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Abstract

Most computer algebra systems incorrectly simplify

w − w√
z2

z3
− 1

z
√

z2

to 0 rather than to 0/0. The reasons for this are:
1. The default simpli�cation doesn't succeed in simplifying the denominator to 0.
2. There is a rule that 0 is the result of 0 divided by anything that doesn't simplify to

either 0 or 0/0.
Many of these systems have more powerful optional transformation and general purpose

simpli�cation functions. However that is unlikely to help this example even if one of those
functions can simplify the denominator to 0, because the input to those functions is the result
of default simpli�cation, which has already incorrectly simpli�ed the overall ratio to 0. Try it
on your computer algebra systems!

Many of these extra transformation and general simpli�cation functions do transform frac-
tional powers of powers and products of such sub-expressions, but not always to an expression
that is equivalent everywhere the input is de�ned. For example many systems unnecessarily

rationalize the denominator of 1/
(
z
(
z2
)1/3

)
, giving

(
z2
)2/3

/z3. The value of the original

expression is an informative complex in�nity at z = 0, whereas the replacement expression is
a useless nonequivalent 0/0 at z = 0. Moreover, the replacement expression requires a mental
calculation to realize that the pole dominates the zero at z = 0 by a multiplicity of 5/3.

This article describes how to compute three good principal branch forms for products of
the form wα

(
wβ1

)γ1 · · ·
(
wβn

)γn where w is any real or complex expression and the exponents
are rational numbers or various extensions thereof.

It might seem that surely good simpli�cation of such a restrictive expression class must
already be either published or built into at least one widely used computer-algebra system, but
apparently this issue has been overlooked.

DRAFT

1 Introduction

The Appendix lists a sequence of Mathematica® rewrite rules that simplify sub-expressions of the
form wα

(
wβ1
)γ1 · · ·

(
wβn

)γn
, where w is any canonically simpli�ed real or complex expression and
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α, βk and γk are rational numbers. All but one of these rules is automatically applied before default
simpli�cation so that, for example, the input

w − w√
z2

z3
− 1

z
√

z2

correctly simpli�es to indeterminate rather than to 0. Some of these rules are also automatically
applied during default or optional simpli�cation, but one rule that would interfere with others is
applied only after all other simpli�cation.

Table 1 shows the result of these rewrite rules on the expression wα (w2)
γ
for α = −3,−2, . . . , 3

together with γ = −7/3,−4/3, . . . , 8/3. Tables 2 through 9 show the results for various computer
algebra default and optional simpli�cation functions. The expression coloring in all of the tables in
this article re�ect the following partially con�icting goals, listing in decreasing order of importance:

1. The result must be equivalent to the input wherever the input is de�ned.1

2. When possible, use the identity (
wβ
)γ ≡ wmβ

(
wβ
)γ−m

. (1)

with an appropriate integer m to avoid having w occur to both positive and negative net
exponents.2

3. When possible, fully absorb the power of w into the power of wβ to have fewer factors.

4. Otherwise minimize the magnitude of γ in (wβ)γ to minimize the contribution of the trouble-
some nested power in favor of the better behaved unnested power of w.

5. When there is a choice between γ = −1/2 and γ = 1/2, choose the latter so as to rationalize
the denominator rather than the numerator.

A larger numbered goal is not ful�lled if the only way to ful�ll it is to violate a smaller numbered
goal. For example, ful�llment of goals 4 and/or 5 would often violate goals 1, 2 and/or 3.

The expression colors in all of the tables match the above goal text color of the smallest-numbered
goal that is violated by each entry in the tables. A black entry complies with all of the goals. Many
colored entries also violate less important larger-numbered goals than is indicated by the expression
color.

The reasons for this ranking of goals are:

1. A red entry is most unsatisfactory because it is a result that is not equivalent to the input
everywhere the input is de�ned.

2. A magenta entry is next most serious because it is a squandered opportunity to improve the
result by removing a removable singularity, thereby making the result have the limiting value
at w = 0 rather than be unde�ned there. Not ful�lling this goal is analogous to not simplifying
w/w2 to 1/w, or w2/w to w, or w/w to 1.

1In this article, all �nite and in�nite complex numbers are regarded as de�ned, including the circle at complex
in�nity or any proper subset of it. Only 0/0 is considered unde�ned.

2The net exponent of
(
wβ
)γ

is βγ.
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3. A green entry is more complicated than need be.

4. A blue entry is less suitable for canonicality, because when there is more than one factor of
the form

(
wβ
)γ
, there might be more than one way to distribute only some of wα into the

nested powers, whereas there are at most two ways to minimize |γ| by absorbing all of the
excess values of γ into α.

5. A cyan entry is contrary to the custom of canonically rationalizing denominators that are
square roots.3

Table 2 shows the results for Mathematica 8.0.0 default simpli�cation.4 Table 3 shows the results
for the Mathematica FullSimplify[...] function. Table 4 shows the results for Mapletm 13 and wx-
Maxima 0.8.2 default simpli�cation.5 Table 5 shows the results for the Maple simplify(...) function.
Table 6 shows the corresponding result for default Derive® 6 simpli�cation after the declaration
w :∈ Complex. Table 7 shows the corresponding result for default simpli�cation in current Texas
Instruments products that contain computer algebra.6 Tables 8 and 9 show corresponding results
for the wxMaxima fullratsimp(...) and rat(...) functions.

Mathematica, wxMaxima and Maple also respectively have PowerExpand[...], radcan(...) and
simplify(..., symbolic) functions that always transform (wβ)γ to wβγ. However, because of such
transformations these functions can return results that are not equivalent to the input everywhere
it is de�ned. These systems, Derive and TI computer algebra also have safe ways to enable such
desired transformations when justi�ed by declaring, for example, that certain variables are real or
positive.

Wherever an input is de�ned in Tables 1 through 9, it is equivalent to the input two rows below
it, but one column left of it. However, the results are not all canonically identical in every row
and two rows down shifted one column left, except for Table 6 (Derive) and Table 1 (the algorithm
described in subsection 2.3).

Tables 1 through 8 use only powers of w and of wβ. Table 9 also uses powers of
(
wβ
)γ
. However,

the standard de�nition of um/n for reduced integers m and n is
(
u1/n

)m
, which is consistent with

the alternate de�nition eln(u)m/n.7 Consequently, the wxMaxima rat (. . .) function merely makes the
standard interpretation of the input more explicit at the expense of clutter. Nonetheless, it might

be helpful as a precursor to syntactically substituting a new expression for (w2)
1/3

.
To indicate how these systems and their optional simpli�cation functions comply with goal 5,

Table 10 lists their simpli�ed values of z/
√

z2.
Goals 1 through 5 are also applicable to fractional powers of negative powers, For example, the

3A now irrelevant reason for this tradition is probably because it is much easier, for example, to approximate√
2/2 than 2/

√
2 when done by table look up followed by manual division.

4Default simpli�cation is called evaluation in Mathematica and in many other systems.
5All of the wxMaxima results follow a prior assignment domain : complex to force the principal rather than the

default real branch; and a prior declaration declare(w, complex) to prevent unwanted transformations that might
happen for real w.

6TI CAS refers to the computer algebra built into some Texas Instruments calculators, for which there are also
Windows and Macintosh versions. For these products w must be entered as w_ to indicate that it is a complex
variable, thereby using the principal rather than the real branch.

7Using (um)1/n
is not equivalent to the principal branch of um/n for all u.
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transformation
1

w

(
1

w2

)3/2
→ w√

1

w2

(2)

meets all of the goals, because:

1. The result is equivalent to the input wherever the input is de�ned.

2. At w = 0 the result improves from 0/0 to 0/
√

1/02 → 0/
◦∞ → 0, which is the limit of the

input as w → 0 from any direction, where
◦∞ denotes complex in�nity.

Rationalizing the denominator of result (2) transforms the expression to

w3

√
1

w2
, (3)

which isn't as cumbersomely tall as result (2). Howeveer, result (3) sacri�ces the more important
improvement from 0/0 to 0 at w = 0.

It is tempting to oversimplify this result by commuting the reciprocation with the fractional
power to further transform result (2) to

w(
1√
w2

) ?→ w
√

w2. (4)

However, it is important to resist the temptation to transform
(
w−λ

)µ
to
(
wλ
)−µ

unless µ is integer,
or −1 ≤ λ < 1, or some declaration precludes w along the branch cuts of w−µ where the two
expressions are not equivalent.8 The branch cuts of√

1

w2

are the positive and negative imaginary semi-axes of w. So at w = i, for example, correct result (2)
has value 1 whereas incorrect result (4) has value -1.9

Tables 11 through 15 show the result of applying the rewrite rules in the Appendix and most
of the preceding system's default and optional simpli�cation to the expression wα (w−2)

γ
for α =

−3,−2, . . . , 3 together with γ = −5/2, . . . , 5/2. TI-CAS results require using w_ to indicate a
complex variable, and the Derive results require the prior declaration w :∈ Complex.

8Rich and Je�rey [5] suggest implementing a multi-valued interpretation of fractional powers for radicands that are
non-numeric or rational numbers, but using a principal-valued interpretation for �oating-point radicands. Although
this makes substitution not commute with simpli�cation for �oating-point numbers, the scheme otherwise has some
attractive properties. However, all of the major computer algebra systems currently strive to use a single-valued
interpretation of fractional powers, with the default being either the principal or real branch. Consequently, it is a
bug if these systems quietly employ transformations that don't preserve single-valued equivalence for that branch
wherever the input is de�ned.

9Notice that even
√

1/z is not equivalent to 1/
√

z along its branch cut, such as at z = −1. In contrast
√

1/z8/9 ≡
1/
√

z8/9 ≡ z−4/9 because −1 < −8/9 ≤ 1. However, this simpli�cation should have already been done by bottom-up
default simpli�cation.
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Results for wmMaxima are omitted for this family of examples because its default simpli-
�cation incorrectly commutes these fractional powers with reciprocation despite the assignment
domain : complex and the declaration declare(z, complex). The optional simpli�cation functions
unavoidably receive default-simpli�ed inputs, so all of the wmMaxima entries would be colored
boldface red because of being incorrect along entire semi-in�nite rays rather than only at one
point w = 0.

Wherever an input is de�ned in Tables 11 through 15, it is equivalent to the input two rows below
it, but one column right of it. However, the results are not all canonically identical in every row
and two rows down shifted one column right, except for Tables 15 (Derive) and 11 (the algorithm
described in subsection 2.3).

Collectively, the many di�erences between and within Tables 1 through 15 indicate a general
lack of thought about how best to simplify expressions of the form wα

(
wβ1
)γ1 · · ·

(
wβn

)γn
.

The many colored entries and the lack of exhibited canonicality in most of the tables indicate
that there is signi�cant room for improvement in all of these computer algebra systems.10

If a class of expressions includes 0, then any reasonable canonical form for that class should return
0 for any expression in the class that is equivalent to 0. Therefore having default simpli�cation
transform expressions into a canonical form is one way to at least avoid incorrect results such as
transforming

w − w√
z2

z3
− 1

z
√

z2

to 0.
As discussed in Brown [1], Moses [3] and Stoutemyer [6], canonical forms are too costly and

rigid for the entire class of expressions addressed by general-purpose computer algebra systems.
However, canonical forms are acceptable and good for default simpli�cation of certain simple classes
of expressions such as the class of sub-expressions discussed in this article. Accordingly, this article
describes three good canonical forms for this class and algorithms that can achieve them.

2 Three alternative forms

For consistency, computer algebra systems should use transformations that preserve equivalence
everywhere in the in�nite complex plane, including branch cuts and irremovable singularities. Oth-
erwise users can obtain a di�erent result if they substitute numbers into the transformed versus
untransformed result. Most computer algebra systems use the principal branch for numerical ex-
pressions and this article discusses only that choice.11

This section discusses three alternative forms for sub-expressions of the form

W := wα
(
wβ1
)γ1 · · ·

(
wβn

)γn
. (5)

They each have di�erent sets of advantages and disadvantages. Therefore it is worthwhile to make
one of them be the default simpli�cation and o�er the others as options obtainable by transformation
functions or a control variable.

10Mea culpa: I am a coauthor of Derive and TI-CAS.
11Some computer algebra systems optionally or by default use the real branch wherein for reduced integers m and

n, (−1)m/n → 1 for m even, and (−1)m/n → −1 for m and n odd.

5



Title of your paper TBA

2.1 Form 1: One unnested power times a unit-magnitude factor

A universal principal-branch formula for transforming a nested power to an unnested power is(
wβ
)γ → (−1)τ wβγ, (6)

where

τ := mod

(
γ
(
arg
(
wβ
)
− β arg (w)

)
π

, 2

)
. (7)

If w is nonnegative or −1 < β ≤ 1 or γ is integer, then (−1)τ ≡ 1. However, such opportunities
should have already been exploited with bottom-up simpli�cation, in which case those factors will
have already been simpli�ed to 1. Thus without loss of generality we assume that w isn't known to
be nonnegative, and that β ≤ −1 or β > 1, and that γ is non-integer.

The transformation given by formulas (6) and (7) can be derived from the identities

|p| ≡ (−1)− arg(p)/πp, (8)

|qα|β ≡ |q|αβ . (9)

Using transformation (6) on every
(
wβk
)γk in W de�ned by (5) gives

W = (−1)σ wα+β1γ1+···+βnγn , (10)

where σ is a canonically simpli�ed sum of terms of the form (7). Since (−1)σ has period 2 in σ,
for canonicality we should reduce all of the coe�cients in the expanded terms of σ modulo 2 to a
standard interval such as (-1, 1]. For example,

z−3/2
(
z−4/3

)−4/5 → (−1)mod((−4/5)(arg(z−4/3)−(−4/3) arg z)/π, 2) z−3/2+(−4/3)(−4/5)

→ (−1)((−4/5) arg(z−4/3)−(1/15) arg z)/π z−13/30. (11)

If arg (0) simpli�es to 0 as it does in Mathematica, then this canonical form has the bene�t of
candidly removing removable singularities entirely: For example in the input of transformation (11),
the net negative total degree of |z| is -3/2 and the net positive total degree of |z| is (−4/3) (−4/5) =
16/15, whereas the result has only a net negative total degree of -13/30. Thus an input that is 0/0
at z = 0 has been improved to a result that is a well-de�ned complex in�nity at z = 0.

As two other examples of this bene�t of arg (0) → 0,

z3

(z2)1/2
→ (−1)mod((−1/2)(arg(z2)−2 arg z)/π,2) z3−2(1/2)

→ (−1)(− arg(z2)/2+arg z)/π z2, (12)

which improves the input from 0/0 to 0 at z = 0, and

(z2)
1/2

z
→ (−1)(1/2)(arg(z2)−2 arg z)/π z1−2/2

→ (−1)(arg(z2)/2−arg z)/π, (13)
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which improves the input from 0/0 to 1 at z = 0. Therefore arg (0) → 0 has replaced troublesome
partial functions with total functions that have the most appropriate value where the input has a
removable singularity.12

Unfortunately most computer algebra systems leave arg (0) as is, or treat it as an unknown value
in the interval (−π, π], or � worse yet � throw an error. For such systems, this canonical form can
have the serious disadvantage of producing a result that is not equivalent to an input that is de�ned
at w = 0, or throwing an error that prevents any result at all without awkward programming that
is beyond amateur expertise and very troublesome to experts. Two such examples are(

z2
)1/2 → (−1)(arg(z2)/2−arg z)/π z

for which the input is a well-de�ned 0 at z = 0, and

(
z2
)−1/2 → (−1)(− arg(z2)/2+arg z)/π

z

for which the input is a well-de�ned complex in�nity at z = 0.
Sometimes arg (. . .) and therefore the arg (0) 6→ 0 issue can be avoided:

1. When w is real, (−1)σ can often be simpli�ed to either 1 or to a piecewise expression of the
form {

1, if w :: 0,

−1 otherwise,

where �::� is one of the comparison operators �>�, �≥�, =, �≤�, �<�, or � 6=�.

2. For fractional powers that are half integers or quarter integers, (−1)σ can be expressed as a
piecewise expression depending on the real and/or imaginary parts of w. For example,

(w2)
1/2

w
→

{
1 if < (w) > 0 ∨ < (w) ≥ 0 ∧ = (w) ≥ 0,

−1 otherwise;
(14)

(w4)
1/4

w
→


1 −< (w) < = (w) ≤ < (w) ,

−i if −= (w) < < (w) ≤ = (w) ,

−1 < (w) < = (w) ≤ −< (w) ,

i otherwise.

Maple has a built-in function named csgn that is de�ned by the right side of (14), and
simplify(...) uses this function for half powers of squares, as illustrated in Table 10. For

example, simplify
(
(w2)

7/2
)
→ w7csgn (w), which is more candid than the other results in

that table, albeit in a notation that is probably familiar only to experienced Maple users.

12Some users object to such domain enlargements. However, many of them would inconsistently complain if z/z
didn't automatically simplify to 1 as it already does in most computer algebra systems, after which the substitution
1 | z = 0 unavoidably simpli�es to 1. The remedy is to implement optional domain-enlargement provisos that are
automatically attached to intermediate and �nal results, making these three example results contain the attached
proviso �| z 6= 0�. However, implementation of that is beyond the scope of this article.
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For systems that don't automatically simplify arg (0) to 0 and can't be made to do so, form (10)
should be avoided when w = 0 is possible and the input is de�ned there.

Moreover, when arg (. . .) can't be avoided, most implementers might want to avoid form (10)
even when arg (0) → 0, because when a result contains arg (. . .), then (−1)σ is likely to be rather
complicated:

1. It will probably contain complicated square roots and arctangents if the real and imaginary
parts of w are given as exact numbers.

2. It will probably also contain piecewise sign tests if given real and imaginary parts are non-
numeric, such as for w = x + iy with non-numeric real x and y.

3. It will probably contain radicals nested at least one deep if arg (w) is given as a simple enough
rational multiple of π.

4. Otherwise it will contain perhaps bulky sub-expressions arg (w) and arg
(
wβ
)
� or, worse

yet, expressions involving square roots, arctangents, piecewise sign tests, and sub-expressions
of the form < (w) and = (w).

As espoused by Corless and Je�rey [2], expression τ can alternatively be de�ned in terms of the
unwinding function κ as:

τ := 2γκ (β ln w) . (15)

This is more concise than de�nition (7), but a function that computes unwinding numbers isn't
currently available in most computer algebra systems. Also, unless the system automatically trans-
forms ln 0 to −∞, as is done in Mathematica but not most systems, then de�nition (15) has the
same disadvantages as using arg (. . .).

2.2 Form 2: Reduction of outer fractional exponents to (-1/2, 1/2]

Proposition 1. For β ∈ R, γ ∈ R− Z, and arbitrary expression w ∈ C,(
wβ
)γ ≡ wIp(γ) β

(
wβ
)Fp(γ)

(16)

where Ip (. . .) denotes the integer part and Fp (. . .) denotes the fractional part.

Proof. We have (
wβ
)γ ≡ (wβ

)Ip(γ) (
wβ
)Fp(γ)

(17)

because:

1. With γ ∈ R− Z, sign Ip (γ) = signFp (γ),

2. For any expression u ∈ C and r1, r2 ∈ R | sign r1 = sign r2,

ur1+r2 ≡ ur1ur2 , (18)

even at u = 0 with r1 and r2 both negative, making both sides of (18) be complex in�nity.

We also have
(
wβ
)Ip(γ) ≡ wIp(γ) β because Ip (γ) ∈ Z.
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Remark: If r1 is positive and r2 is negative, then 0r1+r2 6≡ 0r10r2 because

0r1+r2 =


0 if r1 + r2 > 0,

1 if r1 + r2 = 0,

complex in�nity otherwise,

whereas 0r10r2 is always 0/0.

Therefore Phase 1 of the rewrite rules in the Appendix is to transform wα
(
wβ1
)γ1 · · ·

(
wβn

)γn

toward canonicality by transforming every positive fraction γk to the interval (0, 1) and every neg-
ative fraction γk to the interval (−1, 0). The various wIp(γk) βk are combined with the original wα,
giving a transformed expression

Ŵ := wα̂
(
wβ1
)γ̂1 · · ·

(
wβn

)γ̂n

where α̂ might be 0.
In general, any or all exponents can be fractions and/or negative. For example,

w−3/10
(
w−3/2

)−7/3 → w−3/10
(
w−3/2

)−2 (
w−3/2

)−7/3+2

→ w−3/10w6/2
(
w−3/2

)−1/3

→ w27/10
(
w−3/2

)−1/3
.

This transformation of each nested power is context independent and therefore fast and easy to
implement.

Also, the result of this phase has the advantage that if
(
wβ
)γ̂

is subsequently raised to any power

λ, then we can simplify it to the simpli�ed value of
(
wβ
)γλ

because −1 < γ̂ < 1. For example,((
w2
)3/4
)7/6

→
(
w2
)7/8

.

Expression Ŵ given by de�nition (2.2) is equivalent to expression W everywhere that W is
de�ned, because at w = 0:

1. Expressions W and Ŵ are both 0 if α ≥ 0 and all of the βkγk are positive.

2. Otherwise expression W and Ŵ are both complex in�nity if α ≤ 0 and all of the βkγk are
negative.

3. Otherwise if all βkγk > 0 and α̂ ≥ 0, then W is 0/0 but Ŵ has improved to 0.

4. Otherwise if all βkγk < 0 and α̂ ≤ 0, then W is 0/0 but Ŵ has improved to complex in�nity.

5. Otherwise both W and Ŵ are 0/0. However, the magnitude of the multiplicity of the remov-

able singularity is less for Ŵ if for any γk, |γk| ≥ 1.

Expression Ŵ is canonical in cases 1 through 4, but not necessarily for case 5: For example,
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1. The di�erent equivalent expressions z (z2)
−1/2

and z−1 (z2)
1/2

both have outer exponents in
(-1, 1), and the multiplicities of the uncanceled portion of their removable singularity at
z = 0 are both 1. Of these two alternatives, the latter is slightly preferable because it has a
traditionally rationalized denominator rather than a rationalized numerator.

2. The di�erent equivalent expressions z−1 (z2)
2/3

and z (z2)
−1/3

both have outer exponents in (-1,
1). Of these two alternatives, the latter is preferable for most purposes because the |−2/3| <
|4/3|, making multiplicity of the uncanceled portion of the �removable� singularity have a
smaller magnitude. Thus a rationalized numerator is sometimes preferable to a rationalized
denominator.

3. The di�erent expressions z−3 (z2)
1/2

and z−1 (z2)
−1/2

both have outer exponents in (-1, 1), and
they are equivalent wherever the �rst alternative is de�ned. However, the latter is preferable
because the former is indeterminate at z = 0 where the latter is de�ned and equal to the
complex in�nity limit of the former.

Thus after phase 1 we can sometimes add 1 to a negative γ̂k or subtract 1 from a positive γ̂k, then
adjust α accordingly to reduce the magnitude of the overall removable singularity � perhaps entirely.

Let

∆k := βkγ̂k,

∆ := α + ∆1 + · · ·+ ∆n.

Transforming any of the
(
wβk
)γk to wmkβk

(
wβk
)γk−mk for any integer mk leaves ∆ unchanged.

Our primary goal is, whenever possible, to make all of the ∆k have the same sign and for α to
have either the same sign or be 0.

A secondary goal is to prefer −1/2 < γ̂k ≤ 1/2.
Therefore, Phase 2 is:

1. If ∆ > 0, then for each ∆k < 0, add sign (βk) to γ̂k and subtract |βk| from α.

2. Otherwise if ∆ < 0, then for each ∆k > 0, subtract sign (βk) from γ̂k and add |βk| to α.

3. All of the γ̂k are still in the interval (-1, 1), but now all ∆k have the same sign. If α has the
same sign as ∆, then return this result.

4. For each γ̂ ≤ −1/2, add 1 to γ̂k and subtract βk from α.

5. For each γ̂k > 1/2, subtract 1 from γ̂k and add βk to α.

The resulting form is a canonical form for expressions of the form wα
(
wβ1
)γ1 · · ·

(
wβn

)γn
.

For strict adherence to this canonical form, some e�ort might be required either to prevent
default simpli�cation from combining two factors of the form wα (wα)β or to prevent reduction of
the exponent to the standard interval when default simpli�cation would undo the transformation,

thus causing an in�nite recursion. For example, default simpli�cation might transform x2 (x2)
1/2

to

(x2)
5/2

. The form is canonical even if this exception to the standard exponent interval is allowed in
results, and this exception is probably acceptable to most users.
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However, if an expression also contains sub-expressions of the form either (−1)σ with σ being
a canonically simpli�ed sum of terms of the form (7), or a piecewise equivalent, then the di�ering
canonical forms should be uni�ed. For example,

(−1)(arg(z2)/2−arg z)/π +
(z2)

1/2

z
→ 2 (z2)

1/2

z
,

(−1)(arg(z2)/2−arg z)/π +
(z2)

1/2

z
→ 2(−1)(arg(z2)/2−arg z)/π,

(w2)
1/2

w
−

{
1 if < (w) > 0 ∨ < (w) ≥ 0 ∧ = (w) ≥ 0,

−1 otherwise;
→ 0.

It is easier to transform from form 2 to form 1 than vice versa, but the rewrite rules in the Appendix
don't address this issue.

2.3 Form 3: Also fully absorb wα into a fractional power when possible.

Although Form 2 is canonical, it can result in an expression such as z4 (z2)
1/2

, for which many users

would regard (z2)
5/2

as a simpler result because it has one less factor.
We can often absorb at least some of zα into one of the

(
zβk
)γk by the transformation

zα
(
zβk
)γk → zβk Fp(α/βk)

(
zβk
)γk+Ip(α/βk)

,

which doesn't change the domain of de�nition. However, this transformation seems inadvisable
unless Fp (α/βk) = 0, because it increases the contribution of a troublesome nested power without
reducing the number of factors.

Routine use of this transformation also seems inadvisable during intermediate computations
even if Fp (α/βk) = 0, because when there is more than one nested power, then more than one
might be eligible, making it awkward to maintain canonicality.

However, this transformation does seem advisable as a last step just before displaying a result.
When there is more than one nested power of w, then there might be more than one way to

absorb α completely into those nested powers. For example,

w6
(
w2
)1/2 (

w3
)1/2 (

w4
)1/2 ≡

(
w2
)7/2 (

w3
)1/2 (

w4
)1/2

≡
(
w2
)1/2 (

w3
)5/2 (

w4
)1/2

(19)

≡
(
w2
)3/2 (

w3
)1/2 (

w4
)3/2

.

In general, the possible resulting expressions are the given by(
wβ1
)γ1+m1

(
wβ2
)γ2+m2 · · ·

(
wβn

)γn+mn
,

where the tuple of integers 〈m1, m2, . . . ,mn〉 is a solution to the linear Diophantine equation

m1β1 + m2β2 + · · ·+ mnβn = α.

Solutions exist if and only if α is an integer multiple of gcd (β1, β2, . . . βn), in which case there
might be a countably in�nite number of tuples. However, to avoid introducing removable singular-
ities or increasing the magnitude of their multiplicity, we are only interested in solutions for which

11
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sign (mjβj) ≡ sign (α) for j = 1, 2, . . . , n. Papp and Vizvari [4] describe an algorithm for such
sign-constrained problems, and the Mathematica Reduce [. . .] function can solved such equations.
For example, suppose our canonical form 2 result is

z14
(
z6/7

)1/2 (
z10/7

)1/3
.

In Mathematica, we can determine the family of integers m1 ≥ 0 to add to 1/2 and m2 ≥ 0 to
add to 1/3 that together absorb z14 as follows:

In[1] : = Reduce

[
6

7
m1 +

10

7
m2 == 14 {m1, m2} &&

6

7
m1 ≥ 0 &&

10

7
m2 ≥ 0, Integers

]
//TraditionalForm

Out[1]//TraditionalForm = (m1 = 3 ∧m2 = 8) ∨ (m1 = 8 ∧m2 = 5) ∨ (m1 = 13 ∧m2 = 2)

With more than one solution, we should choose one in a canonical way. One way to do so is
to order the βj in some canonical way, such as the way they order in

(
wβ1
)γ1 · · ·

(
wβn

)γn
, then to

choose the solution for which m1 is smallest, with ties broken according to which m2 is smallest,
etc.

The rewrite rules in the Appendix only partially implement this canonical form, because such
simpli�cations should be part of the built-in optional simpli�cation or, better yet, the default
simpli�cation: In reality, not many users are liable to learn about and routinely use an add-on
package for this narrowly-scoped issue. Therefore the rewrite rules in the Appendix are only the
minimal amount necessary to generate the results in Tables 1, 10 and � and hopefully inspire decision
makers to build them into their systems.

However, these rules also return canonical form 3 for some but not all examples containing more
than one fractional power of a power.

3 Extensions

Although not implemented in the rules of the Appendix, more generally the exponents for forms
1 through 4 can be Gaussian fractions or even symbolic, in which case we can still apply these
transformations to the numeric real parts of the exponents. For example,

w3ξ+ρ
(
wξ
)3/2+ωπi →

(
wξ
)3

wρ
(
wξ
)1+1/2+ωπi →

(
wξ
)4

wρ
(
wξ
)1/2+ωπi → w4ξ+ρ

(
wξ
)1/2+ωπi

.

As another example, if a user has declared the variable n to be an integer,

w−n
(
w2
)n+1/2 → wn

(
w2
)1/2

.

4 Summary

This article:

1. shows that many widely-used computer algebra systems have signi�cant room for improvement
at simplifying sub-expressions of the form wα

(
wβ1
)γ1 · · ·

(
wβn

)γn
;

12
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2. de�nes three di�erent simpli�ed canonical forms with good properties;

3. explains how to compute these forms;

4. includes a partial implementation of one of these forms via Mathematica rewrite rules.
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Appendix: Mathematica rewrite rules for wα
(
wβ1
)γ1 · · ·

(
wβn
)γn

(* EXTRA SIMPLIFICATION DONE BEFORE ORDINARY EVALUATION: *)

PreProductOfPowersOfPowers [(w_^b_)^(g_Rational /; g <= -1 || g >= 1)] :=

w^(IntegerPart[g]*b) * (w^b)^FractionalPart[g];

PreProductOfPowersOfPowers [(w_^b_)^(g_Rational /; g<=-1 || g>=1) * w_^a_. * u_]:=

PreProductOfPowersOfPowers[w^(a+IntegerPart[g]*b) * (w^b)^FractionalPart[g] * u];

PreProductOfPowersOfPowers [(w_^b_)^g_ * w_^a_. * u_. /; Sign[a] != Sign[b*g] &&

(Sign [a+b*Sign[g]] == Sign [b*(g-Sign[g])] ||

Min [Abs[a], Abs[b*g]] > Min [Abs [a+b*Sign[g]], Abs [b*(g-Sign[g])]] ||

g == -1/2 && Min [Abs[a], Abs[b/2]] == Min [Abs[a-b], Abs[b/2]])] :=

w^(a+b*Sign[g]) * (w^b)^(g-Sign[g]) * u;

PreProductOfPowersOfPowers [f_[args__]] :=

Apply [f, Map [PreProductOfPowersOfPowers, {args}]];

13
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PreProductOfPowersOfPowers [anythingElse_] := anythingElse;

$Pre = PreProductOfPowersOfPowers;

(* EXTRA SIMPLIFICATION DURING DURING ORDINARY EVALUATION: *)

Unprotect [Times];

(w_^b_)^g_ * w_^a_. * u_. /; Sign[a] != Sign[b*g] &&

(Sign [a+b*Sign[g]] == Sign [b*(g-Sign[g])] ||

Min [Abs[a], Abs[b*g]] > Min [Abs [a+b*Sign[g]], Abs [b*(g-Sign[g])]] ||

Min [Abs[a], Abs[b*g]] == Min [Abs [a+b*Sign[g]], Abs [b*(g-Sign[g])]] &&

Abs[g] > Abs [g-Sign[g]] ||

g == -1/2 && Min [Abs[a], Abs[b/2]] == Min [Abs[a-b], Abs[b/2]]) :=

w^(a+b*Sign[g]) * (w^b)^(g-Sign[g]) * u;

(w_^b1_)^g1_ * (w_^b2_)^g2_ * u_. /; Sign[b1*g1] != Sign[b2*g2] &&

Abs[b2] > Abs[b1] && Sign [b2*(g2-Sign[g2])] == Sign [b1*g1 + b2*Sign[g2]] :=

(w^b2)^(g2-Sign[g2]) * ((w^(b2*Sign[g2]) * (w^b1)^g1) * u);

Protect [Times];

(* EXTRA SIMPLIFICATION DONE AFTER ORDINARY EVALUATION: *)

PostProductOfPowersOfPowers [w_^a_ * (w_^b_)^g_ * u_. /; IntegerQ [a/b]] :=

PostProductOfPowersOfPowers [(w^b)^(g+a/b) * u];

PostProductOfPowersOfPowers [f_[args__]] :=

Apply [f, Map [PostProductOfPowersOfPowers, {args}]];

PostProductOfPowersOfPowers [anythingElse_] := anythingElse;

$Post = PostProductOfPowersOfPowers;

Tables

15.
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Table 1: Results of Appendix rewrite rules for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

1
w2

1

(w2)10/3
1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

1
w

1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

1 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

w 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

w5 (w2)
2/3

w2 1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

(w2)
11/3

w3 1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

w5 (w2)
2/3

w7 (w2)
2/3

Table 2: Mathematica 8 default simplify for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w3(w2)7/3
1

w3(w2)4/3
1

w3(w2)1/3

(w2)
2/3

w3

(w2)
5/3

w3

(w2)
8/3

w3

1
w2

1

w2(w2)7/3
1

w2(w2)4/3
1

w2(w2)1/3

(w2)
2/3

w2

(w2)
5/3

w2

(w2)
8/3

w2

1
w

1

w(w2)7/3
1

w(w2)4/3
1

w(w2)1/3

(w2)
2/3

w

(w2)
5/3

w

(w2)
8/3

w

1 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

w w

(w2)7/3
w

(w2)4/3
w

(w2)1/3 w (w2)
2/3

w (w2)
5/3

w (w2)
8/3

w2 1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

(w2)
11/3

w3 w3

(w2)7/3
w3

(w2)4/3
w3

(w2)1/3 w3 (w2)
2/3

w3 (w2)
5/3

w3 (w2)
8/3

Table 3: Mathematica 8 FullSimplify[...] for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

(w2)
2/3

w9

(w2)
2/3

w7

(w2)
2/3

w5

(w2)
2/3

w3
w

(w2)1/3 w (w2)
2/3

1
w2

(w2)
2/3

w8

(w2)
2/3

w6
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

1
w

(w2)
2/3

w7

(w2)
2/3

w5

(w2)
2/3

w3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

1 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

w w

(w2)7/3
w

(w2)4/3
w

(w2)1/3 w (w2)
2/3

w (w2)
5/3

w (w2)
8/3

w2 1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

(w2)
11/3

w3 w3

(w2)7/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

w3 (w2)
5/3

w3 (w2)
8/3
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Table 4: Maple 13 & wxMaxima 0.8.2 default simplify for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w3(w2)7/3
1

w3(w2)4/3
1

w3(w2)1/3

(w2)
2/3

w3

(w2)
5/3

w3

(w2)
8/3

w3

1
w2

1

w2(w2)7/3
1

w2(w2)4/3
1

w2(w2)1/3

(w2)
2/3

w2

(w2)
5/3

w2

(w2)
8/3

w2

1
w

1

w(w2)7/3
1

w(w2)4/3
1

w(w2)1/3

(w2)
2/3

w

(w2)
5/3

w

(w2)
8/3

w

1 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

w w

(w2)7/3
w

(w2)4/3
w

(w2)1/3 w (w2)
2/3

w (w2)
5/3

w (w2)
8/3

w2 w2

(w2)7/3
w2

(w2)4/3
w2

(w2)1/3 w2 (w2)
2/3

w2 (w2)
5/3

w2 (w2)
8/3

w3 w3

(w2)7/3
w3

(w2)4/3
w3

(w2)1/3 w3 (w2)
2/3

w3 (w2)
5/3

w3 (w2)
8/3

Table 5: Maple 13 simplify(...) for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3

(w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3

1
w2

1

w6(w2)1/3
1

w4(w2)1/3
1

w2(w2)1/3

(w2)
2/3

w2 (w2)
2/3

w2 (w2)
2/3

1
w

1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3

(w2)
2/3

w
w (w2)

2/3
w3 (w2)

2/3

1 1

w4(w2)1/3
1

w2(w2)1/3
1

(w2)1/3 (w2)
2/3

w2 (w2)
2/3

w4 (w2)
2/3

w 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

w5 (w2)
2/3

w2 1

w2(w2)1/3
1

(w2)1/3
w2

(w2)1/3 w2 (w2)
2/3

w4 (w2)
2/3

w6 (w2)
2/3

w3 1

w(w2)1/3
w

(w2)1/3
w3

(w2)1/3 w3 (w2)
2/3

w5 (w2)
2/3

w7 (w2)
2/3

Table 6: Derive 6 default simplify for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

(w2)
2/3

w9

(w2)
2/3

w7

(w2)
2/3

w5

(w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3

1
w2

1

(w2)10/3
1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

1
w

(w2)
2/3

w7

(w2)
2/3

w5

(w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3
w3 (w2)

2/3

1 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

w
(w2)

2/3

w5

(w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3
w3 (w2)

2/3
w5 (w2)

2/3

w2 1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

(w2)
11/3

w3 (w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3
w3 (w2)

2/3
w5 (w2)

2/3
w7 (w2)

2/3
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Table 7: TI-CAS default simplify for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3

(w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3

1
w2

1

(w2)10/3
1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

1
w

1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3

(w2)
2/3

w
w (w2)

2/3
w3 (w2)

2/3

1 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

w 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

w5 (w2)
2/3

w2 1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

(w2)
11/3

w3 1

w(w2)1/3
w

(w2)1/3
w3

(w2)1/3 w3 (w2)
2/3

w5 (w2)
2/3

w7 (w2)
2/3

Table 8: wxMaxima 0.8.2 fullratsimp(...) for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w7(w2)1/3
1

w5(w2)1/3
1

w3(w2)1/3

(w2)
2/3

w3

(w2)
2/3

w
w (w2)

2/3

1
w2

1

w6(w2)1/3
1

w4(w2)1/3
1

w2(w2)1/3

(w2)
2/3

w2 (w2)
2/3

w2 (w2)
2/3

1
w

1

w5(w2)1/3
1

w3(w2)1/3
1

w(w2)1/3

(w2)
2/3

w
w (w2)

2/3
w3 (w2)

2/3

1 1

w4(w2)1/3
1

w2(w2)1/3
1

(w2)1/3 (w2)
2/3

w2 (w2)
2/3

w4 (w2)
2/3

w 1

w3(w2)1/3
1

w(w2)1/3
w

(w2)1/3 w (w2)
2/3

w3 (w2)
2/3

w5 (w2)
2/3

w2 1

w2(w2)1/3
1

(w2)1/3
w2

(w2)1/3 w2 (w2)
2/3

w4 (w2)
2/3

w6 (w2)
2/3

w3 1

w(w2)1/3
w

(w2)1/3
w3

(w2)1/3 w3 (w2)
2/3

w5 (w2)
2/3

w7 (w2)
2/3
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Table 9: wxMaxima 0.8.2 rat(...) for 1st row × 1st column

↓−→× 1

(w2)7/3
1

(w2)4/3
1

(w2)1/3 (w2)
2/3

(w2)
5/3

(w2)
8/3

1
w3

1

w3((w2)1/3)
7

1

w3((w2)1/3)
4

1

w3(w2)1/3

(
(w2)

1/3
)2

w3

(
(w2)

1/3
)5

w3

(
(w2)

1/3
)8

w3

1
w2

1

w2((w2)1/3)
7

1

w2((w2)1/3)
4

1

w2(w2)1/3

(
(w2)

1/3
)2

w2

(
(w2)

1/3
)5

w2

(
(w2)

1/3
)8

w2

1
w

1

w((w2)1/3)
7

1

w((w2)1/3)
4

1

w(w2)1/3

(
(w2)

1/3
)2

w

(
(w2)

1/3
)5

w

(
(w2)

1/3
)8

w

1 1

((w2)1/3)
7

1

((w2)1/3)
4

1

(w2)1/3

(
(w2)

1/3
)2 (
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Table 10: Simpli�cation of w/
√

w2

system function w√
w2

Appendix rewrite rules
√

w2

w

Mathematica default w√
w2

Mathematica FullSimplify w√
w2

Maple default w√
w2

Maple simplify csgn (w)

Derive default
√

w2

w

TI-CAS default w√
w2

wxMaxima default w√
w2

wxMaxima fullratsimp w√
w2

wxMaxima rat w√
w2

18



Author's Name

Table 11: Appendix rewrite rules for 1st row Ö 1st column

↓−→× 1

( 1
w2 )

5/2
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( 1
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1√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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w√
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√
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√
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√
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1√
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√
1

w2

(
1

w2

)3/2

w3 w7√
1

w2

w5√
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w3√
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w√
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√
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Table 12: Mathematica 8 default simplify for 1st row Ö 1st column

↓−→× 1
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1√
1
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√
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1

( 1
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√
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1√
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√
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1√
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√
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Table 13: Mathematica 8 FullSimplify[...] for 1st row Ö 1st column

↓−→× 1

( 1
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√
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Table 14: TI-CAS default, Maple simplify(...) & default for 1st row Ö 1st column
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Table 15: Derive default simplify for 1st row Ö 1st column
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√
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