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Abstract

An algorithm of Bruno Buchberger’s is extended to polynomial rings over a Noetherian
ring. In a specialized version, it can be used for computing elimination ideals. Over fields, it
provides the determination of the minimal prime ideals which contain the given ideal, except
that the primeness must be proved with other methods. Estimates for computing time are not
given.

Introduction

The system of equations
Fµ(X1, . . . , Xn) = 0 (1 ≤ µ ≤ m) (†)

with polynomials Fµ of degree dµ needs to be solved.
If the coefficient ring r is the field C and we seek solutions (x1, . . . , xn) in Cn, we are often

interested only in approximations (x̃1, . . . , x̃n). If in addition m = n holds, then in general the
number L of solutions is finite and N =

∏m
µ=1 dµ is an upper bound for L, i.e. L = N holds. In

this situation, it is possible in principle to find (x̃1, . . . , x̃n) using a homotopy method: we choose
a system of equations Gµ(X1, . . . , Xn) = 0, Gµ of degree dµ, whose N solutions are known (e.g.

Gµ(X1, . . . , Xn) = X
dµ
µ − 1), and each of the N solutions (xi1(t) . . . , xin(t)) of the system follows

Hµ(t;X1, . . . , Xn) := tFµ(X1, . . . , Xn)+(1− t)Gµ(X1, . . . , Xn) = 0 as t varies along a suitable curve
(in C) from 0 to 1. This approach was used by Drexler [5] for example.

Without such extra assumptions, the problem posed at the outset belongs to the basic tasks
of ideal theory in the commutative ring R = r[X1, . . . , Xn]: we find all minimal elements of the
set {P ∈ Spec R | P ⊇ A}, where A is the R-ideal generated by the Fµ. When r is a field, this
and other basic tasks have been treated theoretically at least since Grete Hermann [7]. (We note
however some corrections: Seidenberg [12].) For Noetherian rings, Richman [14] worked on the same
thing. However, these algebraic methods were not built for practically implementable algorithms.

∗Journal of Number Theory 10 (1978): 475-488. Translated by Michael P. Abramson.
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Buchberger [1] suggested an algorithm (when r is a field) in which the generating set of the
ideal A is first brought into a certain normal form, and then this is used to produce a set of residue
class representatives modulo A. For ideals of dimension 0, this is enough to determine the zeros.
Recently, Buchberger [2] tackled this subject again and established the uniqueness of the normal
form from his previous work.

In addition to Buchberger himself, Schrader [11] also implemented the algorithm on a computer
(Univac 1108) and thereby came to the same conclusion concerning the uniqueness of the normal
form. Computational methods for finding zeros continue to arise which are simpler than what
Buchberger suggested. Lauer [9] also implemented the algorithm and generalized it for Euclidean
rings r, a variant of which is for Noetherian integral domains r. Unfortunately, he did not combine
everything into a uniform proof.

It appears that simple modifications to Buchberger’s algorithm are necessary if we want to find
zeros in higher dimensions as well. Except for this, all of the essential properties of the algorithm
still hold when we replace the ground field by an arbitrary Noetherian ring.

Although Buchberger’s proofs continue to hold mutatis mutandis, this last generalization in
particular requires so many technical changes that a new version of the algorithm cannot be avoided.

In one special case, a method for the successive elimination of variables emerges, for which termi-
nation after finitely many steps, but without an estimate for that number, is known. (Unrealistically
coarse estimates would be useless for applications.)

The efficiency of the actual zero calculations must be carefully considered. For ideals of dimen-
sion 0 and with a field as the underlying ring, a method is described for finding zeros, where only
the large computing time of Buchberger’s algorithm (and eventually for the prime decomposition
of the resulting polynomials) remains unsatisfactory. For ideals of dimension greater than 0, there
does not seem to be any practical method for verifying that the resulting ideals are prime.

Finally, a computed example is at least carried out. The solution of this system was noted
by Matzat [10]. This is why I implemented and published the version of Buchberger’s algorithm
written in 1976.

0 Assumptions and Notation

Let r be a commutative Noetherian ring with unity, R = r[X1, . . . , Xn]. a, b, c, . . . will be elements
of r and a, b, c, . . . subsets of r. Corresponding upper-case letters usually mean the same for R.

For the ring r, we assume that the ring operations can be carried out constructively, and also
the following:1

For b ∈ r and a E r (the ideal a might be given by a basis), let an element ρ(b, a) ∈ r

be computable, such that ρ(b, a) depends only on the residue class of b modulo a,
that is, ρ(b, a) ≡ b mod a, and ρ(b, a) = 0 if and only if b ∈ a.

(1)

If the coefficients aσ, b ∈ r of the linear equation
∑s

σ=1 aσxσ = b are given, then a spe-
cific solution (if it exists) and a basis for the r-module of solutions of the homogeneous
equation

∑s
σ=1 aσyσ = 0 are computable.

(2)

(From here on, basis means a finite generating set of a Noetherian modules over r or R, and
specifically of an ideal. Minimality is not required.)

1Note in translation: the expression a E r denotes a being an ideal in r.
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Let N = {0, 1, 2, . . .} and I = N ∪ {−1}. (The additional element −1 saves us from having to
distinguish cases.) For i = (i1, . . . , in) ∈ I, let X i :=

∏n
ν=1X

iν
ν , and we write A =

∑
i∈I aiX

i for
A ∈ R, where it is always implicitly assumed that a−1 = 0 and almost all ai = 0. i | j will mean
iν ≤ jν (1 ≤ ν ≤ n), and i - j the opposite. For the element −1 ∈ I, we add: 1 | i for i ∈ I, and
i - −1 for i 6= −1. If E ⊆ I is a finite set, then lcm (E) will denote the least upper bound of E in
I relative to the partial order |. In addition, let I be given a linear order ≤ which agrees with | as
follows:

i | j implies i ≤ j (i, j ∈ I) (3)

i ≤ j implies i+ k ≤ j + k (i, j, k ∈ I \ {−1}) (4)

Later, we will write i < j or j > i for i ≤ j 6= i quite often. The terms minimum and minimal
applied to the subsets of I always relate to the relation |, and least element to ≤; similarly for
maximum, when not explicitly stated otherwise.

For A =
∑

i∈I aiX
i, let ∂A := max≤{i ∈ I | ai 6= 0 or i = −1} be the degree of A (hence this

max≤ differs from the definition just stated) and fA := a∂A be the leading coefficient of A. Let
M ⊆ R. We define the ideal ai(M) (i ∈ I) of r relative to M and ≤ as follows: Let ai(M) be the
r-ideal generated by {fA | A ∈ M and ∂A | i}. If M is fixed, we just write ai. In addition, let
B = B(M) :=

{
B =

∑
i∈I biX

i ∈ R | bi = ρ(bi, ai) for all i
}

with ρ as in (1).

1 Definitions and Lemmas

Lemma 1. (a) There are no (infinite) sequences (iλ), iλ ∈ I, λ ∈ N, with the property that for
λ < µ, iλ - iµ holds.

(b) A set J ⊆ I is finite if i 6= j implies i - j for all i, j ∈ J .

(c) There are no (infinite) sequences (iλ) with iλ > iµ for λ < µ.

Proof. (a) It is easy to see for n = 0 or 1. Let m ∈ N be the smallest number such that the claim
can be disproved by a sequence (iλ), iλ ∈ Nm. This contains the subsequence (jµ) = (iλµ), µ ∈ N, in
which, for the index m, the sequence jµm, for instance, does not decrease. But then we would have
also found such a sequence (kµ) in Nm−1, with kµ = (jµ1 , . . . , j

µ
m−1), contradicting the definition of

m. (b) follows immediately. (c) is implied by (3).

Lemma 2. Let (aip) be a double sequence (i ∈ I, p ∈ N) of ideals in the Noetherian ring r, where

i | j implies aip ⊆ ajp (5)

p ≤ q implies aip ⊆ aiq. (6)

holds for all indices. By (6), ai :=
⋃
p∈N

aip is also an ideal of r. Then

(a) The set Z := {ai | i ∈ I} is finite.

(b) The set K := {i ∈ I | i is minimal such that ai = b for some b ∈ Z} is finite.

(c) There is an N ∈ N such that aiN = ai for all i ∈ I.
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Proof. By assuming that Z is not finite, we will construct a sequence (iλ) that contradicts Lemma
1(a) by means of the following algorithm:

To start, let Y := ∅, ` := 0.

Let b be a maximal element of Z/Y . (r is Noetherian) (7)

J := {i ∈ I | i minimal with ai = b}. By definition of Z, we have J 6= ∅. (8)

(5) and (6) together immediately imply:

i | j implies ai ⊆ aj. (5′)

Thus by Lemma 1(b), J is finite. Now to construct the sequence (iλ), let the iλ be already defined
for λ < `. If i = iλ with λ < `, then ai 6⊆ b, since otherwise (7) would be violated, and thus by (5’),
i - j for j ∈ J . For j 6= j′ ∈ J , j - j′ holds by definition. If J = {j1, . . . , js} for instance, then we
set i`−1+σ := jσ (1 ≤ σ ≤ s) and ` := `+ s, and also Y := Y ∪ {b}. Go to (7).

By Lemma 1(a), this algorithm must terminate. This can only happen in such a way that
Z/Y = ∅ in (7), and thus Z is finite, proving (a). In (b), K is the union of all finite sets J that
appear in (8) (until termination), so it is itself finite. Now let Ni := min{p ∈ N | aip = ai} for each
i ∈ I. Then i | j implies aiNi = ai ⊆ aj = ajNj , so again by (6), i | j and ai = aj imply Ni ≥ Nj.
With N := max

i∈K
Ni, (c) is proved.

Definition 1. Let M ⊆ R be finite, with say m elements. Furthermore, define J = J(M) :={
lcm {∂A | A ∈ G}

∣∣ G ⊆M
}

to be the set of all possible least common multiples of degrees of

elements of M; J is finite. Let mj :=

{
(. . . , yA, . . .) ∈ rm

∣∣∣ ∑
A∈M

fAyA = 0, yA = 0 for ∂A - j
}

and

{(. . . , yτA, . . .) | 1 ≤ τ ≤ tj} be a basis for mj (which is computable by (2)) for j ∈ J . Then the
polynomials Sτj :=

∑
A∈M

AyτAX
j−∂A (1 ≤ τ ≤ tj) are called the S-polynomials of M of level j. Let

Gj be the r-module that is generated by them.

Definition 2. Let M ⊆ R be finite and i ∈ I. For A ∈ M, let dA ∈ r be found such that
dA = 0 whenever ∂A - i. Then the set (i, (dA)) is called a D(ifference)-expression (relative to M),
and the polynomial D :=

∑
A∈M

AdAX
i−∂A is called the D-polynomial of (i, (dA)). For F,G ∈ R,

we write (i, (dA)) : F −→ G if F − D = G. We write F −→i G if there exists (dA) such that
(i, (dA)) : F −→ G, and F −→ G if this is the case for any i ∈ I. We will write −→M if it would
be otherwise unclear to which set M this notation relates.

Definition 3. Let M ⊆ R be finite. A sequence ∆ = (iλ, (dλA))λ∈N of D-expressions is called a
D-sequence if it is always the case that iλ+1 ≤ iλ and iλ+1 < iλ for iλ 6= −1. By Lemma 1(c),
iλ = −1 for all λ ≥ ` for instance, and by Definition 2, dλA = 0 for such λ. Thus for F ∈ R, the
sequence (Fλ) with F0 = F and (iλ, (dλA)) : Fλ −→ Fλ+1 becomes stationary. If F` = G, then we
write ∆ : F −� G, and we write F −� G if there exists such a ∆. ∂∆ := i0 is called the degree
of the D-sequence ∆. Let F −�<j G be shorthand for “there is a D-sequence ∆ : F −� G with
∂∆ < j” (defined similarly for ≤). −�M will be written if M would be otherwise ambiguous.

In what follows, let M ⊂ R be a fixed finite subset. All terminology (such as ai, B, −→, −�,
Sτj , . . .) is relative to this.
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Lemma 3. For F ∈M with ∂F = i, there is a G ∈ B with F −�6i G. The computation of G is
constructive. (It remains open whether there are several such G; see Lemma 6.)

Proof. We provide an algorithm. Let jλ := max≤ {i ∈ I | fi 6= ρ(fi, ai) or i = −1} and Fλ =∑
i∈I fiX

i (with F0 = F ). If jλ = −1, then Fλ ∈ B already, and the trivial D-sequence (iµ = −1
and dµA = 0 for all µ ≥ λ and all A ∈M) has the required property. Now let j = jλ 6= −1, fj = b,
and ρ(fj, aj) = c. We can calculate c using (1), and any solution (dλA) of

∑
A∈M, ∂A|j

fAd
λ
A = b − c

using (2). Let dλA = 0 for ∂A - j. We compute Fλ+1 by (jλ, (dλA)) : Fλ −→ Fλ+1, and apply the
same process to Fλ+1. By Lemma 1(c), since the sequence of jλ is strictly decreasing, we arrive at
a j` = −1 after finitely many steps, thus F` ∈ B.

Lemma 4/Definition 4. Let F ∈ R and ∂F = i. Then there is a G ∈ R such that F −�M G
and either G = 0 or fG /∈ a∂G. G can be computed and is called an M-remainder of F .

Proof. A weakening of Lemma 3.

Lemma 5. (a) F −�6i F and G −�6i G imply F +G −�6i F +G.

(b) F −�6i G implies aF −�6i aG (a ∈ r).

(c) F −�6i G implies XjF −�6i+j XjG (i, j ∈ I, i 6= −1 6= j).

(d) The same as (a), (b), and (c) with < instead of 6.

(e) The same as (a), (b), and (c) without the additional 6 i and 6 i+ j.

(f) Let A be the R-ideal generated by M. Then F ∈ A implies F −� 0.

Proof. (a) Let (iλ, (cλA))λ∈N : F −�6i F and (jµ, (dµA))µ∈N : G −�6i G. K = {iλ | λ ∈ N} ∪ {jµ |
µ ∈ N} is finite. Let K = {k0, k1, . . . , k`}, for instance, with k0 > k1 > · · · > k` = −1. Let
kν := −1 for ν > ` and eνA :=

∑
λ

cλA δ(i
λ, kν) +

∑
µ

dµA δ(j
µ, kν), where δ(·, ·) denotes the Kronecker

symbol. Then clearly (kν , (eνA))ν∈N : F + G −�6i F + G. (b), (c), (d) and(e) are even simpler to
prove. (f) Suppose for example F =

∑
A∈M

ACA with CA ∈ R. In view of A −� 0 for A ∈M, we set

CA =
∑
i∈I
cAiX

i (cAi ∈ r) and apply (a), (b), (c), and (e).

2 The Algorithm of Bruno Buchberger

The algorithm, that is the subject of our interest, consists of different transformations of an initial
set of polynomials. It will be shown that the result does not depend on how we choose the sequence
of transformations. Certainly, the running time is strongly dependent on this, but it appears that
only a heuristic choice is known (see [1]).

Let A be an ideal of R and M a basis for A. Let M0 := M and Mp+1 be formed from Mp by
performing the following actions:

(A) Let G 6= 0 be an Mp-remainder (Definition 4) of an S-polynomial of Mp (Definition 1). Set
Mp+1 := Mp ∪ {G}.

(B) Let F ∈Mp, N := Mp \ {F} and G an N-remainder of F . Set Mp+1 := N ∪ {G}.
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(C) Let F1, . . . , Fs ∈ Mp be polynomials of the same degree, U ∈ GLs(r) and (G1, . . . , Gs) =
(F1, . . . , Fs)U . (The Gσ do not necessarily have the same degree.) Set

Mp+1 := (Mp \ {F1, . . . , Fs}) ∪ {G1, . . . , Gs}.

(D) Mp+1 := Mp \ {0}.

Let aip = ai(Mp). Note that this double sequence satisfies the hypotheses of Lemma 2. More
precisely, aj,p+1 ) ajp certainly holds for j = ∂G after completing one (A) step. It follows that
after finitely many steps of (A), with (B), (C), and (D) interspersed ad libitum, (A) can no longer
be executed because ∆ : S −�Mp 0 for all S-polynomials S of Mp, of which there are indeed
only finitely many, and which are considered as arbitrary D-sequences ∆ in Lemmas 3 and 4. All
D-polynomials and S-polynomials are contained in A, thus every set Mp is a basis of A.

Definition 5. A basis G of the ideal A E R is called a Gröbner basis (after Wolfgang Gröbner)
if for all of the S-polynomials S, we have ∆ : S −�G 0 for the D-sequence ∆ chosen in Lemma 4.
The algorithm just described for computing a Gröbner basis G from an arbitrary basis M of A is
called Buchberger’s algorithm.

(It is easy to convince oneself that the theoretically unnecessary steps (B), (C), and (D) cannot
be omitted in practice during computation.)

Lemma 6. Let G be a Gröbner basis of A, all terms (such as ai, B, −→, −�, Sτj , . . .) relating to

the set G. Then the following holds: Let F ∈ R and G,G ∈ B. Then F −� G and F −� G imply
G = G.

Proof. Let ∆ : F −� G and ∆ : F −� G. If ∂∆ = ∂∆ = −1 (Definition 3), then the statement
is true since G = F = G. Suppose therefore that max≤(∂∆, ∂∆) = i 6= −1 and the claim is
already proved for D-sequences of smaller degree than i. First we see, without loss of generality,
that ∂∆ = ∂∆. (Indeed if, for example, ∂∆ < i and ∆ = (iλ, (dλA))λ∈N, then we set k0 := i, c0

A := 0
and kλ+1 := iλ, cλ+1

A := dλA (λ ∈ N). With Γ := (kµ, (cµA))µ∈N, we have ∂Γ = i and Γ : F −� G.)

Now let (i0, (d0
A)) resp. (i0, (d

0

A)) be the first D-expressions (Definition 2), i.e. i = i0, from ∆ resp.
∆, and say

(i 0, (d 0
A)) : F −→ H (i 0, (d

0

A)) : F −→ H. (9)

Then by Definition

H
<i
−� G H

<i
−� G. (10)

Let j := lcm
{
∂A
∣∣∣ A ∈ G, ∂A | i

}
, in particular j | i, and let f, g, g, h, h be the coefficients of

X i in F,G,G,H,H. Since coefficients of degree ≥ i will no longer be changed by (10), and since
G,G ∈ B, it follows that g = h = ρ(f, ai) = h = g. Therefore, the polynomials D = F − H
and D = F −H corresponding to (9) have the same coefficients of X i, and hence S = D −D lies
in X i−jG (Definition 1). Lemma 5 implies S −�<i 0 since the S-polynomials Sτj at level j (that
generate Gj as an r-module) have one degree ∂Sτj < j, and Sτj −�<j 0 by assumption on G. On

the other hand, H + S −�<i G+ 0 = G holds by Lemma 5. Since H + S = H −�<i G, G = G by
induction hypothesis.
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The result of our efforts thus far are presented as

Theorem. Given an arbitrary basis M of the ideal A E R, we can use Buchberger’s algorithm to
compute a Gröbner basis G, which have the following equivalent properties ((13) was the definition):

For every F ∈ R, there is exactly one G ∈ B(G) with F −�G G. (B(G) is a set of
representatives of R/A.)

(11)

For all i ∈ I, ai(A) = ai(G). (So in particular, B(G) = B(A) is independent of G.) (12)

For all S-polynomials S of level j of G, ∆ : S −�G G holds with the D-sequence ∆
arbitrarily chosen in Lemma 4.

(13)

Proof. (11) follows from (13) by Lemma 6. Now suppose (12) were false. If ai(A) ) ai(G), then
there is an F ∈ A with fF /∈ a∂F (G). Lemma 5(f) claims F −� 0 and Lemma 3 produces a G ∈ B,
G 6= 0, with F −� G. This contradicts (11). If (12) holds, then Lemmas 3 and 4 actually produce
F −�<j 0 for all F ∈ A with ∂F < j.

Sometimes we desire a Gröbner basis determined with less arbitrariness. Thus for ideals a and
b in r, let a set of representatives β(a, b) = {a1, . . . , as} ⊂ a of a basis {a1 + b, . . . , as + b} be
computable from (a + b)/b, and without loss of generality, with ρ(aσ, b) = aσ for σ = 1, . . . , s and
s = 0 if a ≤ b. Now let A E R and G be a Gröbner basis of A. Because of the uniqueness of B

by (12), it follows that (by using A, r, the choice of variables X1, . . . , Xn, the relation ≤ on I and
the formation of ρ and β) we obtain a uniquely determined Gröbner basis H of A as follows: let K
be the set designated in Lemma 2(b) applied to the double sequence aip = ai(A), then denote the
sets ak = ak(A), bk =

∑
k 6=j|k

aj and β(ak, bk) = {ak1, . . . , aksk}. Furthermore, −akσXk −�G Akσ ∈ B

holds for σ = 1, . . . , sk. Then H = {akσXk + Akσ | k ∈ K, 1 ≤ σ ≤ sk} is such a Gröbner basis.
Incidentally, everything works similarly if we replace the R-submodule A in R1 by a submodule

A of Rm for arbitrary m, except that the system of equations in (2) appears with m equations, and
the mappings ρ and β corresponding to submodules of rm must be defined. One can verify this by
going through the proof; easier by “idealization”: We replace R by R[T1, . . . , Tm] = R′, embed Rm

in R′ using ι : (0, . . . , 0, 1(µ), 0, . . . , 0) 7→ Tµ and, instead of considering the R-modules generated
by F1, . . . , Fs, consider the R′-ideal generated by {ι(F1), . . . , ι(Fs)} ∪ {TµTν | 1 ≤ µ, ν ≤ m}. [It
is clear from actual computation that the Tµ no longer appear!] Clearly the basic task from (1) is
solved by Buchberger’s algorithm for the ring R instead of r. We still desire a method that solves
(2) in R instead of r, if only for aesthetic reasons.

3 Application to the Computing of Zeros

One order on I for which (3) and (4) hold is clearly the lexicographic order ≤`. For i, j ∈ Nn, i ≤` j
holds if and only if the first non-vanishing of the numbers jn− in, jn−1− in−1, . . ., j1− i1 is positive.

Now let Θ ∈ GLn(R), Θ = (θµν) and θµν ≥ 0. Then (3) and (4) also hold for ≤Θ, defined by
i ≤Θ j if and only if iΘ ≤` jΘ. (Thus the i and j are viewed as row vectors.)
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In [1] the order is given by

ΘB =


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1
1 0 0 · · · 0

 .

For partitioning systems of n1 + n2 = n variables via elimination, we can use orders of this type

≤Θ with Θ =



1 0 1 0 . . . 0
1 0 0 1 . . . 0
...

...
...

...
. . .

... 0
1 0 0 0 . . . 1
1 0 0 0 . . . 0
0 1 1 0 . . . 0
0 1 0 1 . . . 0
...

... 0
...

...
. . .

...
0 1 0 0 . . . 1
0 1 0 0 . . . 0



n1

n2

. (14)

Now we insert them in the

Corollary. (a) Let n = n1 + n2 and ≤ be an order on I of type (14). Let G be a Gröbner basis
of the ideal A E R with respect to the order ≤. Let R′ = r[X1, . . . , Xn1 ]. Then G′ := G ∩R′

is a Gröbner basis of A′ := A ∩R′.

(b) Let φ be the canonical monomorphism φ : R′/A′
∼→ (R′+A)/A ↪→ R/A under the assumptions

of (a). Then φ is an isomorphism if and only if aiν (G) = r (with iν defined by X iν = Xν) for
ν > n1.

(c) If ≤ is the lexicographic order, Rν = r[X1, . . . , Xν ] (0 ≤ ν ≤ n), and G is a Gröbner basis of
A E R formed using ≤, then Gν := G ∩Rν is a Gröbner basis of Aν := A ∩Rν.

(d) Let F1, . . . , Fm ∈ R, R′ = r[F1, . . . , Fm], and A E R. Then A′ = A ∩R′ can be computed.

Proof. (a) By virtue of Lemma 3, Lemma 5(f) and (11), the elements A ∈ G \ G′ are not used to
compute the G-remainder of an F ∈ A′. (b) By (12), this is precisely B ⊆ R′. (c) is an iteration

of (a). (d) goes as follows: Let T1, . . . , Tm be new indeterminates, R̃ = R[T1, . . . , Tm] and Ã be the

ideal in R̃ generated by A and {T1 − F1, . . . , Tm − Fm}. Using (a), we compute Ã ∩ r[T1, . . . , Tm]
and replace Tµ in the result by Fµ.

If r is a field, then we are familiar with elimination based on the successive formation of resultants.
(Collins [3] based his quantifier elimination method on this.) But it does not always possess the
precision expressed in Corollary (c). For general r, it remains to be seen how far Corollary (c)
advances the finding of zeros of A (thus the minimal elements of {P ∈ Spec R | P ⊇ A}). Among
other things, we certainly require
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Lemma 7. Let R be a commutative Noetherian ring, R′ ≤ R a subring (with the same 1). Let

A E R, A′ = A ∩R′, A′ =
t⋂

τ=1

B′τ with ideals B′τ E R′. Then B :=
t⋂

τ=1

Bτ with Bτ := B′τR + A is

an ideal of R with the property A ⊆ B ⊆
√

A (radical ), thus with the same zeros as A.

Proof. A ⊆ B is clear since A ⊆ Bτ . Now let P ⊇ A be a prime ideal of R. Then P′ := P ∩R′ is
a prime ideal of R′ with P′ ⊇ A′, thus P′ ⊇ B′τ for some τ . Then for this τ , P ⊇ B′τR + A = Bτ

holds, so P ⊇ B.

Naturally, if the B′σ are prime, the Bσ need not be prime in general. Practical methods, for
verifying that the components Bσ of a decomposition (found in some way) are prime, seem not to
exist in this context.

Although this also applies when r is a field, this special case ought to be pursued a little
further. Therefore, let r be a field. Then the gcd of two elements in the unique factorization domain
R can be computed using the Euclidean algorithm [8, pp. 89-90]. Furthermore, the Principal
Ideal Theorem holds: Every ideal in R of co-dimension one is divisible by a proper principal ideal
[15, p. 175]. We now write A ∼ B whenever

√
A =

√
B. Let A E R be given by a basis

{A1, . . . , As}. If C = gcd(A1, . . . , As) and we set Bσ := Aσ/ gcd(Aσ, C
N) (N large), then we obtain

a decomposition A ∼ CR ∩ (B1R + . . .+BsR) = C ∩B, where C can now be further decomposed
into prime factors and B is an ideal of dimension smaller than n − 1. Then instead of B, we
decompose B′ = B ∩ r[X1, . . . , Xn−1] (the intersection is computed using Corollary (a)) and apply
the decomposition of B′ as in Lemma 7.

In order to obtain the prime decomposition at the conclusion of this procedure, we must first
carry out general transformations in the style of Hermann [7]: We would have to adjoin independent
variables Uµν (1 ≤ µ, ν ≤ n) to the ground field r, replace Xµ =

∑
ν UµνYν , and perform all

computations in r(U11, . . . , Unn)[Y1, . . . , Yn]. Instead, we can at best carry out the computation for
a special (uµν) ∈ GLn(r). Anyway:

(a) We almost always obtain a prime decomposition. (This means the set of (uµν) for which this
isn’t so, is the set of zeros of an ideal ã E r[U11, . . . , Unn], ã 6= {0}).

(b) If the mapping φ appearing in Corollary (a) is to be an isomorphism, we have the problem of
switching to one with fewer variables.

Incidentally, the prime decomposition of polynomials may still be a substantial numerical prob-
lem. See [16], which also indicates further literature.

4 Remarks

The choice of order ≤ on I has a strong influence on the number of elements of a Gröbner basis
and the number of non-zero monomials in the basis polynomials. In this regard, the order used by
both Buchberger [1, 2] and Schrader [11] is convenient, but is unsuitable for elimination problems.

Buchberger’s advice to work first with S-polynomials of the smallest level is advantageous. We
note that Xj−iGi ⊆ Gj holds for i | j, and to determine the S-polynomials of level j, we just append
a set of basis representatives of the r-module Gj/Tj, where Tj =

∑
i|j 6=i

∑
k|(j−i)

XkGi. (This is all taken

into account in [1, 2]. How this can be made clear depends on the “linear algebra in r”.)

9
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The requirement that (2) be practically satisfiable severely limits the possible rings r. For
principal ideal rings, it suffices for the gcd of two elements to be constructively representable as
a linear combination. In Dedekind rings, it suffices to assume that some basic ideal theoretic
problems are solvable constructively, so that (2) follows. For the ring of integers in a number
field, these conditions, for example, are satisfied; compare [13], [6], [4, pp. 91-102, 144-155] for this.
Completely generally, we desperately wish that not just any basis for the solution module of a
homogeneous linear system of equations over the ground ring r were computable, but rather one
with a minimal number of elements.

One can ask at this point whether it is easy to guarantee, in nontrivial cases, that the functions
ρ and β are well-defined. But by examining the proof, we see that the values of ρ and β may be
dependent on the specific sets of generators given, (a1, . . . , as) of a and (b1, . . . , bt) of b, or even from
the presentation of the elements of r that appear. This does not affect the algorithm, but rather in
a corresponding way the assertions of uniqueness about B(A) and H.

5 On Implementation

Since in the course of Buchberger’s algorithm, the number of equations normally grows (or at least
stays the same), we cannot work with (floating-point) approximations of the coefficients (given
initially perhaps as rational numbers). The numerators and denominators of the coefficients grow
quickly in the course of computation. It is therefore necessary to be able to compute with numbers
of arbitrary size and to make the memory allocation of a coefficient dynamic. (This problem goes
away of course if, for example, we take r to be a finite field Fq or another finite ring.) Overall, the
memory requirements are so large that we may need to work with peripheral memory.

In the program written for the Univac 1108 of the University of Karlsruhe, I satisfied these
postulates except for the last one. Although its main aim here is speed (it is essentially written in
Univac assembly language, and hence is not portable), the running times for even simple looking
examples are considerable. I cannot give an estimate for this any more than I can for memory
requirements.

One of the systems of equations follows, whose solutions by Matzat [10] allow us to specify the
function fields and number fields with specific Galois groups. We assume that we could have solved it
numerically with homotopy methods. In order to obtain the exact solution from the approximation,
which is our only interest here, we would have needed even more non-trivial deliberations and
computations.

The ideal A E Q[W,P,Z, T, S,B] is generated by the polynomials

F1 = 45P + 35S − 165B − 36

F2 = 35P + 40Z + 25T − 27S

F3 = 15W + 25PS + 30Z − 18T − 165B2

F4 = −9W + 15PT + 20ZS

F5 = WP + 2ZT − 11B3

F6 = 99W − 11SB + 3B2

If we choose the lexicographic order with W > P > Z > T > S > B, then using the algorithm,
we obtain a Gröbner basis of A of polynomials G1, . . . , G6, where Gσ contains only σ variables.

10
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However, the numerators and denominators of the coefficients have magnitudes up to 10160, so they
will not be expressed here. G1 is a polynomial in Q[B] of degree 10, that has two prime factors of
degrees 2 and 8. The factor of degree 2 is

F7 = B2 +
33

50
B +

2673

10000
.

It factors over Q(
√
−11), as it must have done after the derivation of the system of equations.

Since we are only interested in those zeros of A that have coordinates in Q(
√
−11), the algorithm

would now be applied once more to the prime ideal P = A + F7R. The result is the Gröbner basis
{H1, . . . , H6} of P:

H1 = W +
19

120
B +

1323

20000

H2 = P − 31

18
B − 153

200

H3 = Z +
49

36
B +

1143

2000

H4 = T − 37

15
B +

27

250

H5 = S − 5

2
B − 9

200

H6 = F7.

Thus all of the coordinates of interesting zeros are determined.
Eleven minutes were required for the computation of the Gσ, and another three minutes for

the Hσ (after F7 was known). It should be noted that a Gröbner basis for A relative to the order
≤ΘB could not be computed in an hour. (The Univac 1108 requires 0.75 µsec for adding two 36-bit
numbers.)
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[9] M. Lauer. Kanonische Repräsentanten für die Restklassen nach einem Polynomideal [Canonical
Representatives for the Residue Classes Modulo a Polynomial Ideal]. Report No. 13 of the
Computer Algebra Working Group, Kaiserslautern, 1976.

[10] B. Matzat. Zur Konstruktion von Zahl- und Funktionenkörper mit Vorgegeben Galoisgruppe [On
the Construction of Number Fields and Function Fields with Fixed Galois Group]. To appear,
1978 [published in Journal der Reine und Angewandte Mathematik 349 (1984): 179-220].

[11] R. Schrader. Zur Konstruktiven Idealtheorie. Diplomarbeit, Universität Karlsruhe, 1976.

[12] A. Seidenberg. Constructions in Algebra. Trans. AMS 197 (1973): 273-313.

[13] E. Steinitz. Rechteckige Systeme und Moduln in Algebraischen Zahlkörpern [Rectangular Sys-
tems and Modules in Algebraic Number Fields] I, II. Math. Ann. 71 (1912): 328-354, 72 (1912):
297-345.

[14] F. Richman. Constructive Aspects of Noetherian Rings. Proc. AMS 44 (1974): 436-441.

[15] B. van der Waerden. Algebra II, Fifth edition. Springer, 1967.

[16] P. Wang. Factoring Multivariate Polynomials over Algebraic Number Fields. Mathematics of
Computation 30 (1976): 324-336.

The works denoted by * contain many further pointers to the literature.

12


