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Abstract

The structure of the F5 algorithm to compute Gröbner bases makes it very e�cient. How-

ever, while it is believed to terminate for so-called �regular sequences�, it is not clear whether

it terminates for all inputs.

This paper has two major parts. In the �rst part, we describe in detail the apparent obstacles

to termination. In the second part, we explore three variants that ensure termination. Two

of these have appeared previously in dissertations, and ensure termination by checking for a

Gröbner basis using traditional criteria. The third variant, F5+, identi�es a degree bound using

a distinction between �necessary� and �redundant� critical pairs that follows from the analysis

in the �rst part. Experimental evidence suggests this third approach is the most e�cient of

the three.

1 Introduction

The computation of a Gröbner basis is a central step in the solution of many problems of com-
putational algebra. First described in 1965 by Bruno Buchberger [7], researchers have proposed a
number of important reformulations of his initial idea [5,6,8,9,15,18,21]. Faugère's F5 Algorithm,
published in 2002 [16], is in many cases the fastest, most e�cient of these reformulations. Due to its
powerful criteria, the algorithm computes very few zero-reductions, and if the input is a so-called
�regular sequence�, it never reduces a polynomial to zero (see Section 2 for basic de�nitions). In
general, reduction to zero is the primary bottleneck in the computation of a Gröbner basis; more-
over, many of the most interesting polynomial ideals are regular sequences. It is thus no surprise
that F5 has succeeded at computing many Gröbner bases that were previously intractable [14,16].

An open question surrounding the F5 algorithm regards termination. In a traditional algorithm
to compute a Gröbner basis, the proof of termination follows from the algorithm's ability to exploit
the Noetherian property of polynomial rings: each polynomial added to the basis G expands the
ideal generated by the leading monomials of G, and this can happen only a �nite number of times.
In F5, however, the same criteria that detect reduction to zero also lead the algorithm to add to G
polynomials which do not expand the ideal of leading terms. We call these polynomials redundant.
Thus, although the general belief is that F5 terminates at least for regular sequences, no proof of
termination has yet appeared, not even if the inputs are a regular sequence (see Remark 20). On the
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other hand, at least two systems of polynomials have been proposed as examples of non-termination
(one in the source code accompanying [22]), but in our experience, these systems fail only on an
incorrect implementation of F5; a correct implementation terminates even for these.

Is it possible to modify F5 so as to ensure termination? Since the problem of an in�nite loop
is due to the appearance of redundant polynomials, one might be tempted simply to discard them.
Unfortunately, as we show in Section 3, this breaks the algorithm's correctness. Another approach
is to supply, or compute, a degree bound, and to terminate once this degree is reached. Tight
degree bounds are known for regular and �semi-regular� sequences [2,20], but not in general, so for
an arbitrary input it is more prudent to calculate a bound based on the data. To that end,

• [17] tests for zero-reductions of these redundant polynomials (Section 4.1); whereas

• [1] applies Buchberger's lcm criterion (or �chain� criterion) on critical pairs (Section 4.2).

These approaches rely exclusively on traditional criteria that are extrinsic to the F5 algorithm, so
they must interrupt the �ow of the basic algorithm to perform a non-trivial computation, incurring
an observable penalty to both time and memory.

This paper shows that it is possible to guarantee termination by relying primarily on the criteria
that are intrinsic to the F5 algorithm. After a review of the ideas and the terminology in Section 2,
we show precisely in Theorem 23 of Section 3 why one cannot merely discard the redundant poly-
nomials in medio res: many of these �redundant� polynomials are �necessary� for the algorithm's
correctness. Section 4.3 uses this analysis to describe a new approach that distinguishes between
two types of critical pairs: those that generate polynomials necessary for the Gröbner basis, and
those that generate polynomials �only� needed for the correctness of F5. This distinction allows one
to detect the point where all necessary data for the Gröbner basis has been computed. We then
show how to implement this approach in a manner that incurs virtually no penalty to performance
(Section 4.4). Section 4.5 shows that this new variant, which we call F5+,

• computes a reasonably accurate degree bound for a general input,

• relies primarily (and, in most observed cases, only) on criteria intrinsic to F5, and

• minimizes the penalty of computing a degree bound.

Section 5 leaves the reader with a conjecture that, if true, could compute the degree bound even
more precisely.

We assume the reader to be familiar with [16], as the modi�cations are described using the
pseudo code and the notations stated there.

2 Basics

Sections 2.1�2.2 give a short review of notations and basics of polynomials and Gröbner bases;
Section 2.3 reviews the basic ideas of F5.

For a more detailed introduction on non-F5 basics we refer the reader to [19]. Readers familiar
with these topics may want to skim this section for notation and terminology.
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2.1 Polynomial basics

Let K be a �eld, P := K[x] the polynomial ring over K in the variables x := (x1, . . . , xn). Let T
denote the set of terms {xα} ⊂ P, where xα :=

∏n
i=1 x

αi
i and αi ∈ N.

A polynomial p over K is a �nite K-linear combination of terms, i.e. p =
∑
α aαx

α, aα ∈ R. The
degree of p is the integer deg(p) = max{α1 + · · · + αn | aα 6= 0} for p 6= 0 and deg(p) = −1 for
p = 0.

In this paper > denotes a �xed admissible ordering on the terms T . W.r.t. > we can write any
nonzero p in a unique way as

p = aαx
α + aβx

β + . . .+ aγx
γ , xα > xβ > · · · > xγ

where aα, aβ , . . . , aγ ∈ K\{0}. We de�ne the head term of p HT(p) = xα and the head coe�cient
of p HC(p) = aα.

2.2 Gröbner basics

We work with homogeneous ideals I in P. For any S ⊂ P let HT (S) := 〈HT(p) | p ∈ S\{0}〉. A
�nite set G is called a Gröbner basis of an ideal I if G ⊂ I and HT (I) = HT (G). Let p ∈ P. If

p = 0 or there exist λi ∈ P, qi ∈ G such that p =
∑k
i=1 λiqi and HT(p) ≥ HT(λiqi) for all nonzero

qi, then we say that there exists a standard representation of p w.r.t. G, or that p has a standard
representation w.r.t G. We generally omit the phrase �w.r.t. G� when it is clear from the context.

Let pi, pj ∈ P. We de�ne the s-polynomial of the critical pair (pi, pj) to be

pij := HC(pj)
γij

HT(pi)
pi −HC(pi)

γij
HT(pj)

pj

where γij := lcm (HT(pi),HT(pj)).

Theorem 1. Let I be an ideal in P and G ⊂ I �nite. G is a Gröbner basis of I i� for all pi, pj ∈ G
pij has a standard representation.

Proof. See Theorem 5.64 and Corollary 5.65 in [3, pp. 219�221].

In addition to inventing the �rst algorithm to compute Gröbner bases, Buchberger discovered
two relatively e�cient criteria that imply when one can skip an s-polynomial reduction [7, 9]. We
will refer occasionally to the second of these criteria.

Theorem 2 (Buchberger's lcm criterion). Let G ⊂ P be �nite, and pi, pj , pk ∈ P. If

(A) HT(pk) | lcm(HT(pi),HT(pj)), and

(B) pik and pjk have standard representations w.r.t. G,

then pij also has a standard representation w.r.t. G.

In the homogeneous case one can de�ne a d-Gröbner basis Gd of an ideal I: This is a Gröbner
basis of I for which all s-polynomials up to degree d have standard representations (cf. De�nition
10.40 in [3, p. 473]).

The following de�nition is crucial for understanding the problem of termination of F5.
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De�nition 3. Let G be a �nite set of polynomials in P. We say that p ∈ G is redundant if there
exists an element p′ ∈ G such that HT(p′) | HT(p).

Remark 4. While computing a Gröbner basis, a Buchberger-style algorithm does not add poly-
nomials that are redundant at the moment they are added to the basis, although the addition of
other polynomials to the basis later on may render them redundant. This ensures termination, as
it expands the ideal of leading monomials, and P is Noetherian. However, F5 adds many elements
that are redundant even when they are added to the basis; see Section 3.

It is easy and e�ective to interreduce the elements of the initial ideal before F5 starts, so that
the input contains only non-redundant polynomials; in all that follows, we assume that this is the
case. However, even this does not prevent F5 from generating redundant polynomials.

Finally, we denote by ϕ(p,G) the normal form of p with respect to the Gröbner basis G.

2.3 F5 basics

It is beyond the scope of this paper to delve into all the details of F5; for a more detailed discussion
we refer the reader to [16], [12], and [13]. In particular, we do not consider the details of correctness
for F5, which are addressed from two di�erent perspectives in [16] and [13]. We assume that if the
algorithm terminates, then the output is correct. This paper is concerned with showing that the
algorithm can be modi�ed so that it terminates, and that the modi�cation does not disrupt the
correctness of the algorithm.

We now recall some basic de�nitions and notation of [16] that we use in the following. Let Fi
be the i-th canonical generator of Pm and de�ne ≺, the extension of < to Pm, by

∑m
k=i gkFk ≺∑m

k=j hkFk i�

1. i > j and hj 6= 0, or

2. i = j and HT(gi) < HT(hi).

Moreover, denote T = ∪mi=1Ti where Ti = {tFi | t ∈ T} and R = T× P.

De�nition 5. Borrowing from [22], we call the element

r = (tFi, p) ∈ R

of [16] a labeled polynomial. (It is referred to as the representation of a polynomial in [16].) We also
denote

1. the polynomial part of r poly(r) = p,

2. the signature of r S(r) = tFi, and

3. the signature term of r ST(r) = t, and

4. the index of r index(r) = i.

Following [16], we extend the following operators to R:

1. HT(r) = HT(p).

2. HC(r) = HC(p).
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3. deg(r) = deg(p).

Let 0 6= c ∈ K, λ ∈ T , r = (tFi, p) ∈ R. Then we de�ne the following operations on R resp. T:

1. cr = (tFi, cp),

2. λr = (λtFi, λp),

3. λ(tFi) = (λt)Fi.

Proposition 6. Let the list F = (f1, . . . , fm) ∈ Pm be the input of F5. For any labeled polynomial
r = (tFi, p), t ∈ T , 1 ≤ i ≤ m, computed by the algorithm, there exist h1, . . . , hm ∈ P such that

1. p = h1f1 + . . .+ hmfm,

2. h1 = . . . = hi−1 = 0, and

3. ST(r) = HT(hi) = t.

Let G = {r1, . . . , rnG
} ⊂ P. We denote poly(G) = {poly(r1), . . . ,poly(rnG

)}.

De�nition 7. Let r, r1, . . . , rnG
∈ R, G = {r1, . . . , rnG

}. Assume poly(r) 6= 0. We say that r has
a standard representation w.r.t. G if there exist λ1, . . . , λnG

∈ P such that

poly(r) =
nG∑
i=1

λipoly(ri),

HT(r) ≥ HT(λi)HT(ri) for all i, and S(r) � HT(λi)S(ri) for all i except possibly one, say i0,
where S(r) = S(ri0) and λi0 = 1. We generally omit the phrase �w.r.t. G� when it is clear from
the context.

Remark 8. The standard representation of a labeled polynomial r has two properties:

1. The polynomial part of r has a standard representation as de�ned in Section 2.2, and

2. the signatures of the multiples of the ri are not greater than the signature of r.

This second property makes the standard representation of a labeled polynomial more restrictive
than that of a polynomial.

De�nition 9. Let ri = (tiFk, pi), rj = (tjF`, pj) ∈ R. We de�ne the s-polynomial of ri and rj by
rij := (m′, pij) where

m′ = max
≺

{
γij

HT(ri)
tiFk,

γij
HT(rj)

tjF`

}
and γij = lcm (HT(ri),HT(rj)).

All polynomials are kept monic in F5; thus we always assume in the following that HC(pi) =
HC(pj) = 1 for pi 6= 0 6= pj . Moreover we always assume γij to denote the least common multiple
of the head terms of the two considered polynomial parts used to compute rij .

Next we review the two criteria used in F5 to reject critical pairs which are not needed for
further computations.
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De�nition 10. Let G = {r1, . . . , rnG
} be a set of labeled polynomials. The critical pair (ri, rj) is

detected by Faugère's Criterion if for any k ∈ {i, j} and uk = γij

HT(rk) there exists r ∈ G such that

1. index(r) > index(rk) and

2. HT(r) | ukST(rk).

De�nition 11. Let G = {r1, . . . , rnG
} be a set of labeled polynomials. The critical pair (ri, rj) is

detected by the Rewritten Criterion if for any k ∈ {i, j} and uk = γij

HT(rk) ∈ T there exist ra, rb ∈ G
such that

1. index(rab) = index(rk),

2. rab is computed after rk, and

3. ST(rab) | ukST(rk).

Next we can give the main theorem for the idea of F5.

Theorem 12. Let I = 〈f1, . . . , fm〉 be an ideal in P, and G = {r1, . . . , rnG
} a set of labeled

polynomials such that fi ∈ poly(G) for 1 ≤ i ≤ m. Let d ∈ N. If one of the following holds for all
pairs (ri, rj) such that deg rij ≤ d:

1. (ri, rj) is detected by Faugère's Criterion,

2. (ri, rj) is detected by the Rewritten Criterion, or

3. rij has a standard representation,

then poly(G) is a d-Gröbner basis of I.

Proof. See Theorem 1 in [16], Theorem 3.4.2 in [17] and Theorem 21 in [13].

Remark 13.

1. Requiring a standard representation of a labeled polynomial is stricter than the criterion of
Theorem 1, but when used carefully, any computational penalty imposed by this stronger
condition is negligible when compared to the bene�t from the two criteria it enables.

2. It is possible that rij does not have a standard representation (cf. Proposition 17 in [13]) at
the time either Criterion rejects (ri, rj). Since F5 computes the elements degree-by-degree,
computations of the current degree add new elements such that rij has a standard representa-
tion w.r.t. the current Gröbner basis poly(G) before the next degree step is computed. Thus,
at the end of each such step, we have computed a d-Gröbner basis of I.

Next we give a small example which shows how the criteria work during the computation of a
Gröbner basis in F5.

Example 14. Let > be the degree reverse lexicographical ordering with x > y > z on Q[x, y, z].
Let I be the ideal generated by the following three polynomials:

p1 = xyz − y2z,

p2 = x2 − yz,
p3 = y2 − xz.
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Let the corresponding labeled polynomials be ri = (Fi, pi). For the input F = (p1, p2, p3), F5
computes a Gröbner basis of 〈p2, p3〉 as a �rst step: Since ST(r2,3) = y2 = HT(r3), r2,3 is discarded
by Faugère's Criterion. Thus {p2, p3} is already a Gröbner basis of 〈p2, p3〉.

Next the Gröbner basis of I is computed, i.e. r1 enters the algorithm: Computing r1,3 we get
a new element: r4 = (yF1, xz

3 − yz3). r1,2 is not discarded by any criterion, but reduces to zero.
Nevertheless its signature is recorded,1 thus we still have S(r1,2) = xF1 stored in the list of rules
to check subsequent elements.

Next check all s-polynomials with r4 sorted by increasing signature:

1. Since S(r4,1) = y2F1, r4,1 is discarded by Faugère's Criterion using HT(r3) = y2.

2. Since S(r4,2) = xyF1, r4,2 is discarded by the Rewritten Criterion due to S(r1,2) = xF1, r1,2
being computed after r4.

3. Since S(r4,3) = y3F1, r4,3 is discarded by Faugère's Criterion using HT(r3) = y2.

The algorithm now concludes with G = {r1, r2, r3, r4} where poly(G) is a Gröbner basis of I.

3 Analysis of the problem

The root of the problem lies in the algorithm's reduction subalgorithms, so Section 3.1 reviews these
in detail. In Section 3.2, we show how the criteria force the reduction algorithms not only to add
redundant polynomials to the basis, but to do so in a way that does not expand the ideal of leading
monomials (Example 16)! One might try to modify the algorithm by simply discarding redundant
polynomials, but Section 3.3 shows that this breaks the algorithm's correctness. This analysis will
subsequently provide insights on how to solve the problem.

Throughout this section, let the set of labeled polynomials computed by F5 at a given moment
be denoted G = {r1, . . . , rnG

}.

3.1 F5's reduction algorithm

For convenience, let us summarize the reduction subalgorithms in some detail here. Let i be the
current iteration index of F5. All newly computed labeled polynomials r satisfy index(r) = i.
Let Gi+1 denote the set of elements of G with index > i. We are interested in Reduction, Top-
Reduction and IsReducible. F5 sorts s-polynomials by degree, and supplies to Reduction a set
F of s-polynomials of minimal degree d. Let r ∈ F .

1. First, Reduction replaces the polynomial part of r with its normal form with respect to
Gi+1. This clearly does not a�ect the property S(r) = ST(r)Fi. Reduction then invokes
TopReduction on r.

2. TopReduction reduces poly(r) w.r.t. Gi, but invokes IsReducible to identify reducers.
TopReduction terminates whenever poly(r) = 0 or IsReducible �nds no suitable reducers.

3. IsReducible checks all elements rred ∈ G such that index(rred) = i.

(a) If there exists ured ∈ T such that uredHT(rred) = HT(r) then uredS(r) is checked by
both Faugère's Criterion and the Rewritten Criterion.

1Failing to record the signature of a polynomial reduced to zero is an implementation error that can lead to an

in�nite loop.
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(α) If neither criterion holds, the reduction takes place, but a further check is necessary
to preserve S(r) = ST(r)Fi. If S(r) � uredS(rred), then it rewrites poly(r):

r =
(
S(r),poly(r)− uredpoly(rred)

)
.

If S(r) ≺ uredS(rred), then r is not changed, but a new labeled polynomial is com-
puted and added to F for further reductions,

r′ =
(
uredS(rred), uredpoly(rred)− poly(r)

)
.

The algorithm adds S(r′) to the list of rules and continues with r.

(β) If uredrred is detected by one of the criteria, then the reduction does not take place,
and the search for a reducer continues.

(b) If there is no possible reducer left to be checked then r is added to G if poly(r) 6= 0.

Note that if S(r) = uredS(rred) then uredrred is rewritable by r, thus Case (3)(a)(β) avoids this
situation.

3.2 What is the problem with termination?

The di�culty with termination arises from Case (3)(a)(β) above.

Situation 15. Assume that

1. the number of reducers whose head terms divide HT(r) is not zero, and

2. all such reducers are rejected by one of the two criteria.

Then F5 adds r to G even though poly(r) is redundant in poly(G). Moreover, no new polynomial
is added to poly(G) which is not already generated by HT (poly(G)).

Example 16. Situation 15 is not a mere hypothetical: as described in Section 3.5 of [17], an example
appears in Section 8 of [16], which computes a Gröbner basis of (yz3 − x2t2, xz2 − y2t, x2y − z2t).
Without repeating the details, at degree 7, F5 adds r8 to G, with HT(r8) = y5t2. At degree 8,
however, Reduction returns R8 = {r10}, with HT(r10) = y6t2. This is due to the fact that the
reduction of r10 by yr8 is rejected by the algorithm's criteria, and the reduction does not take place.
In other words, r10 is added to G even though poly(r10) is redundant in poly(G).

De�nition 17. A labeled polynomial r computed in F5 is called redundant if, when Reduction

returns r, we have poly(r) redundant w.r.t. poly(G).

Lemma 18. In Situation 15, at least one of the rejected reducers of r is a non-redundant element
for G.

Proof. If a reducer rj of r is redundant, then there has to exist another element rk such that
HT(rk) | HT(rj) and thus HT(rk) | HT(r). Follow this chain of divisibility down to the minimal
degree; we need to show that there do not exist two polynomials rj , rk such that HT(rj) = HT(rk).
Assume to the contrary that rk is computed before rj and HT(rj) = HT(rk), because the reduction
of rj by rk in IsReducible was forbidden. There are three possibilities:

1. If index(rk) > index(rj), to the contrary, IsReducible cannot interfere with this reduction,
because such reductions are always carried out by the normal form computation in Reduction.
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2. If rk is rejected by the Rewritten Criterion, then there exists r′ such that ST(r′) | ST(rk).
Thus r′ must have been computed after rk. As F5 computes incrementally on the degree
and ST(r′) | ST(rk), it follows that deg(r′) = deg(rk). Hence ST(r′) = ST(rk). Thus the
Rewritten Criterion would have rejected the computation of r′, again a contradiction.

3. If S(rk) is rejected by Faugère's Criterion, to the contrary, rk should not have been computed
in the �rst place.

Thus HT(rj) 6= HT(rk). It follows that we arrive at a non-redundant reducer after �nitely many
steps.

Lemma 19. Denote by Rd the result of Reduction at degree d. There exists an input F =
(f1, . . . , fm) and a degree d such that if poly(G) is a (d− 1)-Gröbner basis of 〈f1, . . . , fm〉, then

(A) Rd 6= ∅, and

(B) HT (poly(G ∪Rd)) = HT (poly(G)).

Proof. Such an input F is given in Example 16: once reduction concludes for d = 8, HT(r8) |
HT(r10), so HT(poly(G)) = HT(poly(G ∪R8)).

Remark 20. In [16, Corollary 2], it is argued that termination of F5 follows from the (unproved)
assertion that for any d, if no polynomial is reduced to zero, then HT(poly(G)) 6= HT(poly(G∪Rd)).
But in Example 16, HT(poly(G)) = HT(poly(G∪R8)), even though there was no reduction to zero!
Thus, Corollary 2 of [16] is incorrect: termination of F5 is unproved, even for regular sequences,
as there could be in�nitely many steps where new redundant polynomials are added to G. By
contrast, a Buchberger-style algorithm always expands the monomial ideal when a polynomial does
not reduce to zero; this ensures its termination.

Having shown that there is a problem with termination, we can now turn our attention to
devising a solution.

3.3 To sort the wheat from the cha� . . . isn't that easy!

The failure of F5 to expand the ideal of leading monomials raises the possibility of an in�nite loop
of redundant labeled polynomials. However, we cannot ignore them.

Example 21. Suppose we modify the algorithm to discard critical pairs with at least one redundant
labeled polynomial. Consider a polynomial ring in a �eld of characteristic 7583.

1. For Katsura-5, the algorithm no longer terminates, but computes an increasing list of poly-
nomials with head terms xk2x4 with signatures x2x

k
3x5x6 for k ≥ 1.

2. For Cyclic-8, the algorithm terminates, but its output is not a Gröbner basis!

How can critical pairs involving �redundant� polynomials can be necessary?

De�nition 22. A critical pair (ri, rj) is a GB-critical pair if neither ri nor rj is redundant. If a
critical pair is not a GB-critical pair, then we call it an F5-critical pair.

We now come to the main theoretical result of this paper.
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Theorem 23. If (ri, rj) is an F5-critical pair, then one of the following statements holds at the
moment of creation of rij:

(A) poly(rij) already has a standard representation.

(B) There exists a GB-critical pair (rk, r`), a set W ⊂ {1, . . . , nG}, and terms λw (for all w ∈W )
such that

poly(rij) = poly(rk`) +
∑
w

λwpoly(rw), (3.1)

γij = γk` and γk` > λwHT(rw) for all w.

Lemma 23 implies that an F5-critical pair might not generate a redundant polynomial: it might
rewrite a GB-critical pair which is not computed. In terms of the Macaulay matrix [16, 20], we
can think of an F5-critical pair as a pair of rows where one row, generated by a redundant element
of the basis, is preferred over another row with the same signature, generated by a non-redundant
element of the basis. Due to this choice, the notions of �redundant� and �necessary� critical pairs
are somewhat ambiguous in F5: necessary for a Gröbner basis, or for a correct reduction? On the
other hand, the notions of F5- and GB-critical pairs are absolute.

To prove Theorem 23, we need the following observation:

Lemma 24. Let ri, rj ∈ G computed by F5, and assume that HT(rj) | HT(ri). Then Spol does
not generate an s-polynomial for (ri, rj).

Proof. We have assumed that the input is interreduced, so poly(ri) is not in the input. Since
HT(rj) | HT(ri) there exists u ∈ T such that uHT(rj) = HT(ri). Since the reduction of poly(ri)
by upoly(rj) was rejected, uS(rj) was detected by one of the criteria. It will be detected again in
CritPair or Spol. Thus Spol will not generate rij .

Proof of Theorem 23. Assume that ri and rj are both redundant; the case where only ri (resp. rj)
is redundant is similar. By Lemma 18 there exists for ri (resp. rj) at least one non-redundant
reducer rk (resp. r`). By Lemma 24, we may assume that ri and rj are of degree smaller than rij .
Using the fact that poly(G) is a d-Gröbner basis for d = max(deg ri,deg rj), we can write

poly(ri) = λikpoly(rk) +
∑
u∈U

λupoly(ru)

poly(rj) = λj`poly(r`) +
∑
v∈V

λvpoly(rv),

such that

HT(ri) = λikHT(rk) > λuHT(ru) and
HT(rj) = λj`HT(r`) > λvHT(rv)

where U, V ⊂ {1, . . . , nG}. As γk` | γij , the representations of poly(ri) and poly(rj) above imply
that there exists λ ∈ T such that

poly(rij) =
γij

HT(ri)
poly(ri)−

γij
HT(rj)

poly(rj)

= λpoly(rk`) +
∑
w∈W

λwpoly(rw) (3.2)

10
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where W = U ∪ V and λw = λλu for w ∈ U\V , λw = λλv for w ∈ V \U , and λw = λ(λu − λv) for
w ∈ U ∩ V . In Equation (3.2) we have to distinguish two cases:

1. If λ > 1 then deg(rk`) < deg(rij), thus rk` is already computed (or rewritten) using a
lower degree computation, which has already �nished. It follows that there exists a standard
representation of poly(rk`) and thus a standard representation of poly(rij).

2. If λ = 1 then (A) holds if poly(rkl) is already computed by F5; otherwise (B) holds.

We can now explain why discarding redundant polynomials wreaks havoc in the algorithm.

Situation 25. Let (ri, rj) be an F5-critical pair. Suppose that all GB-critical pairs (rk, r`) cor-
responding to case (B) of Lemma 23 are rejected by one of F5's criteria, but lack a standard
representation.

Situation 25 is possible if, for example, the Rewritten Criterion rejects all the (rk, r`).

Corollary 26. In Situation 25 it is necessary for the correctness of F5 to compute a standard
representation of rij.

Proof. Since poly(rk`) lacks a standard representation, and the algorithm's criteria have rejected the
pair (rk, r`), then it is necessary to compute a standard representation of rij . Once the algorithm
does so, we can rewrite (3.1) to obtain a standard representation of poly(rk`).

In other words, �redundant� polynomials are necessary in F5.

4 Variants that ensure termination

Since we cannot rely on an expanding monomial ideal, a di�erent approach to ensure termination
could be to set or compute a degree bound. Since a Gröbner basis is �nite, its elements have a
maximal degree. Correspondingly, there exists a maximal possible degree dGB of a critical pair that
generates a necessary polynomial. Once we complete degree dGB, no new, non-redundant data for
the Gröbner basis would be computed from the remaining pairs, so we can terminate the algorithm.
The problem lies with identifying dGB, which is rarely known beforehand, if ever.

Before describing the new variant that follows from these ideas above, we should review two
known approaches, along with some drawbacks of each.

4.1 F5t: Reduction to zero

In [17], Gash suggests the following approach, which re-introduces a limited amount of reduction
to zero. Once the degree of the polynomials exceeds 2M , where M is the Macaulay bound for
regular sequences [2, 20], start storing redundant polynomials in a set D. Whenever subalgorithm
Reduction returns a nonempty set Rd that does not expand the ideal of leading monomials, reduce
all elements of Rd completely w.r.t. G ∪D and store any non-zero results in D instead of adding
them to G. Since complete reduction can destroy the relationship between a polynomial and its
signature, the rewrite rules that correspond to them are also deleted. Subsequently, s-polynomials
built using an element of D are reduced without regard to criterion, and those that do not reduce
to zero are also added to D, generating new critical pairs. Gash called the resulting variant F5t.

One can identify four drawbacks of this approach:

11
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1. The re-introduction of zero-reductions incurs a performance penalty. In Gash's experiments,
this penalty was minimal, but these were performed on relatively small systems without
many redundant polynomials. In some systems, such as Katsura-9, F5 works with hundreds
of redundant polynomials.

2. It keeps track of two di�erent lists for generating critical pairs and uses a completely new
reduction process. An implementation must add a signi�cant amount of complicated code
beyond the original F5 algorithm.

3. It has to abandon some signatures due to the new, signature-corrupting reduction process.
Thus, a large number of unnecessary critical pairs can be considered.

4. The use of 2M to control the size of D is an imprecise, ad-hoc patch. In some experiments
from [17], F5t terminated on its own before polynomials reached degree 2M ; for other input
systems, F5t yielded polynomials well beyond the 2M bound, and a higher bound would have
been desirable.

4.2 F5B: Use Buchberger's lcm criterion

In [1], Ars suggests using Buchberger's lcm criterion to determine a degree bound.

• Initialize a global variable dB = 0 storing a degree.

• Keep a second list of critical pairs, P ∗, used only to determine a degree bound.

• When adding new elements toG, store a copy of each critical pair not detected by Buchberger's
lcm criterion in P ∗. Remove any previously-stored pairs that are detected by Buchberger's
lcm criterion, and store the highest degree of an element of P ∗ in dB .

If the degree of all critical pairs in P exceeds dB , then a straightforward application of Buchberger's
lcm criterion implies that the algorithm has computed a Gröbner basis, so it can terminate. We
call this variant F5B.

It is important to maintain the distinction between the two lists of critical pairs. Otherwise,
the correctness of the algorithm is no longer assured: Buchberger's criteria ignore the signatures,
so P ∗ lacks elements needed on account of Situation 25.

While elegant, this approach has one clear drawback. Every critical pair is computed and checked
twice: once for Buchberger's lcm criterion, and again for the F5 criteria. Although Faugère's Cri-
terion also checks for divisibility, it checks only polynomials of smaller index, whereas Buchberger's
criterion checks all polynomials, and in most systems the number of polynomials of equal index is
much larger than the total of all polynomials having lower index. Indeed, we will see in Section
4.5 that this seemingly innocuous check can accumulate a signi�cant time penalty. This would be
acceptable if the algorithm routinely used dB to terminate, but F5 generally terminates from its
own internal mechanisms before d = dB ! Thus, except for pathological cases, the penalty for this
short-circuiting mechanism is not compensated by a discernible bene�t.

4.3 F5+: Use F5's criteria on non-redundant critical pairs

We now describe a variant that uses information from F5 itself, along with the theory developed in
Section 3, to reduce, if not eliminate, the penalty necessary to force termination. We restate only
those algorithms of [16] that di�er from the original (and the di�erences are in fact minor).

12
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The fundamental motivation of this approach stems from the fact that a polynomial is redundant
if and only if TopReduction rejects a reductor on account of one of the F5 criteria. Understood
correctly, this means that F5 �knows� at this point whether a polynomial is redundant. We would
like to ensure that it does not �forget� this fact. As long as this information remains available to
the algorithm, identifying GB- and F5-critical pairs will be trivial. Thus, our tasks are:

1. Modify the data structures to �ag a labeled polynomial as redundant or non-redundant.

2. Use this �ag to distinguish F5- and GB-critical pairs.

3. Use the GB-critical pairs to decide when to terminate.

We address each of these in turn.
To distinguish between redundant and non-redundant labeled polynomials, we add a third,

boolean �eld to the structure of a labeled polynomial. We mark a redundant labeled polynomial
with b = 1, and a non-redundant one with b = 0. Without loss of generality, the inputs are
non-redundant, so the �rst line of subalgorithm F5 can change to

ri := (Fi, fi, 0) ∈ R× {0, 1}
For all other labeled polynomials, the value of b is de�ned by the behaviour of the Reduction

subalgorithm; see below.
The next step is to detect redundant polynomials; we do this in IsReducible. In an unmodi�ed

F5, the return value of IsReducible is either a labeled polynomial rij (a polynomial that reduces
r) or ∅. The return value ∅ can have two meanings:

1. There exists no reducer of the input.

2. There exist reducers of the input, but their reductions are rejected.

Algorithm 1, which replaces the original IsReducible subalgorithm, distinguishes these two possi-
bilities by adding a boolean to the output: b = 0 in case (1) and b = 1 otherwise. We also need to
modify subalgorithm TopReduction to use this new data; see Algorithm 2.

We now describe the main routine of the new variant, which ful�lls the following conditions:

1. Compute as low a degree bound as possible.

2. Minimize any penalty to the algorithm's performance.

An easy way to estimate d0 would be to compute the highest degree of a GB-critical pair. Although
this would be correct, experience suggests that, in general, it is much higher than necessary (see
Table 2 in Section 4.5). Instead, the new variant will use the criteria of the F5 algorithm to identify
GB-critical pairs that probably reduce to zero. How can we identify such pairs? The following
method seems intuitively correct: when all GB-critical pairs are rejected by one of the F5 criteria.

However, Situation 25 implies that this intuition may be incorrect. Thus, once the algorithm
reaches that degree (and not earlier), it uses Buchberger's lcm criterion to decide whether the
remaining GB-critical pairs reduce to zero. If it can verify this, then the algorithm can terminate.

This di�ers from the approach of [1] in two important ways.

1. Rather than checking all pairs against the lcm criterion, it checks only GB-critical pairs that
F5 also rejects as unnecessary. After all, it follows from Lemma 23 that F5-critical pairs can
be necessary only if they substitute for a GB-critical pair.
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Algorithm 1 IsReducible

Input:


ri0 , a labeled polynomial of R
G = [ri1 , . . . , rir ]
k ∈ N
ϕ, a normal form

b := 0
for j from 1 to r do

if (u := HT(ri0 )

HT(rij
) ∈ T ) then

if (neither criterion detects (ri0 , rij )) then
return (rij , 0)

else

b := 1
return (∅, b)

Algorithm 2 TopReduction

Input:


rk0 , a labeled polynomial of R
G, a list of elements of R
k ∈ N
ϕ, a normal form

if poly(rk0) = 0 then

return (∅, ∅)
(r′, b) :=IsReducible(rk0 , G, k, ϕ)
if r′ = ∅ then
rk0 :=

(
S(rk0), 1

HC(rk0 )poly(rk0), b
)

return (rk0 , ∅)
else

rk1 = r′

u := HT(rk0 )

HT(rk1 )

if uS(rk1) ≺ S(rk0) then
rk0 :=

(
S(rk0),poly(rk0)− upoly(rk1), b

)
return (∅, {rk0})

else

N := N + 1
rN :=

(
uS(rk1), upoly(rk1)− poly(rk0), b

)
Add Rule (rN )
return (∅, {rN , rk0})

2. It checks the GB-critical pairs only once the F5 criteria suggest that it should terminate.

We call this variant F5+; see Algorithm 3.

Remark 27. An implementation of F5+ has to take care when checking Buchberger's lcm criterion,
on account of the phenomenon of Buchberger triples [3, p. 229]. In [1], this is implemented similarly
to the �Update� algorithm of [3,18]. The current F5+ takes a more traditional route; it records all
critical pairs that have generated s-polynomials. The burden on memory is minimal.
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Algorithm 3 F5+

Input:

 i ∈ N
fi ∈ K[x]
Gi+1 ⊂ K[x], such that poly(Gi+1) is a Gröbner basis of Id(fi+1, . . . , fm)

ri := (Fi, fi, 0)
ϕi+1 := NF(.,poly(Gi+1))
Gi := Gi+1 ∪ {ri}
{P is the usual set of pairs; P ∗ is the set of GB-pairs detected by the F5 criterion}
P := ∅
P ∗ := ∅
for rj ∈ G do

p := CritPair(ri, rj , i, ϕi+1)
if p = ∅ and rj non-redundant then
Add (lcm(HT(poly(ri)),HT(poly(rj))), r, rj) to P ∗

else

Add p to P
Sort P by degree
while P 6= ∅ do
d := deg(first(P ))
Discard from P ∗ all pairs that are not of maximal degree
if d ≤ max{deg(p) : p ∈ P ∗} or ∃p ∈ P ∗ that does not satisfy Buchberger's lcm criterion then
Pd := {p ∈ P : deg(p) = d}
P := P\Pd
F := Spol(Pd)
Rd := Reduction(F,Gi, i, ϕi+1)
for r ∈ Rd do
for rj ∈ Gi do
p := CritPair(r, rj , i, ϕi+1)
if p = ∅ and r, rj both non-redundant then
Add (lcm(HT(poly(r)),HT(poly(rj))), r, rj) to P ∗

else

Add p to P
Gi := Gi ∪ {r}

Sort P by degree
else

P := ∅
return Gi

4.4 Correctness and termination of F5+

As a last step we have to show that F5+ terminates correctly.

Theorem 28. If F5+ terminates, the result is a Gröbner basis of the input.

Proof. This follows from Buchberger's lcm criterion.

Theorem 29. For a given homogeneous ideal I as input, F5+ terminates after �nitely many steps.
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Proof. Assume that F5+ has already computed G such that poly(G) is a d0-Gröbner basis in the
i-th iteration step of F5+, and #Pd < ∞ for d > d0 at this point. Assume d to be the minimal
degree of elements in P . First of all we must verify that at each degree there are only �nitely many
new elements computed. Three di�erent situations can arise for an arbitrary r of degree d:

1. If ϕ(poly(r),poly(Gi+1)) = 0, no new critical pair is generated.

2. If ϕ(poly(r),poly(Gi+1)) 6= 0 then IsReducible checks for possible reducers:

(a) If no non-rejected reducer is found, then r is added to G. All newly computed critical
pairs generated by r have degree > d; their number is �nite because G is currently �nite.

(b) If there exists a reducer rred with multiplier ured ∈ T such that S(r) � uredS(rred) then
poly(r)− uredpoly(rred) is the new polynomial part with lower head term of r, and r is
checked for further reductions.

(c) If there exist rred and ured such that uredS(rred) � S(r) then r is not changed, but kept
for further reduction checks. A new, non-redundant element r′ = (uredS(rred),poly(r)−
uredpoly(rred)) is generated, and its signature S(r′) added to the list of rules.

There are only �nitely many di�erent reducers which could lead to new elements r′.
Since S(r′) was added to the list of rules, rred will not be chosen again as a reducer of
r. As HT(r′) < HT(r), the process of initializing new elements of higher signature stops
after �nitely many steps due to < being a �xed admissible ordering on T .
Thus only �nitely many new elements of degree d0 can be generated.

It follows that in each degree step only �nitely many new polynomials are computed, so only �nitely
many new critical pairs are generated.

To �nish the proof we have to show that after �nitely many steps, only F5-critical pairs are left
in P . There can only be �nitely many GB-critical pairs as their generating labeled polynomials have
to be non-redundant. Since R is Noetherian, only �nitely many non-redundant polynomials can
be computed. The above discussion implies that F5+ cannot compute in�nitely many redundant
elements between two non-redundant ones.

Thus F5+ terminates after �nitely many steps.

4.5 Experimental results

We implemented these variants in the Singular kernel to compare performance. (The F5 im-
plementation in Singular is still under development.) In Table 1 we compare timings for some
examples. In Table 2 we compare degree bounds. All systems are homogeneous and computed over
a �eld of characteristic 32003. This data was recorded from a workstation running Gentoo Linux
on an Intel R© Xeon R© X5460 CPU at 3.16GHz with 64 GB RAM.

Table 1 shows that the tests for F5+ do not slow it down signi�cantly. But this is expected,
since the modi�cations add trivial overhead, and rely primarily on information that the algorithm
already has available.

Table 2 bears some discussion. We have implemented F5+ in two di�erent ways. Both are
the same in that they estimate the maximum necessary degree by counting the maximal degree of
a GB-critical pair not discarded by the CritPair subalgorithm. However, one can implement a
slightly more e�cient CritPair algorithm by discarding pairs that pass Faugère's Criterion, but
are rewritable. (The basic F5 checks the Rewritten Criterion only in subalgorithm Spol.) Thus one
might compute a di�erent maximal degree of P ∗ in each case: when CritPair discards only those
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Table 1: Timings (in seconds) of F5, F5B, and F5+

Examples F5 F5B F5+ F5/F5B F5/F5+

Katsura-9 39.95 53.97 40.23 0.74 0.99
Katsura-10 1,145.47 1,407.92 1,136.43 0.80 1.00

F-855 9,831.81 11,364.47 9,793.17 0.86 1.00
Eco-10 47.26 57.97 46.67 0.82 1.01
Eco-11 1,117.13 1,368.44 1,072.47 0.82 1.04

Cyclic-7 6.24 9.18 6.21 0.67 1.00
Cyclic-8 3,791.54 4,897.61 3,772.66 0.77 1.00

Table 2: Degrees of F5, F5B, and F5+

Examples dmaxGB
1 dF5

2 dGB-pair
3 dB dF

4 dFR
5

Katsura-9 13 16 21 13 16 16
Katsura-10 15 18 26 15 18 18

F-855 14 18 20 17 17 16
Eco-10 15 20 23 17 17 17
Eco-11 17 23 26 19 19 19

Cyclic-7 19 23 28 24 23 21
Cyclic-8 29 34 41 33 32 30
1 maximal degree in GB
2 observed degree of termination of F5
3 maximal degree of a GB-critical pair
4 maximal degree of all GB-critical pairs not detected by Faugère's

Criterion
5 maximal degree of all GB-critical pairs not detected by Faugère's

Criterion or the Rewritten Criterion

pairs detected by Faugère's Criterion, we designate the maximal degree of P ∗ as dF ; when CritPair

discards pairs detected by the Rewritten Criterion as well, we designate the maximal degree of P ∗

as dFR. We denote the degree where the original F5 terminates by dF5, and the maximal degree of
a polynomial generated by dmaxGB.

Note that dmaxGB < dF5 because F5 terminates after emptying the set P of critical pairs, and
for the last few degrees, Spol usually rejects any pairs in P as rewritable. This need not be the
case in general; for the trivial system {x2 + 1, y2 + 1}, no critical pairs are ever added to P , so F5
terminates immediately.

On the other hand, it is always the case that dF , dFR ≤ dF5; dF5 counts F5-critical pairs as well
as GB-critical pairs, whereas dF , dFR count only GB-critical pairs that are not rejected by one or
both of the F5 criteria. Thus F5+ always starts its manual check for termination no later than F5
would terminate, and sometimes terminates before F5. For example, the termination mechanisms
activate for F-855, Eco-10 and -11, and Cyclic-8, so F5B and F5+ both terminate at lower degree
than F5. With little to no penalty, F5+ terminates �rst, but F5B terminates well after F5 in spite
of the lower degree!

In other examples, F5 terminates before reaching the minimal degree; in other words, dF5 ≤
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min{dB , dF , dFR}. Hence, the termination mechanism does not kick in for these systems. Even
though dmaxGB = dB < dF = dFR = dF5 for Katsura-n, the termination mechanism of F5+ incurs
almost no penalty, so its timings are equivalent to those of F5, whereas F5B is slower.

5 Concluding remarks, and a conjecture

The new variant of F5 presented here is a straightforward solution to the problem of termination:
it distinguishes F5- and GB-critical pairs and tracks the highest degree of a necessary GB-critical
pair. Thus F5+ provides a self-generating, correct, and e�cient termination mechanism in case F5
does not terminate for some systems. In practice, F5+ terminates before reaching the degree cuto�,
but it is not possible to test all systems, nor practical to determine a priori the precise degree of
each Gröbner basis. The question of whether F5, as presented in [16], terminates correctly on all
systems, or even on all regular systems, remains an important open question.

The following conjecture arises from an examination of Table 2.

Conjecture 30. The F5 algorithm can terminate once all GB-critical pairs are rejected by the F5
criteria. That is, it can terminate once d = dFR.

Conjecture 30 is not a Corollary of Theorem 12! There, correctness follows only if all critical
pairs are rejected by the algorithm: GB- and F5-critical pairs. Similarly, a proof of Conjecture 30
would imply that we could drop altogether the check of Buchberger's criteria.

If one could show that dmaxGB ≤ dFR, Conjecture 30 would follow immediately. However, such
a proof is non-trivial, and lies beyond the scope of this paper. The conjecture may well be false
even if we replace dFR by dF , although we have yet to encounter a counterexample. The di�culty
lies in the possibility that Situation 25 applies.
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