
Asymptotic series of Generalized LambertW Function

Tony C. Scott1,2, Greg Fee3 and Johannes Grotendorst4

1 Institut für Physikalische Chemie, RWTH Aachen University, 52056 Aachen, Germany

email: scott@pc.rwth-aachen.de

2 Zephyr Health Inc, 589 Howard Street, 3rd floor, San Francisco CA 94105, USA

email: tony@zephyrhealthinc.com

3 Centre for Experimental and Constructive Mathematics (CECM), Simon-Fraser University, Burnaby, BC V5A 1S6 Canada

email: gjfee@cecm.ca
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Abstract

Herein, we present a sequel to earlier work on a generalization of the LambertW function. In par-
ticular, we examine series expansions of the generalized version providing computational means for
evaluating this function in various regimes and further confirming the notion that this generalization is
a natural extension of the standard LambertW function.

AMS Numbers: 33E30, 01-01, 01-02
Also related to: 70B05, 81Q05, 83C47, 11A99

1 Introduction

The LambertW function satisfyingW (t)eW (t) = t provides an exact solution to:

e−cx = ao (x− r1) (1)

with x = r1 +
1
cW (c e−cr1/ao). The Lambert W function appears in a myriad number of applications.

In particular, it appears in the “lineal” gravity two-body problem [1, 2] as a solution to the Einstein Field
equations in(1 + 1) dimensions. The Lambert W function appears as a solution forthe case when the
two-bodies have exactly the same mass. However, the case of unequal masses required aGeneralization
of Lambert’s function [1, eq.(81)].

e−cx = ao (x− r1)(x− r2) (2)



This generalization originally appeared from the (quantum-mechanical) Double Well Dirac Delta Potential
model [3], a one-dimensional version of a special case of thequantum-mechanical three-body system
known as theHydrogen Molecular Ion(and also appears in quantum gravity [2]). For this problem,
specificallyr1 = 1, r2 = λ, c = 2 R whereR is the internuclear distance.ao = 1

λ andλ was treated
formally as real perturbative parameter (the case atλ = 1 allows eq. (2) to factor into (1) which is solvable
in terms of the standard LambertW function). In its original form, this equation was written in a more
complicated form, namely apseudo-quadratic: with two solutions forx [3–6]:

x±(λ) = 1
2(λ+ 1)± 1

2

{

(1 + λ)2 − 4λ[1− e−cx±(λ)]
}1/2

whereE± = −x±/2 are the quantum state energies (for respectively the two distinct solutionsx±). All
these quantities including the energies were real though wedo not rule out a generalization to the complex
plane.

A difficulty encountered by Byers-Brown and Scottet al. is that Physical Chemists followed a conven-
tional practice of starting with the caseλ = 0 whose solution isx0 = 1 as a starting point and considering
a series expansion aboutx0 of eq. (1) in powers ofλ. This was called the “polarization expansion” for
the range0 < λ < 1 and proves very difficult to sum, necessitating the use of Padé-Hermite Approx-
imants [3]. This slow convergence became aggravated for larger but similar molecular systems like the
Hydrogen Molecular Ion requiring much discussion (and calculation) to sort out the convergence of the
eigenstates and related quantities once and for all [7,8].

Subsequently, it was realized that eq. (2) could be further generalized to the case of a rational polynomial
[9]:

e−c x =
PN (x)

QM(x)
(3)

wherec > 0 is a constant as before andPN (x) andQM (x) are polynomials inx of respectively orders
N andM . Eq. (3) expresses the solution for the energy eigenvalues of the three-dimensional (and
realistic) version of the Hydrogen molecular ion. These generalizations were found to express solutions
to a huge class of fundamental problems and were found to be natural extensions of the standardW
function requiring merely a formal nesting of the standard LambertW function [10] and thus economical
conceptually in terms of mathematical resources. Some exact solutions were even found for some special
cases for eq. (2) [10].

Herein, we examine the more pragmatic matter of obtaining series expansions for eq. (2) for analytical and
computational purposes. In the process, we will show how closely they relate to the series expansions of
the standardW function. We will examine three series expansions which apply to three different regimes.
Though eq. (2) is not the full generalization in eq (3) it already embodies a link between gravity theory
and quantum mechanics albeit in lower dimensions [2] and is therefore instructive as a special case beyond
the standardW function. Finally, some concluding remarks are made at the end. Since we are dealing
with applications in Physics, the input parametersc, ao and the polynomial rootsri wherei = 1, 2, . . . are
assumed to be real.

2 Series Expansions

2.1 Taylor series in rd

By a series of manipulations, eq. (1) can be brought in the familiar standard form:

x0 = W (x0)e
W (x0) where x0 =

c e−cr1

ao
(4)



Using very similar manipulations and defining respectivelythe mean and difference of the rootsr1 andr2:

rm =
r1 + r2

2
and rd =

r1 − r2
2

, (5)

and bycompleting the squarefor the quadratic on the right of eq. (2):

(x− r1)(x− r2) = (x− rm)2 − r2d

and definingW (rd) = x− rm, eq. (2) can be rewritten as:

e−c(W (rd)+rm) + ao r
2
d = ao W (rd)

2 . (6)

The above can be viewed as the intersection between an exponential of the formAe−c x and a “simple
harmonic oscillator” of the formBx2. Potentially, there can be two and as much as three intersections (in
the real plane), in some cases, roots of the same sign. To obtain real solutions, we constrainao > 0. It
is very similar to eq. (1) the equation governing the standard LambertW function with the mean of the
rootsrm playing the role of ther1 in the monomial on the right side of eq. (1), the difference inthe roots
rd representing a departure from the form of eq. (1). This makesperfect since because whenrd = 0, then
r1 = r2 and eq. (2) can be factored into the form of eq. (1) bringing usback to the standardW function.
We define:

z0 =
1

2

√

c2

ao
e−crm/2 =

1

2

c√
ao

e−crm/2 (7)

where it is understood thatW (0) is/are the solution(s) whenrd = 0:

W (0) =
2

c
W (±z0) =

2

c
W0 (8)

and whereW (±z0) on the right side of eq. (8) is thestandardLambert W function. For real results, in
particular for the parameters mentioned for the Double WellDirac potential mentioned just below eq. (2),
we are interested in real results and make use of the main branch of the standardW function. In this case,
c > 0 helps ensure|z0| < 1/e (althoughW (−z0) could have a real result on a different branch forc
sufficiently small). Implicit differentiation on both sides of eq. (6) yields:

∂W (rd)

∂rd
=

2rd
ce−c(W (rd)+rm)

ao
+ 2W (rd)

=
2rd

c W (rd)2 − c r2d + 2W (rd)
(9)

Naturally successive derivatives with respect tord yields the Taylor series inrd. Its radius of convergence
will be obtained from the disk about the point of expansionrd = 0 (assuming it is regular at the point
of expansion) bounded by the closest singularity or branch point in the complex plane namely when the
denominator of this derivative and all successive derivatives is zero, withW (rd) simultaneously satisfying
eq. (6). Note that the expression on the right most side of eq.(9), obtained by virtue of eq. (6), does not
formally depend onao nor rm but only onc andrd. Even though this is a quadratic inW (rd), only one
solution satisfies eq. (6), namely:

W (rd crit) =
−1 +

√

1 + c2 rd
2
crit

c
(10)

The critical radius in the complex plane is:

rd crit = ± 1

c

√

2W (−2 z20) +W (−2 z20)
2 . (11)



HereW0 = W (±z0) is the standardW function and the radius is|rd crit|. Note that whenz0 = 0,
W (z0) = W (−2z20) = 0 (on the main branch) and the radius of convergence is also zero even though
z0 = 0 is analytic on the main branch for the (standard) LambertW function. The series inrd is thus:

W (rd) = 2
W0

c
+

1

4

c r2d
W0(W0 + 1)

+
1

64

c3 r4d (2 W 2
0 − 1)

W 3
0 (W0 + 1)3

(12)

+
1

1536

c5 r6d (8W
4
0 − 12W 2

0 + 3− 4W 3
0 )

W 5
0 (W0 + 1)5

+
1

49152

c7 r8d (48W
6
0 − 132W 4

0 + 90W 2
0 − 15 − 64W 5

0 + 40W 3
0 )

W 7
0 (W0 + 1)7

+O(c9r10d )

which is a series inr2d for x = W (rd) + rm with x governed by eq. (2) and the radius of convergence
is provided by the magnitude of (11). Within its radius of convergence, it converges rapidly. Note that
when argument ofz0 is such thatW0 = 0 (which happens when e.g.z0 = 0 on the main branch) or
W0+1 = 0 (which happens whenz0 = −e−1 which is a branch point on the main branch), the individual
series coefficients are confronted with divisions by zero, aresult consistent, for the caseW0 = 0, with a
radius of convergence of zero as given by eq.(11).

The validity of this series is demonstrated with some numerical tests. To reiterate the earlier problem, for
a relatively high value ofλ = 0.8 and an internuclear distance near the bond lengthR = 2, we have:

ao =
5

4
, c = 4, rd =

1

10
, rm =

9

10

The solution of eq. (2) isx = 1.0485 obtained to within4 decimals using the series in eq. (12) to within
and including orderO(r10d ) usingW0 = W (z0) as the lead term. Similarly, the other solutionx = 0.6248
is obtained usingW0 = W (−z0) as the lead term. The convergence of this series is much more rapid
than the original “polarization expansion” mentioned in the introduction. Furthermore, this series is not
limited to the real plane. Forλ = 9

10 − 1
10 i

ao =
45

41
+

5

41
i, c = 4, rd =

1

20
+

1

20
i, rm =

19

20
− 1

20
i

The series to (and including) orderO(r14d ) yieldsx = 1.0651408 − 0.0281742 i to within 7 decimals for
W0 = W (z0) and similarlyx = 0.72818558 − 0.0876039 i for W0 = W (−z0) This series expansion
is valid for small differences in the rootsrd, so clearly an asymptotic expansion valid for largerd is also
needed.

It would seem that in the case of three real roots, that we would only recover at most two out of three
solutions. However, when two roots appear for e.g.x > 0 and the third root appears forx < 0, the latter
can be recovered by reflection symmetry on the parameters. Let x → −x, c → −c, ri → −ri and these
same formula can be used to recover that third solution.

2.2 Reversion of Power Series

To get an asymptotic series valid for largerd, we further transform eq. (6) with the following variable
transformations:

W (rd)
2 =

(

2

c

)2

(U2 + d2)

d = c rd/2 (13)



andx = W (rd)+ rm as before. Following the procedure for the standardW function [11], we start from:

z0 = f(U) = Ue±
√
U2+d2 where z0 =

1

2

c e−crm/2

√
ao

(14)

where the sign± takes into account that the negative square root is also possible. Whend = 0, eq. (14)
reduces to the form of the standardW function. Eq. (14) has the form:

z = f(U)

and we seek to reverse the power series to obtain:

U = g(z);

Definingφ(U) = U/f(U) = e∓
√
U2+d2 and noting thatφ(0) 6= 0, we use a specialized version of the

Lagrange-Bürmann [12] formula:

U(z) = zφ(0) +

∞
∑

k=1

zk+1

(k + 1)!

∂kφ(U)k+1

∂Uk

]

U=0

(15)

Implicit differentiation of eq. (14) w.r.t.z yields:

∂U(z)

∂z
=

√

U(z)2 + d2 e∓
√

U(z)2+d2

U(z)2 +
√

U(z)2 + d2
(16)

We can see that the square root term dominates the functionalform of the derivatives and the branch
structureU(z) in the complex plane much in accordance with the findings of Byers-Brown [5, 6]. Note
that eq. (16) has no explicit dependence onz and thus there is no need to verify its consistency with (14).
To get the radius of convergence, we need to consider both thebranch structure of the square root term
in the denominator of (16) and values ofU(z) in the complex plane about the regionz = 0 which would
make this denominator zero. Thus the radius of convergence is limited by either:

|Ucrit| < |d|

or

|Ucrit| <
1

2
|
√

2± 2
√

1 + 4d2| (17)

whichever is smaller. We obtain:

U(z) = ze∓d ∓ 1

2

z3e∓3d

d
± 1

8

z5(±5d+ 1)e∓5d

d3
+ O(z7e±7d) (18)

=
1

2

c e−
1
2 cr±

√
ao

∓ 1

8

c2 e−
3
2 cr±

a
3/2
o rd

± 1

64

c2 e−
5
2 cr±(±5 c rd + 2)

a
5/2
o r3d

+ O(e−
7
2 r±c) (19)

wherer+ = r1, r− = r2, x = rm+(2/c)
√
U2 + d2 asx given in eq. (2). This series would have growing

exponential terms of the formexp(−k∗d) unlessk > 0 and consequenly this necessitates the requirement
thatc r± > 0. Thus, we obtain a valid asymptotic expansion valid for large d or equivalently largerd.

As in the previous section, we also get two kinds of solutions, respectively for positive and negatived, but
they do not necessarily relate at all to the solutions of the previous section. The first section involved a
series expansion inr2d whererd = (2/c)d and invariant with respect to the sign ofd. Here we are dealing
with a situation where the difference between the rootsrd is very large and thus quite possibly only one
intersection between the exponential term on the left side of eq. (2) and its right side namely a quadratic
in x, and thus only one solution.



As a numerical check and departing from the earlier physicalchemistry problem in the earlier section,
consider these particular values:

ao = 1, c = 2, r1 = 2, r2 = 1 ⇒ d = rd =
1

2
, rm =

3

2
.

The asymptotic series in eq. (19) with only the first3 terms up to and includingO(1/d3) yields the solution
x = 2.01739 to within 4 decimals. Another test case, this time with some complex values:

ao = 1, c = 1, r1 = 2− i, r2 = 1 + i ⇒ d =
1

4
− 1

2
i, rd =

1

2
− i, rm =

3

2

This same series with only3 terms gives usx = 1.9703 − 0.9430 i to within 4 decimals. Thus, though
initially motivated for the case of real numbers, these expansions can be used in the complex plane within
certain restrictions.

2.3 Asymptotic series for large argument

The question arises what happens if we decide the left sidez0 of eq. (14) is large? For the principal branch
whenz > 0, taking logs of both sides of the equation governing the standard LambertW function i.e.
WeW = z yields:

ln[W (z)] = ln(z) − W (z) (20)

Recursive substitution yields successively:

ln(z)
ln(z) − ln(ln(z))
ln(z) − ln(ln(z) − ln(ln(z)))
. . .

By taking logs on both sides of eq. (14) for the positive square root case only:

ln(z)− ln(U) =
√

U2 + d2 or (ln(z)− ln(U))2 = U2 + d2 (21)

Thus, we consider two types of recursion.

U →
√

(ln(z)− ln(U))2 − d2 (22)

U2 → 1

4
(−2 ln(z) + ln(U2)− 2d)(−2 ln(z) + ln(U2) + 2d) (23)

The second recursion avoids the square root (and its messy consequences for recursion) and looks like a
factored form involving a combination of asymptotic formulae for the standardW function. By successive
substitution, we obtain:

U ≈

√

√

√

√

√

√






ln(z)− ln







√

√

√

√

(

ln(z)− ln

(

√

. . . ln
(

ln(z)− ln
(

√

(ln(z)− ln(U))2 − d2
))2

. . .− d2

))2

− d2













2

(24)

and:

U2 ≈ 1

4

(

−2 ln(z) + ln

(

1

4
(−2 ln(z) + ln (. . . (25)

+ ln

(

1

4

(

−2 ln(z) + ln(U2)− 2d)(−2 ln(z) + ln(U2) + 2d
)

)

+ . . .+ 2d

))

+ 2d

)

However, we find from experience that the argumentz has to bevery large indeed for these asympotic
formulations to converge. This exercise is more to demonstrate the resemblence with the counterpart
expansion for the standardW function, namely eq. (21). For computational value, sections 2.1 and 2.2 are
more useful. Nonetheless, the very largez0 argument is tractable.



Table 1: Non-Linear transformations applied to Taylor series of eq.(12) forrd = 0.8

no. of terms W (rd) Taylor Series Shanks Levin t

1 -0.9999999996 -0.9999999996 -0.9999999996
2 -1.6400000000 -1.6400000000 -2.7777777780
3 -1.4352000000 -1.4848484850 -1.5213977230
4 -1.6099626670 -1.5294964030 -1.5192810810
5 -1.4421905070 -1.5246574640 -1.5243445560
6 -1.6265161880 -1.5271424650 -1.5267037510
7 -1.4108133840 -1.5280997520 -1.5277557490
...

...
...

...
-1.528554071 -1.528554071 -1.528554071

Table 2: Non-Linear transformations applied to Taylor series of eq.(12) forrd = 1.5

no. of terms W (rd) Taylor Series Shanks Levin t

1 0.38889448 0.3888944774 0.3888944774
2 2.81078092 2.8107809190 -0.0743922833
3 -3.02541152 1.0991727410 -5.1438626370
4 24.71693722 1.7964086140 1.7380384290
5 -139.85949420 1.3876539200 1.5296581130
6 953.20098980 1.5894954440 1.5167708910
7 -6823.99405600 1.4791930140 1.5165517370
...

...
...

...
1.516240428 1.516240428 1.516240428

2.4 Summation techniques

Finally, the series summation can be accelerated evenbeyondthe radii of convergence using non-linear
transformations as mentioned in the introduction. These transformations are applied to the sequence of
partial sums and are capable of accelerating the convergence of a series and even sum divergent series (e.g.
see the work of [13, 14]). We take the point of view that a Taylor or asymptotic series has all the desired
“information”, getting numbers from the series is a matter of a summation technique. For the series inrd
of the first section for bothW (±z0), it was found that the series, when oscillating inrd, could indeed be
extended beyond their radius of convergence. This is demonstrated for the test case:

ao = 1, c = 1, rm = 1 .

Here, the asymptotic solution of eq. (19) matches the extrapolated Taylor series of solution aboutW0(z0)
of (12) in 4 decimal places. Hererd crit ≈ 0.64 and we consider the regime whenrd > rd crit, the
alternating Taylor series is divergent. This Taylor seriesto orderO(r12d ) ( 6 terms in powers ofr2d) is used
for the t transformation of Levin [15] and the Shanks transformation[16]. To demonstrate agreement
between the Taylor series and the outcome of the non-linear transformations, tables 1 and 2 compares
the Taylor series of eq. (12) and the outcome of the Shanks andLevin t transformations for respectively
rd = 0.8 andrd = 1.5. At the bottom of each table is listed what exact solution to the number of digits
shown. The Taylor series of eq. (12) diverges violently whenrd = 1.5 but the non-linear transformations
converge nicely. Three terms of the asymptotic expansion ineq. (19) forrd = 1.5, yieldx = 1.516240673
which agrees with the exact solution starting fromW0(z0) to within 7 decimals. This demonstrates that



the solutions of section 2.2 can match one of the solutions ofsection 2.1.

3 Conclusions

Previously [10] we had inferred a canonical form for a generalization as expressed by (2) and (3) and given
both mathematical and physical justifications for it. Herein, we formulated Taylor series and asymptotic
series useful for analysis and computation. We find that the results are similar to those governing the
standardW function and represent a natural extension though the branch structure in the complex plane
may differ.

This approach could be extended to higher order polynomialsfitting the pattern of eq. (3). For example,
when the right side of eq. (3) we cancomplete the cubein some special cases, i.e. for

x3 + a x2 + b x + c =

(

x +
1

3

)3

−
(

1

27
a3 − c

)3

when b =
a2

3

which can allow a special case of eq.(3) and create a cubic relation counterpart of eq. (14):

e−crm

ao
= Y 3 ec (Y 3+d3)1/3 (26)

where(x− rm)3 = Y 3 + d3 andd3 = a3

27 − c andrm = −a/3. However, for larger order polynomials
and rational polynomials, this approach is quickly exhausted and one has to rely on numerical techniques
which is very feasible.

Finally, the Taylor series summation can be accelerated even beyondthe radii of convergence using non-
linear transformations known as the Levin or Shanks transformations allowing a matching between the
Taylor series and the asymptotic series. The resulting series can be converted into FORTRAN or C code
using the interface between Maple and these languages [18].
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