental
signature-based algorithms. Even in situations where it does not enlarge the number of detected useless critical pairs
(F5C, F5A) it gives quite impressive speed-ups using a faster, less complex way of recognition.

For G2V the improvement in terms of removing redundant critical pairs is astonishing. Due to the fact that G2V
lacks a real implementation of (RW) the idea presented in Section 5 gives an easy way to add, at least partly, the
strengths of F5’s (RW) implementation to G2V without making the algorithm’s description more complex.

The improvements presented have a huge impact on the computations of incremental signature-based Gröbner
basis algorithms in general. Skilfully strengthening the criteria detecting useless elements on the fly, any existing
implementation can be optimized in this way without any bigger effort.

Acknowledgements

I would like to thank the referees for improving this paper with their suggestions, especially the one pointing out an
error in a previous version of this paper, a fact Example 5.6 mirrors. Furthermore, I would like to thank John Perry
for helpful discussions and comments.

References

[1] Arri, A. and Perry, J. The F5 Criterion revised. 2011. http://arxiv.org/abs/1012.3664v3.

[2] Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimen-
sionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

[3] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 3-1-5 — A computer algebra system for
polynomial computations, 2012. http://www.singular.uni-kl.de.

[4] Eder, C., Gash, J., and Perry, J. Modifying Faugère’s F5 Algorithm to ensure termination. ACM SIGSAM
Communications in Computer Algebra, 45(2):70–89, 2011. http://arxiv.org/abs/1006.0318.

12



Christian Eder

[5] Eder, C. and Perry, J. F5C: A Variant of Faugère’s F5 Algorithm with reduced Gröb-
ner bases. Journal of Symbolic Computation, MEGA 2009 special issue, 45(12):1442–1458, 2010.
dx.doi.org/10.1016/j.jsc.2010.06.019.

[6] Eder, C. and Perry, J. Signature-based Algorithms to Compute Gröbner Bases. In ISSAC 2011: Proceedings of
the 2011 international symposium on Symbolic and algebraic computation, pages 99–106, 2011.

[7] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero
F5. In ISSAC’02, Villeneuve d’Ascq, France, pages 75–82, July 2002. Revised version from
http://fgbrs.lip6.fr/jcf/Publications/index.html.

[8] Gao, S., Guan, Y., and Volny IV, F. A New Incremental Algorithm for Computing Groebner Bases. Journal of
Symbolic Computation – ISSAC 2010 Special Issue, 1:13–19, 2010.

[9] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases. 2010.

[10] Gebauer, R. and Möller, H. M. On an installation of Buchberger’s algorithm. Journal of Symbolic Computation,
6(2-3):275–286, October/December 1988.

[11] Greuel, G.-M. and Pfister, G. A Singular Introduction to Commutative Algebra. Springer Verlag, 2nd edition,
2007.

[12] Kollreider, C. and Buchberger, B. An improved algorithmic construction of Gröbner-bases for polynomial ideals.
SIGSAM Bull., 12:27–36, May 1978.

[13] Stegers, T. Faugère’s F5 Algorithm revisited. Master’s thesis, Technische Univerität Darmstadt, revised version
2007.

[14] Sun, Y. and Wang, D. A generalized criterion for signature related Gröbner basis algorithms. In ISSAC 2011:
Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 337–344, 2011.

13


