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Abstract

In this paper an algorithm is given for obtaining a characteristic basis (a Gjunter basis) for any
H-ideal. With such a basis, we can decide the validity of a = b and F ∈ a for H-ideals, and (a) = (b)
and f ∈ (a) for P-ideals. In many cases, computing the chain of syzygies is simplified by using Gjunter
bases. We also show how to compute a minimal length basis for any P-ideal (a).

1 Preface: Goals, Relationships with Systems of Linear Equations

While systematically compiling the results thus far for this series of articles (which first appeared in volume
17 (1973) of this journal), the author noticed in [10, 3.2], that for effectively proving the equality of H-
ideals, and hence the accompanying ideal membership F ∈ a, the method used by the author had not yet
been published. This will now be rectified, which will also satisfy a claim by Krull in [8, p. 51]. The
basic idea (of changing over to a characteristic basis), which goes back to Gjunter [5], is also useful for
constructing minimal length bases of P-ideals from their associated equivalent H-ideals.

Let us first illustrate the basic idea mentioned above for the special case of homogeneous systems of
linear equations. Here we call two systems of linear equations equivalent if they have the same solution (see
[4, 5.1, Definition 4, p. 47] for example). However, with different parameter settings, this definition is less
suitable for actually proving equivalence; determining the compete solution is needed here. Without this,
the equivalence of systems of linear equations can be characterized by converting one system to the other
and conversely (see [3, I.6, p. 29]) using module operations. In order to actually prove equivalence in this
manner, it is advantageous to specify one characteristic system of equations among all equivalent systems
as a representative of the class of equivalent systems of equations. We have in mind here the trapezoidal
form of a linear system of equations, which however, just by changing to diagonal form, is unique (up to
constant factors, thus without loss of generality, after scaling). Therefore, the representative system of
equations has the form

xi + birxr + . . . + binxn = 0 (i = 0, 1, . . . , r − 1). (1)
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necht” Potsdam, DDR-1500 Potsdam, Am Neuen Palais

1



Equality, Ideal Membership and Minimal Length Bases Using Gjunter Bases Translation

Then by replacing xr+i = ti (i = 0, . . . , d with d = n − r), a complete solution is already given by (1) in
which the last d + 1 = n− r + 1 variables xr, . . . , xn are set as parameters. But in order to achieve this, a
permutation of the variables x0, . . . , xn may be necessary, which has never been explained in the literature
as clearly as in [7, p. 340, left column, final theorem of VI.2].

For the nonlinear case, since a corresponding reordering of the power products may not always be
achieved by variable transformations, knowing which normal forms in the linear case are achievable without
permuting the variables, which corresponds to not setting the parameters in the last d + 1 variables, is
of interest when changing over to the nonlinear case. For example, only after scaling, do we obtain the
uniquely determined system of equations of the form

x0 − x2 − 3x6 − x7 + 7x12 − 8x13 + x14 = 0
x1 + x2 + 4x6 − 3x7 − 2x12 + x13 − x14 = 0

x3 − x6 + 2x7 + x12 − 2x13 + 3x14 = 0
x4 = 0

x5 − 3x6 + x7 + 2x13 − x14 = 0
x8 − x12 + 2x14 = 0

x9 + 7x12 − 8x13 + 9x14 = 0
x10 = 0

x11 − x12 − x14 = 0


(2)

or of the form
x0 − x2 − 3x6 − x7 + 7x12 − 8x13 + x14 = 0

...
...

x11 − x12 − x14 = 0
x15 = 0

x16 = 0


. (3)

Thus in general, the transformed coefficient matrix (i.e. the n + 1 columns corresponding to the n + 1
variables in the sequence x0, x1, . . . , xn) has the form

D1 B11 0 B12 0 B13 0 B14 . . . 0 B1m

0 0 D2 B22 0 B23 0 B24 . . . 0 B2m

0 0 0 0 D3 B33 0 B34 . . . 0 B3m

0 0 0 0 0 0 D4 B44 . . . 0 B4m
...

...
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 0 0 . . . Dm Bmm


, (4)

where the blocks Di 6= 0 are diagonal matrices and for fixed k ∈ {1, . . . ,m − 1}, the block matrices Bik

are non-zero for at least one i ∈ {1, . . . , k}. For type (2), this also holds for Bim, while for type (3), all
Bim = 0, and hence may be omitted.

We designate type (4) as the pseudo-diagonal form, and therefore after scaling, we have obtained a
characteristic system for equivalent linear systems of equations; that is, two systems of linear equations
are equivalent if they have the same scaled pseudo-diagonal form.

We can characterize pseudo-diagonal forms more briefly using the following two properties:

(PD1)∗ The first variables on the left hand sides of equations in the system of equations are all
distinct and arranged in natural order.

(PD2)∗ No second, third, . . . variable appears in a later position than the first variable.

We will now carry over these facts to K-modules of forms of the same degree, and in particular, to the
module M(t; a) of the H-ideal a.
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2 Pseudo-Diagonal Bases for Modules of Forms

We now consider forms of degree t in x0, x1, . . . , xn, thus linear combinations of the
(
t+n
n

)
power products

of degree t in x0, x1, . . . , xn. Then we can choose the basis forms of this module analogous to (4), whereby
the

(
t+n
n

)
columns of the transformed coefficient matrix now correspond to the

(
t+n
n

)
power products in

lexicographic order. Analogous to (PD1)∗ and (PD2)∗, we can now interpret (4) using

Definition 1. A set (H1, . . . ,Hk) of forms H1, . . . ,Hk of the same degree t in K[x0, x1, . . . , xn] is called a
pseudo-diagonal basis (PD-basis) of the K-module generated by H1, . . . ,Hk if

(PD1) The leading power products of the forms H1, . . . ,Hk are all distinct and are arranged in
lexicographic order.

(PD2) No second, third, . . . power product (in lexicographic order) appears in a later position than
the leading power product.

For t = 1, we again obtain (PD1)∗ and (PD2)∗ from this. As in the linear case, we have for arbitrary t

Theorem 1. The PD-basis of a K-module of forms is uniquely determined up to a common factor in K.

Thus in particular, we have found a standard basis for the module M(t; a) of forms of degree t of an H-ideal
a ⊂ K[x0, x1, . . . , xn], and just as in the special case, the basis forms of a all have the same degree. Now
our goal is to carry over these observations to the case of basis forms of a with different degrees.

3 The Gjunter Basis of an H-Ideal

We will order the basis forms of a minimal basis of the H-ideal a ⊂ K[x0, x1, . . . , xn] by increasing degrees
and denote them using double indices, i.e. h(Ft,i) := deg(Ft,i) = t. If m0 is the minimal degree and M the
maximal degree of the basis forms, then we can express the minimal basis of a in the form

a =
(
Fm0,1, . . . , Ft,1, . . . , Ft,st , Ft+1,1, . . . , Ft+1,st+1 , . . . , FM , sM

)
, (5)

where we can omit any Fg,i for which the degree g does not appear. For t = m0 + 1, . . . ,M , we have in
each case

M(t; a) = (x0, x1, . . . , xn) M(t− 1; a) ∪ (Ft,1, . . . , Ft,st) . (6)

Our goal is to obtain a basis (Gm0,1, . . . , GM,sM
) for a from (5), in which the Gm0,1, . . . , GM,sM

are
defined so that while forming the module (6) with additional basis forms, no leading power product
already present in (x0, x1, . . . , xn) M(t− 1; a) appears and otherwise, power products of as high a number
as possible (according to the lexicographic order) are used. Thus we define four transformation rules (GJ1),
(GJ2), (GJ3), (GJ4):

(GJ1) Replace Fm0,1, . . . , Fm0,sm0
by Gm0,1, . . . , Gm0,sm0

, where
(
Gm0,1, . . . , Gm0,sm0

)
is a PD-basis

of the K-module generated by Fm0,1, . . . , Fm0,sm0
of forms of minimal degree m0.

(GJ2) Replace Ft,1, . . . , Ft,st by F
(2)
t,1 , . . . , F

(2)
t,st

for all t such that m0 + 1 ≤ t ≤ M , where(
F

(2)
t,1 , . . . , F

(2)
t,st

)
is a PD-basis of the K-module generated by Ft,1, . . . , Ft,st of forms of

degree t.

(GJ3) Replace F
(2)
t,1 , . . . , F

(2)
t,st

by F
(3)
t,1 , . . . , F

(3)
t,st

for all t such that m0 + 1 ≤ t ≤ M , in such a way
that no leading power product of the PD-basis of (x0, x1, . . . , xn) M(t− 1; a) appears.

(GJ4) Replace F
(3)
t,1 , . . . , F

(3)
t,st

by Gt,1, . . . , Gt,st for all t such that m0 + 1 ≤ t ≤ M , where

(Gt,1, . . . , Gt,st) is a PD-basis of the K-module generated by F
(3)
t,1 , . . . , F

(3)
t,st

of forms of degree
t.
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Remarks.

(a) In general, the transformation (GJ4) is by no means redundant because the PD property originally
created by (GJ2) can vanish under the transformation (GJ3).

(b) Let (H1, . . . ,Hk) be a PD-basis of (x0, x1, . . . , xn) M(t − 1; a). Then it is not true in general that
(H1, . . . ,Hk, Gt,1, . . . , Gt,st) is a PD-basis of M(t − 1; a); thus (GJ3) and (GJ4) cannot be replaced
by a corresponding claim. In the following example, we consider G1,1 = x1 + x3 with x2

0G1,1 =
x2

0x1 + x2
0x3 ∈ (x0, x1, x2, x3) M(2; a) and G3,1 = x2

0x3. This simple example shows the obvious
reason for this restrictive remark: basis forms of lower degree influence those of higher degree, but
not conversely!

(c) The transformation (GJ2) is not essential, but does simplify transformations (GJ3) and (GJ4) sig-
nificantly, and even makes (GJ4) completely redundant in many cases.

(d) If (5) is not a minimal basis, (GJ1), (GJ2), (GJ3) and (GJ4) still lead to a minimal basis.

Definition 2. The basis representation

a =
(
Gm0,1, . . . , Gt,1, . . . , Gt,st , Gt+1,1, . . . , Gt+1,st+1 , . . . , GM,sM

)
(7)

of an H-ideal a ⊂ K[x0, x1, . . . , xn] obtained from (5) using (GJ1), (GJ2), (GJ3) and (GJ4) (where h(Gt,i) =
t, and any Gg,i for which the degree g does not appear is omitted) is called a Gjunter basis (GJ-basis) of
the H-ideal a.

Then as the main result analogous to Theorem 1, we have

Theorem 2. The elements Gh,i of the Gjunter basis (7) of an H-ideal a ⊂ K[x0, x1, . . . , xn] are uniquely
determined up to a common factor in K.

Before drawing some conclusions from this theorem, we consider an

Example. Let

a∗ = (F1,1, F2,1, F2,2, F3,1), where
F1,1 = x1 + x3, F2,1 = x0x2 + x2

1, F2,2 = x1x2, F3,1 = x2
0x1 + x3

1.

}
(8)

Here, m0 = 1 and M = 3. (GJ1) does not apply because M(1; a) = (x1 + x3). Hence G1,1 = x1 + x3.
Similarly, (GJ2) does not apply because the power products of F2,1 and F2,2 are all distinct. (GJ3) produces
F

(3)
2,1 = F2,1 − (x1 − x3)G1,1 = x0x2 + x2

3 and F
(3)
2,2 = x2G1,1 − F2,2 = x2x3 for t = 2 and

F
(3)
3,1 = (x2

0 + x2
1 − x1x3 + x2

3)G1,1 − x3F
(3)
2,1 + x0F

(3)
2,2 − F3,1 = x2

0x3

for t = 3. (GJ4) does not apply; therefore, the GJ-basis for (8) is

a∗ = (G1,1, G2,1, G2,2, G3,1), where
G1,1 = x1 + x3, G2,1 = x0x2 + x2

3, G2,2 = x2x3, G3,1 = x2
0x3.

}
(9)

4 Applications of GJ-Bases

The advantage of going from (8) to (9) in this example is evident through the sharp decrease in new forms.
This will substantially simplify the formation of the module M(t; a) and the computation of the second

4



Renschuch

syzygy module (see [13, 5.6]). We illustrate this in our example. If we start from the basis representation
(8), then we have the three new forms

V1 = x2F1,1 − F2,2 = x2x3,

V2 = x2
0F1,1 − F3,1 = x2

0x3 − x3
1,

V3 = (x2
1 − x1x3 + x2

3)F1,1 − x1F2,1 + x0F2,2 = x2
3.

On the other hand, we have only one new form V1 = x3G2,1 − x0G2,2 = x3
3 when using (9). This example

also shows that introducing the GJ-basis cannot prevent new forms up to the maximal degree M of the
basis forms from appearing; this can also occur in rational prime ideals (the Abhyankar ideal p70 with
generic zero (t60, t50t1, t30t

3
1 + t0t

5
1, t61) is an example, see [12]). Still, we do have as a result the

Theorem 3. The number of new forms is reduced by introducing Gjunter bases.

The introduction of GJ-bases can certainly increase the number of terms in the basis forms, causing Gauss’
algorithm for computing syzygies to require more steps, but this is negligible when using computers.

Practical provable criteria for equality and ideal membership are important consequences1 that result
from Theorem 2, analogous to systems of linear equations:

Theorem 4. Two H-ideals a and b in K[x0, x1, . . . , xn] are equal if and only if they have the same Gunter
bases. Two P-ideals (a) and (b) in K[x1, . . . , xn] are equal if and only if the equivalent H-ideals are equal.

Theorem 5. The validity or invalidity of F ∈ a can be proved in practice using F ∈ a ⇐⇒ (a, F ) = a

and Theorem 4; the same holds for f ∈ (a) for P-ideals (a).

Finally, we examine the problem posed in [10, section 7] of constructing minimal length bases for an
inhomogeneous P-ideal (a) ⊂ K[x1, . . . , xn]. Therefore, let

(a) = (f1, . . . , ft) (10)

be a basis representation of (a), where f1, . . . , ft is a minimal length basis. If Fi is the form resulting
from fi under homogenization, then it is well-known (see [9, 5.12, (67)]) that as the final member ak of
the divisor chain a1 ⊆ a2 ⊆ . . ., where ai+1 = ai : (x0) and a1 := (F1, . . . , Ft), the equivalent H-ideal is
determined by

a = ak = a1 : (xk
0) = (F1, . . . , Ft, Ft+1, . . . , Fs). (11)

Now if a minimal basis is given by (11), then (10) can also be derived from (11) by considering syzygies with
coordinates of the form axg

0, bx
h
0 , . . .. However, it can happen for deg Ft+i ≤ M , that Ft+i is exchanged with

one of the forms F1, . . . , Ft, resulting in a minimal length basis for (a) with smaller degree. Eliminating
more than one of the forms F1, . . . , Ft is not possible since f1, . . . , ft was assumed to be a minimal length
basis.

Conversely, if we have computed the equivalent H-ideal a, then for a suitable choice of H-basis using
(11), a results from an H-ideal a1, where (a1)x0=0 = (f1, . . . , ft) is represented by a minimal length basis
f1, . . . , ft. Thus we have

Theorem 6. A minimal length basis for a given P-ideal (a) ⊂ K[x1, . . . , xn] can be computed with a
suitable choice of basis for the H-ideal a ⊂ K[x0, x1, . . . , xn] equivalent to (a) by considering terms axg

0 in
the second syzygy module of a.

1In all of these consequences of Theorem 2, only the uniqueness of Gjunter bases was used; thus they also follow from other
uniquely determined normal forms. One such was given by Buchberger [1], with its uniqueness proof given in [2, Theorem
3.6]; see also Trinks [14, p. 476]. I thank Professors Roquette (Heidelberg) and Leopoldt (Karlsruhe) for the approporiate
references during my 1978 academic visit to the Banach Center in Warsaw. The numbering of power products used by the
author in [9] can also be found in the papers of Buchberger and Trinks.
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The author has been unable to prove that the Gjunter basis of a represents just such a “suitable basis”.
Further computations using our example following Theorem 2 shows that such a conjecture seems likely.2

For the second syzygy module of a∗ we obtain for each choice of basis:

(F11, F21, F22, F31),
x0x2 + x2

1 x1x2 x2
0x1 x0x

2
2 + x1x2x3 x3

0x2 + x2
0x1x3 0

−x1 − x3 0 x2
1 + x1x3 −x2x3 −x2

0x3 + x0x1x2 + x1x
2
3 x1x2

0 −x1 − x3 −x0x1 − x0x3 −x0x2 − x2
3 −x2

0x2 − x0x
2
3 x2

0 − x0x2

0 0 −x1 − x3 0 −x0x2 − x2
3 −x2


and

(G11, G21, G22, G31),
x0x2 + x2

3 x2x3 x2
0x3 0 0 0

−x1 − x3 0 0 x2x3 x2
0x3 0

0 −x1 − x3 0 −x0x2 − x2
3 0 x2

0

0 0 −x1 − x3 0 −x0x2 − x2
3 −x2


If the Gjunter basis for a∗ is chosen, then a syzygy with coordinate x−2

0 appears, but not for the
minimal basis F11, F21, F22, F31. If we set fik := (Fik)x0=1 and gik := (Gik)x0=1, then f11, f21, f22, f31

is a minimal basis for (a) := (a∗)x0=1, but not a minimal length basis, since the element g22 can be
omitted from the equivalent basis g11, g21, g22, g31. Then (a) = (g11, g21, g31) = (x1 + x3, x2 + x2

3, x3) and
g11, g21, g31 is a minimal length basis, so a simple transformation leads to the P-ideal of the principal class
(x1, x2, x3) = (a). Thus here, the GJ-basis of a∗ leads to a minimal length basis, making the formation of
the equivalent H-ideal using (11) unnecessary.

We share the results of such a computation anyway:

(G11, G21, G22, G31) : (x0) = (x1 + x3, x0x2 + x2
3, x0x3, x2

2, x2x3)
(F11, F21, F22, F31) : (x0) = (x1 + x3, x0x1 + x1x2, x0x2 + x2

1, x1x2, x2
2)

= (x1 + x3, x0x1, x0x
2
2 + x2

1, x1x2, x2
2)

a∗ : (x2
0) = (x1, x3, x0x2, x2

2) for both basis representations

and finally
a = a∗ : (x2

0) = (x1, x2, x3).
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Potsdam 19 (1975): 113-121.
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