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Abstract

Herein, we present a sequel to earlier work on a generalizati the Lambert function. In par-
ticular, we examine series expansions of the generalizesioreproviding computational means for
evaluating this function in various regimes and furtherfearing the notion that this generalization is
a natural extension of the standard Lamb&rfunction.

AMS Numbers: 33E30, 01-01, 01-02
Also related to: 70B05, 81Q05, 83C47, 11A99

1 Introduction

The Lambert¥ function satisfyingiV’ (t)e'V'® = t provides an exact solution to:

e “C=a,(xr—r) 1)
withz = r; + %W(c e~ /a,). The Lambert W function appears in a myriad number of apfitioa.
In particular, it appears in the “lineal” gravity two-bodygblem [1/2] as a solution to the Einstein Field
equations in(1 + 1) dimensions. The Lambert W function appears as a solutiothfocase when the
two-bodies have exactly the same mass. However, the caseeqlial masses required=eneralization
of Lambert’s functionl[1, eq.(81)].
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e P =a,(x—r1)(r—12) (2)



This generalization originally appeared from the (quartaathanical) Double Well Dirac Delta Potential
model [3], a one-dimensional version of a special case ofgtlentum-mechanical three-body system
known as theHydrogen Molecular lonfand also appears in quantum gravity [2]). For this problem,
specificallyr; = 1, 7o = A, ¢ = 2 R whereR is the internuclear distance., = % and \ was treated
formally as real perturbative parameter (the case-atl allows eq.[(2) to factor intd {1) which is solvable
in terms of the standard Lambéit function). In its original form, this equation was writtem & more
complicated form, namely pseudo-quadraticwith two solutions forx [3H6]:

eV = 30+ 1 £ {1+ 02 —anp - e}

whereE, = —xz4 /2 are the quantum state energies (for respectively the twmdisolutionsz_). All
these quantities including the energies were real thougtionet rule out a generalization to the complex
plane.

A difficulty encountered by Byers-Brown and Scettal. is that Physical Chemists followed a conven-
tional practice of starting with the case= 0 whose solution iy = 1 as a starting point and considering
a series expansion abaug of eq. [1) in powers of\. This was called the “polarization expansion” for
the ranged < A < 1 and proves very difficult to sum, necessitating the use okERéermite Approx-
imants [3]. This slow convergence became aggravated fgeldvut similar molecular systems like the
Hydrogen Molecular lon requiring much discussion (and wlakon) to sort out the convergence of the
eigenstates and related quantities once and farlall [7, 8].

Subsequently, it was realized that €d. (2) could be furtkeegalized to the case of a rational polynomial
[9l:
—cx Py (‘T)

e O (@) 3)
wherec > 0 is a constant as before aith (x) andQs(x) are polynomials inc of respectively orders
N and M. Eq. [3) expresses the solution for the energy eigenvalfi¢seothree-dimensional (and
realistic) version of the Hydrogen molecular ion. Theseggalizations were found to express solutions
to a huge class of fundamental problems and were found to tueah@xtensions of the standai@l
function requiring merely a formal nesting of the standaasnberti¥” function [10] and thus economical
conceptually in terms of mathematical resources. Some egpagions were even found for some special
cases for eq[{2) [10].

Herein, we examine the more pragmatic matter of obtainingsexpansions for ed.l(2) for analytical and
computational purposes. In the process, we will show howetjothey relate to the series expansions of
the standardV function. We will examine three series expansions whichyagpthree different regimes.
Though eq. [(R) is not the full generalization in &€ (3) it abfg embodies a link between gravity theory
and quantum mechanics albeit in lower dimensidns [2] arfueiefore instructive as a special case beyond
the standardV function. Finally, some concluding remarks are made at tlte &ince we are dealing
with applications in Physics, the input parameters, and the polynomial roots; wherei = 1,2, ... are
assumed to be real.

2 Series Expansions

2.1 Taylor seriesinry

By a series of manipulations, efl (1) can be brought in thelitanstandard form:

—cr
Ty = W(SL'Q)GW(mO) where zy = cea 4)




Using very similar manipulations and defining respectithly mean and difference of the roetsandr,:

_— ”;”"2 and 7 = "2 )

and bycompleting the squarf®r the quadratic on the right of ed.] (2):

(x—r)(x—ry) = (x— rm)2 — rg

and definingW (r4) = « — r.,, €q. [2) can be rewritten as:
eV CDT) 1 g, = a, W(ra)?. ©)

The above can be viewed as the intersection between an ex@ref the formAe=¢® and a “simple
harmonic oscillator” of the fornB22. Potentially, there can be two and as much as three intessdin
the real plane), in some cases, roots of the same sign. Tmaobt solutions, we constraim, > 0. It
is very similar to eq.[{l1) the equation governing the statidamberti¥’ function with the mean of the
rootsr,, playing the role of the-; in the monomial on the right side of e@l (1), the differencéhimroots
rq representing a departure from the form of €4. (1). This makefect since because whep= 0, then
r1 = ro and eq.[(R) can be factored into the form of €. (1) bringindparsk to the standardd” function.
We define:

2
2 L) a2 L € o2 @)

2\ a, 2./a,

where it is understood th&t’ (0) is/are the solution(s) whery = 0:
2 2
W(0) = - Wi(xz) = - Wo (8)

and wherdlV (+2() on the right side of eq[18) is thetandardLambert W function. For real results, in
particular for the parameters mentioned for the Double Delc potential mentioned just below eQl (2),
we are interested in real results and make use of the maiglbrthe standardll” function. In this case,
¢ > 0 helps ensurezy| < 1/e (althoughW (—z) could have a real result on a different branch dor
sufficiently small). Implicit differentiation on both sidef eq. [(6) yields:

aW(Td) _ 27“d _ 27°d (9)
orq cemeWlra)trm) 2W (rq) cW(rg)2—cri+2W(rg)

Qo

Naturally successive derivatives with respect tyields the Taylor series in,. Its radius of convergence
will be obtained from the disk about the point of expansign= 0 (assuming it is regular at the point
of expansion) bounded by the closest singularity or brarmhtpn the complex plane namely when the
denominator of this derivative and all successive dexreatis zero, withV (r;) simultaneously satisfying
eg. [6). Note that the expression on the right most side of@gobtained by virtue of eq{6), does not
formally depend or,, nor r,,, but only onc andr,. Even though this is a quadratic W (r4), only one
solution satisfies ed.(6), namely:

—1+4/1+c%rq2,
W(rd crit) = (10)

C

The critical radius in the complex plane is:

1
Fae = % -\2W(-2)+ W(-2)2. (11)



Here Wy = W (+zp) is the standardV function and the radius 8 ;|- Note that whernzy = 0,
W(z) = W(-22%) = 0 (on the main branch) and the radius of convergence is alsoexen though
zo = 0 is analytic on the main branch for the (standard) LamBérfiunction. The series in, is thus:
Wirg) — 2%_{_1 cr? ic?’rg(ZWOz—l)
c  AWo(Wo+1) 64 W(Wp+1)3
1 @ rS (8Wg — 12W2 + 3 — 4W§)

(12)

+ 1536 WS (Wo + 1)°
78 (48WF8 — 1324 W2 — 15 — 64W?2 + 40W3
49152 Wi (Wo+1)

which is a series in? for x = W (r,) + r,, with = governed by eq[{2) and the radius of convergence
is provided by the magnitude df (11). Within its radius of wergence, it converges rapidly. Note that
when argument ofg is such thati¥, = 0 (which happens when e.gzg = 0 on the main branch) or
Wy + 1 = 0 (which happens whes, = —e~! which is a branch point on the main branch), the individual
series coefficients are confronted with divisions by zengsalt consistent, for the ca$®, = 0, with a
radius of convergence of zero as given byleq.(11).

The validity of this series is demonstrated with some nucaétiests. To reiterate the earlier problem, for
a relatively high value of = 0.8 and an internuclear distance near the bond leityth 2, we have:

5 B 1 9
CLO——C—,T‘d—l—O,Tm—l—O
The solution of eq{2) is = 1.0485 obtained to withind decimals using the series in eg.}(12) to within
and including orde©(r1%) usingWy, = W (z9) as the lead term. Similarly, the other solutior= 0.6248
is obtained usingV, = W (—z) as the lead term. The convergence of this series is much rapie r
than the original “polarization expansion” mentioned ie thtroduction. Furthermore, this series is not

limited to the real plane. Foxr = % — L

a —ﬁ—i-ii c=4, r —i—kiz’ T —g—ii
c T ta T T 0 200 T 200 20
The series to (and including) ordéx(r}?) yieldsz = 1.0651408 — 0.0281742 i to within 7 decimals for
Wy = W(zp) and similarlyz = 0.72818558 — 0.0876039 ¢ for Wy = W (—zp) This series expansion
is valid for small differences in the rootg, so clearly an asymptotic expansion valid for largds also
needed.

It would seem that in the case of three real roots, that we advoaly recover at most two out of three
solutions. However, when two roots appear for e:g> 0 and the third root appears for< 0, the latter
can be recovered by reflection symmetry on the parametets: ke —z, ¢ — —c¢, r; — —r; and these
same formula can be used to recover that third solution.

2.2 Reversion of Power Series

To get an asymptotic series valid for largg we further transform eql{6) with the following variable
transformations:

wi? = (2) @

c
d = crg/2 (13)



andx = W(ry) + r,, as before. Following the procedure for the stand&rdunction [11], we start from:

1 —crm /2
2 = f(U) = UV where zp = 5“7 (14)

where the signt takes into account that the negative square root is alsobgp@s®Vvhend = 0, eq. [14)
reduces to the form of the standdiid function. Eq.[(14) has the form:

z=f(U)
and we seek to reverse the power series to obtain:
U = g(2);

Defining p(U) = U/f(U) = eFYU*+4* and noting thaty(0) # 0, we use a specialized version of the
Lagrange-Burmann_[12] formula:

Zk—l—l E?kqﬁ(U)kH

Uz) = 26(0) +

(15)
— (k+1)! oUFk U0
Implicit differentiation of eq.[(1I4) w.r.tz yields:
() IR+ BTV 6

0z U(2)? + U (2)2 + &2

We can see that the square root term dominates the functiomal of the derivatives and the branch
structureU (z) in the complex plane much in accordance with the findings afrByBrown [5, 6]. Note
that eq.[(16) has no explicit dependencezand thus there is no need to verify its consistency With (14).
To get the radius of convergence, we need to consider bothrérmeh structure of the square root term
in the denominator of (16) and valuesfz) in the complex plane about the regier= 0 which would
make this denominator zero. Thus the radius of convergenlmaited by either:

’Ucrit’ < ’d’
or
1
|Um-t| < §| 2+241 —|—4d2| a7
whichever is smaller. We obtain:
123e¥3 1 25(+£5d + 1)eT
Uz) = ze™ ; ed + gz( C;; e 4 O(Tet ) (18)
le e_%cri 1c? e_%cri 1c? e_gcri(:lﬁcr +2) 7
DY 3 3/2 el 5/2 4 + O(e 2" (19)
2 Va 8 ay 1Ty 64 Qo rg

wherery =1, r_ =r9,x = ry+(2/¢)VU? + d? asz given in eq.[(2). This series would have growing
exponential terms of the forexp(—k*d) unlessk > 0 and consequenly this necessitates the requirement
thatc 1 > 0. Thus, we obtain a valid asymptotic expansion valid fordéat@r equivalently large-,.

As in the previous section, we also get two kinds of solutioaspectively for positive and negatidebut
they do not necessarily relate at all to the solutions of tteipus section. The first section involved a
series expansion infl wherer; = (2/¢)d and invariant with respect to the sign@fHere we are dealing
with a situation where the difference between the regts very large and thus quite possibly only one
intersection between the exponential term on the left sfdao(2) and its right side namely a quadratic
in 2, and thus only one solution.



As a numerical check and departing from the earlier physibalmistry problem in the earlier section,
consider these particular values:

1 3

20 'm Ty
The asymptotic series in ef.{19) with only the fBserms up to and including@(1/d?) yields the solution
x = 2.01739 to within 4 decimals. Another test case, this time with some complexegl

1 1 1 3
a, =1, ¢c=1, i =2—14, 1r9 =141 = d:Z_ii’ szi—i, Tm:§

This same series with only terms gives ugs: = 1.9703 — 0.9430 to within 4 decimals. Thus, though
initially motivated for the case of real numbers, these agfns can be used in the complex plane within
certain restrictions.

o =1, ¢ =2, 1 =2, rnp=1 = d=ry=

2.3 Asymptotic seriesfor large argument

The question arises what happens if we decide the left:gidéeq. [14) is large? For the principal branch
whenz > 0, taking logs of both sides of the equation governing thedstesh Lambert1” function i.e.
WeV = zyields:

In[W(z)] = In(z) — W(z) (20)

Recursive substitution yields successively:

In(z)
In(z) — In(In(z))
In(z) — In(In(z) — In(In(z)))

By taking logs on both sides of e@._(14) for the positive squapt case only:

In(z) —In(U) = VU2 +d2 or (In(z) — n(U))? = U2+ d? (21)

Thus, we consider two types of recursion.
U — +/(In(z) —In(U))2 — d2 (22)
U2 S i(—2ln(z) +In(U?) — 2d)(—21n(2) + In(U2) + 2d) 23)

The second recursion avoids the square root (and its messg@oences for recursion) and looks like a
factored form involving a combination of asymptotic forraelfor the standartd” function. By successive
substitution, we obtain:

U~ (ln(z) —In (\j <ln(z) —In <\/ ..In (ln(z) —In (\/(ln(z) —In(U))% - d2))2 = d2>> - dQ)) (24)

and:

U? =~ i<—2ln(z)+ln G(—zm(z)ﬂn(... (25)

+ In G (—=21n(2) + In(U?) — 2d)(—21n(2) + In(U?) + 2d)> .o+ 2d>> - 2d>

However, we find from experience that the argumeihtas to bevery large indeed for these asympotic
formulations to converge. This exercise is more to dematestthe resemblence with the counterpart
expansion for the standaf#l function, namely eq[{{21). For computational value, ses{i2.1 an@ 2]2 are
more useful. Nonetheless, the very largeargument is tractable.



Table 1: Non-Linear transformations applied to Tayloresnf eq[(1R) for; = 0.8

| no. of terms|| W (r,) Taylor Series] ~ Shanks | Levint |
1 -0.9999999996 | -0.9999999996 -0.9999999996

2 -1.6400000000 | -1.640000000Q -2.7777777780

3 -1.4352000000 | -1.4848484850 -1.5213977230

4 -1.6099626670 | -1.5294964030 -1.5192810810

5 -1.4421905070 | -1.5246574640 -1.5243445560

6 -1.6265161880 | -1.5271424650 -1.5267037510

7 -1.4108133840 | -1.528099752(Q -1.5277557490
-1.528554071 -1.528554071| -1.528554071

Table 2: Non-Linear transformations applied to Tayloreenf eq[(IR) fory = 1.5

| no. of terms|| W (r,) Taylor Series]  Shanks | Levint |
1 0.38889448 0.3888944774 0.3888944774

2 2.81078092 2.810780919Q -0.0743922833

3 -3.02541152 1.099172741Q0 -5.1438626370

4 24.71693722 1.7964086140 1.7380384290

5 -139.85949420 | 1.387653920(0 1.5296581130

6 953.20098980 1.5894954440 1.5167708910

7 -6823.99405600 | 1.4791930140 1.5165517370
1.516240428 1.516240428| 1.516240428

2.4 Summation techniques

Finally, the series summation can be accelerated begondthe radii of convergence using non-linear
transformations as mentioned in the introduction. Themsesformations are applied to the sequence of
partial sums and are capable of accelerating the convezgdracseries and even sum divergent series (e.g.
see the work of [13, 14]). We take the point of view that a Tagloasymptotic series has all the desired
“information”, getting numbers from the series is a mattea summation technique. For the seriesjn

of the first section for botf (+zy), it was found that the series, when oscillating-ji could indeed be
extended beyond their radius of convergence. This is detmawed for the test case:

a =1, ¢c=1, rp, = 1.

Here, the asymptotic solution of ef. {19) matches the eatadd Taylor series of solution abdidfy(z)

of (I12) in 4 decimal places. Herg .,.;; ~ 0.64 and we consider the regime when > r4 .., the
alternating Taylor series is divergent. This Taylor setéesrderO(r}?) ( 6 terms in powers of2) is used
for the ¢t transformation of Levin[[15] and the Shanks transformaf{b®]. To demonstrate agreement
between the Taylor series and the outcome of the non-limaasformations, tables 1 and 2 compares
the Taylor series of eq._(12) and the outcome of the Shankd.evid ¢ transformations for respectively
rq = 0.8 andry; = 1.5. At the bottom of each table is listed what exact solutiorhtumber of digits
shown. The Taylor series of e@. {12) diverges violently wher- 1.5 but the non-linear transformations
converge nicely. Three terms of the asymptotic expansi@qifil9) forr; = 1.5, yield z = 1.516240673
which agrees with the exact solution starting fré¥i(zo) to within 7 decimals. This demonstrates that



the solutions of sectidn 2.2 can match one of the solutiorsecfio{ 2.1L.

3 Conclusions

Previously [10] we had inferred a canonical form for a geliwation as expressed byl (2) and (3) and given
both mathematical and physical justifications for it. Heyeve formulated Taylor series and asymptotic
series useful for analysis and computation. We find that ¢iselts are similar to those governing the
standardi’/ function and represent a natural extension though the brsinacture in the complex plane
may differ.

This approach could be extended to higher order polynorfitéitsy the pattern of eq[{3). For example,
when the right side of ed.](3) we caomplete the cubén some special cases, i.e. for

3 2 1\’ L 3 ’ a?

+ +bx +c = + -] = (=a - when b = —

x ax x C <.Z' 3> <27 a C> 3

which can allow a special case of €g.(3) and create a cukitiorlcounterpart of eq._(1L4):

e—c?“m _ Y3 ec (Y3+d3)1/3 (26)

Qo

where(z — 7,)? = Y3 +ds andds = g—‘;’ — candr,, = —a/3. However, for larger order polynomials
and rational polynomials, this approach is quickly exhatistnd one has to rely on numerical techniques
which is very feasible.

Finally, the Taylor series summation can be accelerated le®gondthe radii of convergence using non-
linear transformations known as the Levin or Shanks transdtions allowing a matching between the
Taylor series and the asymptotic series. The resultingsean be converted into FORTRAN or C code
using the interface between Maple and these languageés [18].
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