
FAST MULTIPLICATION OF

INTEGER POLYNOMIALS

Joachim von zur Gathen

October 3, 2012

Abstract. Fürer’s (2007) method is the currently fastest procedure
for multiplying integers. In this paper, fairly standard algorithmic
technology provides an adaption of this result to univariate polynomi-
als with integer coefficients.

1. Introduction

The seminal paper of Schönhage & Strassen (1971) gave an FFT-based mul-
tiplication for n-bit integers using O(n logn log logn) bit operations. This
record stood for a quarter of a century, until Fürer (2007, 2009) took a fresh
look at the FFT and obtained an algorithm with M(n) operations, where

M(n) ∈ n logn 2O(log∗ n).

Here log∗ n is the number of times one has to apply the function log2 to
get below 1. For example, if

m = 22
2
2
2

= 265 536,

then log∗m = 6 and log∗ n ≤ 5 for all n < m. A number with m bits requires
storage of over 2.5 · 1019 709 exabytes. Thus for practical purposes, log∗ is
constant.

Fürer used complex roots of unity, and De et al. (2008) transferred the
approach to a p-adic domain, thus obviating the need for complex error
estimates.

It is easy to adapt this to multiplication in Z[x]. One substitutes a suf-
ficiently large integer b for x, so that in a product h = f · g ∈ Z[x], the
b-adic digits of h(b) are separated and can be read off, to yield h(x). The
only problem is that the b-adic representation of f(b) has, in general, both
positive and negative b-adic digits. This can be circumvented by splitting
f and g into their positive and negative parts and performing four integer
multiplications (see von zur Gathen & Gerhard (2003), § 8.4).

2 Joachim von zur Gathen

The purpose of the present paper is to reduce this factor of 4 to 1. This is
achieved by choosing b as a power of 2 and converting the positive/negative
b-adic representation of f(b) into one with only positive digits. We then
have the usual binary representation of integers, apply a single fast integer
multiplication, and convert back.

2. Conversion algorithms

We consider two b-adic representations of integers: the standard representa-

tion with a sign bit and digits v satisfying 0 ≤ v < b, and a signed represen-

tation with digits w for which −b/2 ≤ w < b/2 holds. Since the latter digits
form a complete residue system modulo the integer b ≥ 2, the representation
is unique. A digit w is represented as (sign(w), binary representation of |w|),
and 0 as (+, 0).

For d-digit representations with positive leading digits in an even base b,
the maximal values in the two representations are

(b− 1, . . . , b− 1)←→ bd − 1 ≥
(b− 2)(bd − 1)

2(b− 1)
←→ (

b

2
− 1, . . . ,

b

2
− 1),

(2.1)

and the minimal values, with a positive standard sign, are

(1, 0, . . . , 0)←→ bd−1 >
bd − 2bd−1 + b

2(b− 1)
←→ (1,−

b

2
, . . . ,−

b

2
).

Furthermore, for b ≥ 4 we have

bd − 1 <
(b− 2)(bd+1 − 1)

2(b− 1)
.

It follows that for b ≥ 4 any number with d standard digits has at most d+1
signed digits, and with d signed digits it has at most d standard digits. This
slight asymmetry is due to the fact that having a positive leading digit is a
restriction on the signed representation, but not on the standard one.

The two conversion algorithms that follow work for positive inputs.

Algorithm 2.2. Conversion from signed b-adic to standard b-adic.

Input: integers b ≥ 4, d ≥ 1, u0, . . . , ud−1 with ud−1 ≥ 1 and −b/2 ≤ ui < b/2
for all i < d.

Output: integers v0, . . . , vd−1 with 0 ≤ vi < b for all i < d.

1. For 0 ≤ i < d do vi ← ui.

Fast multiplication of integer polynomials 3

2. For i = 0, . . . , d− 1 do

3. If vi < 0 then vi ← vi + b, vi+1 ← vi+1 − 1 { carry step }.
4. Return v0, . . . , vd−1.

Algorithm 2.3. Conversion from standard b-adic to signed b-adic.

Input: integers b ≥ 4, d ≥ 1, v0, . . . , vd−1 with 0 ≤ vi < b for all i < d.
Output: u0, . . . , ud with −b/2 ≤ ui < b/2 for all i ≤ d.

1. For 0 ≤ i < d do ui ← vi.
2. ud ←− 0.
3. For i = 0, . . . , d− 1 do

4. If ui ≥ b/2 then ui ← ui − b, ui+1 ← ui+1 + 1 { carry step }.
5. Output u0, . . . , ud.

For symmetry, we set ud = 0 in the input to Algorithm 2.2.

Theorem 2.4. Both conversion algorithms work correctly, that is,

∑

0≤i≤d

uib
i =

∑

0≤i<d

vib
i.

If b = 2m, for an integer m ≥ 2, then each of them takes at most 3dm bit

operations for the arithmetic.

Proof. For the correctness of Algorithm 2.2, we have

(2.5)
∑

0≤i≤d

uib
i =

∑

0≤i<d

vib
i

after step 1. If v′i, v
′
i+1 denote the values after a carry step for i, we have

v′ib
i + v′i+1b

i+1 = (vi + b)bi + (vi+1 − 1)bi+1 = vib
i + vi+1b

i+1.

Thus the right-hand sum in (2.5) remains unchanged throughout the algo-
rithm.

We next claim that 0 ≤ vi < b for all i. Each vi gets changed at most
twice in step 3, to vi + b for i or to vi− 1 for i− 1. After step 4 for i− 1, we
have

−b/2− 1 ≤ vi < b/2,

and after step 4 for i,

0 ≤ vi < b,

4 Joachim von zur Gathen

as claimed. Since ud−1 ≥ 1, we have vd−1 ≥ 0 after step 4 for d− 2, and the
condition in step 4 for d− 1 is not satisfied.

The proof for Algorithm 2.3 is similar. Denoting by u′
i, u

′
i+1 the values

after a carry step for i, we have

u′
ib

i + u′
i+1b

i+1 = (ui − b)bi + (ui+1 + 1)bi+1 = uib
i + ui+1b

i+1.

In the condition of step 4 for i, we have 0 ≤ vi ≤ ui ≤ vi + 1 ≤ b. If at i no
carry occurs, then 0 ≤ u′

i = ui < b/2. If it is a carry step, then ui ≥ b/2 and

−b/2 = b/2− b ≤ u′
i = ui − b ≤ 0.

This shows all claims about the output.
For the claimed running time when b = 2m, it is sufficient to realize

addition or substraction of either 1 or b to a digit with m bit operations. In
step 3 of Algorithm 2.2, we compute vi + b for some vi < 0. Let vi be the
integer whose m-digit binary representation complements that of |vi|. Then

|vi|+ vi = 2m − 1 = b− 1,

vi + b = −|vi|+ b = vi + 1,

so that a complementation and addition of 1 suffice. Similarly, in step 4 of
Algorithm 2.3 we need ui − b for some ui ≥ b/2. Using its complement ui,
we have

ui − b = −(ui + 1).

There are standard techniques to handle the potential carries in adding or
subtracting 1 to or from an m-bit number in m bit operations when we count
bit addition with carry as one operation. We do not go into the details.
One carry step can be done with at most 3m bit operations, and the whole
conversion with at most 3dm operations. �

Algorithm 2.6. Reducing multiplication in Z[x] to that in Z.

Input: f =
∑

0≤i<d fix
i and g =

∑

0≤i<d gjx
j inZ[x], with d ≥ 2 and all

integer coefficients in standard binary representation.
Output: The coefficients of h = f · g =

∑

0≤k≤2d−2 hkx
k in standard binary

representation.

1. If f = 0 or g = 0, then return 0.
2. B ←− max{|fi|, |gi| : 0 ≤ i < d}.
3. m←− ⌈log2(dB

2)⌉+ 2, b←− 2m.

Fast multiplication of integer polynomials 5

4. Let fp = εf |fp| and gq = εg|gq| be the highest nonzero coefficient of f
and g, respectively, with 0 ≤ p, q < d and εf , εg ∈ ±1.

5. For 0 ≤ i < d do f ∗
i ←− εffi, g

∗
i ←− εggi.

6. uf ←− (f ∗
d−1, . . . , f

∗
0), ug ←− (g∗d−1, . . . , g

∗
0).

7. vf ←− conversion(uf), vg ←− conversion(ug), using Algorithm 2.2.
8. vh ←− vf · vg in standard b-adic, using fast integer multiplication.
9. uh ←− conversion(vh) in signed b-adic, using Algorithm 2.3. Parse uh

as (h∗
2d−2, . . . , h

∗
0), with each h∗

k a signed b-adic digit.
10. Return hk = εfεgh

∗
k for 0 ≤ k ≤ 2d− 2.

The height H(f) of an integer polynomial f is the maximal absolute value
of its coefficients.

Theorem 2.7. Algorithm 2.6 correctly multiplies two polynomials in Z[x]
of degree less than d ≥ 3 and height at most B. It takes at most M(n)+ 13n
bit operations, where m = ⌈log2(dB

2)⌉ + 2 and n = dm.

Proof. We set f ∗ = εff and g∗ = εgg, so that the f ∗
i and g∗i are the

coefficients of f ∗ and g∗, respectively. We first note that m ≥ 4, 4d ≤ n, and
2d ≤ 2dB2 ≤ b− 1 ≤ (d− 1)b, so that

(bd − 1)2 = b2d − 2bd + 1 ≤ db2d − 2db2d−1 − bd+ 2d = d(b− 2)(b2d−1 − 1),

|(f ∗ · g∗)(b)| ≤ B2

(

bd − 1

b− 1

)2

≤
(b− 2)(b2d−1 − 1)

2(b− 1)
.

It follows from (2.1) that the signed b-adic representation of (f ∗ ·g∗)(b) has at
most 2d−1 digits. Furthermore, we let wk =

∑

i+j=k f
∗
i g

∗
j for 0 ≤ k ≤ 2d−2.

The integers represented by uf and vf are equal to f ∗(b), and ug and vg
represent g∗(b). Thus uh is the signed b-adic representation of f ∗(b) · g∗(b) =
(f ∗ · g∗)(b). It follows that

∑

0≤k≤2d−2

h∗
kb

k = (f · g)(b) =
∑

0≤k≤2d−2

wkb
k,(2.8)

|wk| = |
∑

i+j=k

f ∗
i g

∗
j | = |εfεg| · |

∑

i+j=k

figj| ≤ d · B2 < b/2.

Thus each wk is a signed b-adic digit, so that both sums in (2.8) are signed
b-adic representations of (f · g)(b). Since this representation is unique, we
have h∗

k = wk for all k, and the output is correct.
Arithmetic computation takes place in steps 5 through 10; we ignore the

other steps. The most expensive step is the integer multiplication in step 8.

6 Joachim von zur Gathen

Its first argument f ∗(b), represented as vf , satisfies

0 ≤ f ∗(b) ≤ B
bd − 1

b− 1
< 2Bbd−1.

Setting

c = ⌊log2B⌋ + 2,(2.9)

we have
log2(2Bbd−1) ≤ 1 + c− 1 + (d− 1)m ≤ dm = n,

since c ≤ m. The same bound holds for g∗(b), and step 8 can be perfomed
with M(n) operations. All other steps take at most the following number of
bit operations:

step 5: 2d,

step 6: 0,

step 7: 6n,

step 8: M(n),

step 9: 6n,

step 10: 1 + 2d− 1 = 2d. �

The range of practicality of fast integer multiplication has yet to be deter-
mined, and no attempt has been made to optimize the algorithms presented
here (except for the constant 1 in 1 ·M(n) of Theorem 2.7). Each coefficient
of f or g can be represented with c bits (as in (2.9)), for a total of 2cd bits.
We have

n = dm ≈ d(2c+ log2 d) = 2cd+ d log2 d.

For each pair (c, d) of parameters, the algorithm can be implemented on a
Boolean circuit of the stated size. Besides the usual gates, we use an addition
gate whose 2-bit output is the integer sum of the two input bits.

Well-known algorithms of Borodin & Moenck (1974); Cook (1966); Kung
(1974); Sieveking (1972); Strassen (1973), and others perform division with
remainder using Newton iteration. For n-bit integers, they yield algorithms
using O(M(n)) bit operations (see von zur Gathen & Gerhard (2003), Theo-
rem 9.8). This leads to fast multiplication in finite fields and for polynomials
over finite fields.

Fast multiplication of integer polynomials 7

3. Acknowledgement

This work was supported by the B-IT Foundation and the Land Nordrhein-
Westfalen.

References

A. Borodin & R. Moenck (1974). Fast Modular Transforms. Journal of Com-

puter and System Sciences 8(3), 366–386.

S. A. Cook (1966). On the minimum computation time of functions. Doctoral
Thesis, Harvard University, Cambridge MA.

Anindya De, Piyush Kurur, Chandan Saha & Ramprasad Saptharishi

(2008). Fast Integer Multiplications Using Modular Arithmetic. In Proceedings

of the Fourtieth Annual ACM Symposium on Theory of Computing, Victoria, BC,
Canada, 499–505. ACM Press.

Martin Fürer (2007). Fast Integer Multiplication. In Proceedings of the Thirty-

ninth Annual ACM Symposium on Theory of Computing, San Diego, Califor-
nia, USA, 57–66. ACM. URL http://dx.doi.org/10.1145/1250790.1250800.
Preprint available at http://www.cse.psu.edu/~furer/Papers/mult.pdf.

Martin Fürer (2009). Faster Integer Multiplication. SIAM Journal on Comput-

ing 39(3), 979–1005. URL http://dx.doi.org/10.1137/070711761.

Joachim von zur Gathen & Jürgen Gerhard (2003). Modern Computer

Algebra. Cambridge University Press, Cambridge, UK, Second edition. ISBN 0-
521-82646-2, 800 pages. URL http://cosec.bit.uni-bonn.de/science/mca/.
Other available editions: first edition 1999, Chinese edition, Japanese translation.

H. T. Kung (1974). On Computing Reciprocals of Power Series. Numerische

Mathematik 22, 341–348.

A. Schönhage & V. Strassen (1971). Schnelle Multiplikation großer Zahlen.
Computing 7, 281–292.

M. Sieveking (1972). An Algorithm for Division of Powerseries. Computing 10,
153–156.

Volker Strassen (1973). Vermeidung von Divisionen. Journal für die reine und

angewandte Mathematik 264, 182–202.

8 Joachim von zur Gathen

Joachim von zur Gathen

B-IT
Universität Bonn
D-53012 Bonn
gathen@bit.uni-bonn.de

http://cosec.bit.uni-bonn.de/

