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Abstract

Suppose G is the reduced Gröbner basis of an ideal I � R � Krx1, � � � , xns with respect

to the lexicographic monomial order. In this paper, we present and implement an algorithm

to find expressions for any f P R in terms of the generators of G. Among examples, exact

forms of the expressions of the defining polynomials of cyclic n-roots for n � 8, 9, 12, 16, are

presented. Cyclic 16-roots is an unknown system for which we exhibit one of its prime ideals

in its primary decomposition and in turn an expression of a defining polynomial of the system.

1 Introduction

Let K be an algebraically closed field and R � Krx1, � � � , xns be the ring of polynomials in n

variables x1, � � � , xn with coefficients in K. As usual, denote a monomial by m � xα � xi11 � � � x
in
n P
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R, where α � pi1, � � � , inq P Zn¥0 is the multi-index of m and degpxαq � i1�� � ��in is the total degree

of m. Denote by MpRq, the set of all monomials in R. For a polynomial f �
°
α aαx

α P R, define

supppfq � txα : aα � 0u and we call it the support of f . In this paper, we fix a lexicographic (lex)

monomial order ¡
lex

or  
lex

with x1 ¡lex
� � � ¡

lex
xn. The initial monomial of each f P R, denoted

by in
lex
pfq, is the biggest element in supppfq. If η PMpRq and f P R, then degηpfq is the degree of

f as an element in Rrηs. For example, if f � x1x
4
2x

2
3� x

5
1x

3
2x3� x2 P R and η � x22x3 PMpRq, then

degηpfq � 2. We may rewrite f as f � x1η
2 � x51x2η � x2 P Rrηs. Notice that, if we consider the

above order, then in
lex
pfq � x51x

3
2x3. For an ideal I in R, a finite set G � tg1, � � � , gru of elements

of I is the reduced Gröbner basis of I if paq the ideal xtin
lex
pfq : 0 � f P Iuy is generated by

in
lex
pg1q, � � � , inlex

pgrq pbq each gi is monic and pcq for i � j, none of the monomials of supppgjq is

divisible by in
lex
pgiq. For more information and proof of uniqueness see [11] page 32.

Throughout the paper, G � tg1, � � � , gru stands for the reduced Gröbner basis of I with respect to

the above lex monomial order. With the notation above, for f P R, we write f � f1g1�� � ��frgr�f
1,

where f1, � � � , fr, f
1 P R and call it an expression of f in terms of gi’s. We also refer pf1, � � � , frq as

an expression of f . Expressions are the outputs of division (or reduction) algorithms. In [9] page

334, it is properly established that, there are two types of division algorithms, determinate and

indeterminate. A determinate division algorithm is the one that gives rise to a unique expression

with certain algebraic characteristics. Another version of standard (determinate) division algorithm

is of the form given in [1] page 28.

Remark 1. (Why do we need an algorithm to evaluate expressions?) At the time of derivation of

the primary ideals of positive dimension in primary decomposition of cyclic 12-roots in [12] (in this

case, it is proved that those ideals in [12] are prime), the author encountered the following problem:

Suppose an ideal I :� xh1, � � � , hny with exact form of generators h1, � � � , hn is

given. By exact we mean a polynomial that has no approximate coefficient. Also,

let Ī � xg1, � � � , gry be another ideal with the computed exact generators (output
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of an algorithm). We want to test that whether Ī is one of the ideals in primary

decomposition of I or not. Since we must have I � Ī X � � � , at least we must be

able to prove that I � Ī, or in turn for all 1 ¤ i ¤ n, hi P Ī .

This means that we have a type of ideal membership problem. A straightforward method to

deal with this problem is to use a computer algebra software (CAS) like MAPLE and specifically

the command normalf in its built-in Gröbner basis package. For the examples that are given is

section 3, an attempt to use a CAS was failed. Another method is to exploit a version of the

usual division algorithm (given in [1] page 28). This approach may easily get complicated in cases

where the number of monomials in the support of the current hi that is divisible by the current

in
lex
pgkq

1s is big. And this happens for the case of large scale cyclic n-roots problem. However,

this paper presents an algorithm that reduces the number of algebraic (symbolic) operations in the

usual division algorithm.

The main algorithm is presented in section 2 and section 3 and appendix are devoted to main

examples.

2 Main algorithm

Fix η P MpRq and define Rη � tf P R : @m P supppfq; η � mu and let ηR � tηf : f P Ru � pηq

be the principle ideal generated by η in R. Clearly, f P Rη if and only if degηpfq � 0. The next

lemma expresses a very simple and straightforward fact about a representation of f P Rrηs.

Lemma 1 With the above notation, if f P R, then there exists an integer r ¥ 0 and f̄0, f̄1, � � � , f̄r P

Rη such that f �
ŗ

i�1

ηif̄i � f̄0.

Proof: Given a m P MpRq, let i be the maximal power of η that divides m, so m � m1ηi, where

m1 P Rη. Since any polynomial is a sum of constants times monomials, the lemma follows easily.l
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Now let g � η � Λ P R with η � in
lex
pgq and hence Λ P Rη.

Theorem 1 With the above notation, for f P R with η � in
lex
pfq, there is fg P R such that

fred � f � pfgqg P Rη.

Proof: As a consequence of lemma 1, we set f 1
red � f �

r1̧

i�1

ηif̄ 1
i � f̄ 1

0 � η
r1̧

i�1

ηi�1f̄ 1
i � f̄ 1

0 where f̄ 1
i ’s

are given as in lemma 1. Define f 1
g �

r1̧

i�1

ηi�1f̄ 1
i and f 2

red and consider as

f 2
red � f 1

red � pf 1
g qg � η

r1̧

i�1

ηi�1f̄ 1
i � f̄ 1

0 � pη � Λq
r1̧

i�1

ηi�1f̄ 1
i � �

r1̧

i�1

ηi�1Λf̄ 1
i � f̄ 1

0 .

Now for i � 1, � � � , n, for all λ P supppΛq and for all mi P supppf̄
1
i q, since λ  

lex
η, we have λmi  lex

ηmi and in turn ληi�1mi  lex
ηimi. Since in

lex
pf 2
redq is a monomial of the form and ληi�1mi and

in
lex
pf 1
redq is a monomial of the form ηimi, the former inequality shows that in

lex
pf 2
redq  lex

in
lex
pf 1
redq.

By lemma 1, we express f 2
red as f 2

red �
r2̧

i�1

ηif̄ 2
i � f̄ 2

0 with appropriate nonnegative integer r2 and

f̄ 2
0 , f̄

2
1 , � � � , f̄

2
r2
P Rη. We repeat the above reduction process and we find f 2

g �
r2̧

i�1

ηi�1f̄ 2
i and f 3

red

such that in
lex
pf 3
redq  lex

in
lex
pf 2
redq. We continue this process and obtain sequences of polynomials

f j�1
g and f jred’s with strictly decreasing sequence � � �  

lex
in

lex
pf jredq  lex

� � �  
lex

in
lex
pf 2
redq  lex

in
lex
pf 1
redq � in

lex
pfq. Since η � in

lex
pfq, then for some integer k ¡ 0, we reach degηpf

k
redq � 0. This

means fkred P Rη. In this situation, we let fg � f 1
g � � � � � fk�1

g . Therefore,

fred � fkred � fk�1
red � pfk�1

g qg

� fk�2
red � pfk�2

g qg � pfk�1
g qg � fk�2

red � pfk�2
g � fk�1

g qg

...

� f 1
red � pf 1

g � � � � � fk�1
g qg � f � pfgqg,

(1)

as desired. l

Example 1. Let K � C and η � x1x2 PMpRq, f, g P R � Crx1, x2, x3s with g � x1x2�x3 � η�Λ

and f 1
red � f � x1x2px

2
1 � x2x3q � x1x3 � ηf̄ 1

1 � f̄ 1
0 where Λ � x3, f̄

1
1 � x21 � x2x3 and f̄ 1

0 � �x1x3.

Let f 1
g � x21 � x2x3 � f̄ 1

1 and
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f 2
red � f 1

red � pf 1
g qg � ηf̄ 1

1 � f̄ 1
0 � pη � Λqf̄ 1

1 ,

� �Λf̄ 1
1 � f̄ 1

0 ,

� �x21x3 � x1x3 � x2x
2
3 P Rη.

Example 2. Let K � C and η � x21x2 P MpRq, f, g P R � Crx1, x2, x3s with g � x21x2 � x1x2 �

x2x3 � η � Λ and f 1
red � f � x21x2px

3
1 � x21 � x1x3q � x1x2x3 � ηf̄ 1

1 � f̄ 1
0 where Λ � �x1x2 � x2x3,

f̄ 1
1 � x31 � x21 � x1x3 and f̄ 1

0 � �x1x2x3. Let f 1
g � x31 � x21 � x1x3 and

f 2
red � f 1

red � pf 1
g qg

� px51x2 � x41x2 � x31x2x3 � x1x2x3q�

px31 � x21 � x1x3qpx
2
1x2 � x1x2 � x2x3q,

� x41x2 � x31x2x3 � x31x2 � 2x21x2x3 � x1x2x
2
3 � x1x2x3,

� x21x2px
2
1 � x1x3 � x1 � 2x3q � x1x2x

2
3 � x1x2x3.

As we see, degηpf
2
redq � degηpf

1
redq � 1 while f 2

red  lex
f 1
red. This evidently results that unlike f jred’s,

the integer sequence degηpf
j
redq’s does not constitute a strictly decreasing one. The reader should

notice that, eventually and according to the proof of the Theorem 2.2, the sequence degηpf
j
redq’s

tends to zero. We continue by setting f̄ 2
1 � x21 � x1x3 � x1 � 2x3, f̄

2
0 � �x1x2x

2
3 � x1x2x3 and

f 2
red � ηf̄ 2

1 � f̄ 2
0 . Let f 2

g � x21 � x1x3 � x1 � 2x3 � f̄ 2
1 , then

f 3
red � f 2

red � pf 2
g qg � f 1

red � pf 1
g qg � pf 2

g qg � fred � pf 1
g � f 2

g qg

� ηf̄ 2
1 � f̄ 2

0 � pη � Λqf̄ 2
1 � �Λf̄ 2

1 � f̄ 2
0 ,

� px1x2 � x2x3qpx
2
1 � x1x3 � x1 � 2x3q � x1x2x3,

� x21x2px1 � 2x3 � 1q � 2x1x2x3 � x2x
2
3x1 � 2x2x

2
3.

We continue by taking f 3
g � x1 � 2x3 � 1 as:
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f 4
red � f 3

red � pf 3
g qg � f 1

red � pf 1
g qg � pf 2

g qg � pf 3
g qg � f � pf 1

g � f 2
g � f 3

g qg

� ηpx1 � 2x3 � 1q � 2x1x2x3 � x2x
2
3x1 � 2x2x

2
3 � pη � Λqpx1 � 2x3 � 1q

� �Λpx1 � 2x3 � 1q � 2x1x2x3 � x2x
2
3x1 � 2x2x

2
3,

� px1x2 � x2x3qpx1 � 2x3 � 1q � 2x1x2x3 � x2x
2
3x1 � 2x2x

2
3

� x21x2 � x1x2x
2
3 � x1x2x3 � x1x2 � x2x3

� η � x1x2x
2
3 � x1x2x3 � x1x2 � x2x3.

We continue by taking f 4
g � 1 as:

f 5
red � f 4

red � pf 4
g qg � f � pf 1

g � f 2
g � f 3

g � f 4
g qg

� η � x1x2x
2
3 � x1x2x3 � x1x2 � x2x3 � pη � Λq

� �Λ � x1x2x
2
3 � x1x2x3 � x1x2 � x2x3,

� x1x2x
2
3 � x1x2x3 P Rη.

Therefore, by taking fg � f 1
g � f 2

g � f 3
g � f 4

g and fred � x1x2x
2
3 � x1x2x3 we have fred � f � pfgqg.

Algorithm 1 (REDUCTION)

Input: f, g P R, g :� η � Λ with η � in
lex
pgq and η � in

lex
pfq.

Output: fg P R and the reduced form of f as fred :� f � pfgqg such that

in
lex
pfredq  lex

in
lex
pfq and in

lex
pfq � in

lex
ppfgqgq.

Step 0: Initialize fred :� f and fg :� 0. Set F :� tm P supppfredq : η � mu.

Step 1: REPEAT

Step 1.1: Update fg :� fg �
¸

mPF
p
m

η
q; fred :� fred � pfgqg and

F :� tm P supppfredq : η � mu.

UNTIL F � ∅.

Step 2: Output pfred, fgq.
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Algorithm 2 (MAIN)

Input: The reduced Gröbner basis G � tg1, � � � , gru of an ideal I and f P R. Also let

ηi � in
lex
pgiq, i � 1, � � � , r.

Output: Unique expression pf1, � � � , frq with unique remainder f 1 P Rη1 X � � � XRηr .

Step 0: Initialize the expression pf1, � � � , frq :� p0, � � � , 0q, f 1 :� 0, fred :� f and

Ind Set :� tk : 1 ¤ k ¤ r such that in
lex
pgkq � inlex

pfredqu.

Step 1: REPEAT

Step 1.1: Let 1 ¤ l ¤ r be such that

in
lex
pglq � max

lex
tin

lex
pgkq : Dk P Ind Setu.

Step 1.2: Let pfred, fglq �REDUCTIONpfred, glq.

(Notice that fred in the argument of REDUCTION is different from

fred on the left hand side.)

Step 1.3: Update fl � fl � fgl and in turn pf1, � � � , frq. Update f � fred

and Ind Set :� tk : 1 ¤ k ¤ r such that in
lex
pgkq � inlex

pfredqu

UNTIL Ind Set � ∅

Step 2: Set f 1 � fred.

Step 3: Output pf1, � � � , frq and f 1.

Theorem 2 With the notation given in the algorithm 2, it terminates in finitely many steps and

is correct. Moreover, the expression f � f1g1 � � � � � frgr � f 1 is unique and f 1 P Rη1 X � � � XRηr .

Proof: For a fixed 1 ¤ k ¤ r, according to the proof of Theorem 1, the initial monomial of the

current fred, on reduction with respect to ηk, reduces until degηkpfredq � 0. This process holds for

every k with 1 ¤ k ¤ r. Since the number of k’s and the number of stages of the processes are

finite, the algorithm stops at a point where none of the monomials in supppfredq is divisible by any

of ηk :� inpgkq’s. Therefore the termination follows. At this stage, we exit the REPEAT-UNTIL
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loop and we set f 1 � fred P Rη1 X � � � X Rηr . The correctness of the algorithm is the result of (1)

in the proof of the Theorem 1. The classical methodology for the uniqueness of the output of such

algorithms is given once in [9] page 335 (third paragraph). Similar reasoning holds in our case, in

the sense that Step 1.1 gives rise to a unique l and in turn fred will be uniquely determined (by the

procedure outlined in the proof of the Theorem 1) as the output of REDUCTION. Therefore the

expression in the ouput is unique and the algorithm is a determinate one.

3 Cyclic n-roots n � 8, 9, 12, 16

For n ¥ 3, cyclic n-roots is a series of benchmark notorious polynomial systems [6]. The general

form of cyclic n-roots polynomial system is Hn
1 � 0, � � � , Hn

n�1 � 0, Hn
n � n where for 1 ¤ i ¤ n,

Hn
i �

ņ

j�1

j�i�1¹
k�j

xk,

and also identify xn�1 � x1, xn�2 � x2, � � � . In this section we need the constant ω � 1
2
� i

?
3
2

.

The research on cyclic n-roots problem has been initiated by pioneering works of G. Björck, R.

Fröberg and J. Backelin. They partially used a computer algebra software to find concise lists of

solutions of cyclic n-roots for n ¤ 7, [5, 7]. Cyclic 8-roots was studied by G. Björck and R. Fröberg

in [8]. They ended up with a characterization of the solution set of cyclic 8-roots which consists

of 16 components, eight of which are of degree 16 and eight of degree 2 and 1152 isolated roots.

With an extensive use of computer algebra softwares, in 2001, J. C. Faugère [10] determined the

solution set of cyclic 9-roots, which has 6 components of dimension 2 and degree 3 plus 6642 isolated

roots. Currently, two numerical-symbolic approaches deal with the problem of symbolic-numerical

identification of higher dimensional solution variety of cyclic n-roots polynomial system. paq The

novel method in [12] that is directly aimed to exact identification of the defining polynomials of all

prime ideals of positive dimension in primary decomposition of cyclic 12-roots. This method starts

with an initial set of true witness points (after removal of so-called junk points) on each components

8
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and continues to produce more sample points on the irreducible component. The extra sample points

make a numerical rank-deficient generic matrix, for each type of generators of a given degree, i.e,

linear, quadratic etc. At this stage of the method almost everything is considered numerically. By

finding a so-called deficiency pattern of these matrices, one can retrieve good approximations of

the exact form of the coefficients of the defining polynomials of the prime ideal. pbq In a series of

publications [2, 3, 4, 13], Jan Verschelde and a research team under his leadership extensively use

the concept of tropism to identify the solution set of cyclic n-roots system for various integers n. As

an example, they exploit a symmetry in these systems to conclude that the space curves of cyclic

12-roots are quadrics. Also, coefficients of the corresponding puiseux series expansions are found.

Remark 2. The following set of examples discusses cyclic n-roots for n � 8, 9, 12, 16. Only

the case n � 12 is extensively studied via a symbolic-numerical algorithm in [12]. The complete

identification for n � 9 in [10] is purely symbolic. To some extent, the same is true for n � 8

(please see [8]). It turns out that the problem of identification of cyclic n-roots for n � 8, 9 by a

symbolic-numerical algorithm (as the one given in [12]) has special considerations. This problem

for n � 16 is of somewhat different nature. They are all in the list of current research of the

author. By this time, the form of the ideals involved in these cases are identified. Adding the

discussion about the derivation of all ideals for each case of n � 8, 9 or n � 16 may easily make

the size of this work to double or even triple of the current size. Beside, the exposition of the

derivations and the problems involved are of different type in comparison with the problem in this

work. Thus, to continue our discussion in this paper, we select the following ideal for the case n � 8:

IC8 � xx1 � x6, x2 � x5, x3 � x8, x4 � x7, q, u, py,

where q � �2x1x2�x1x3�x1x4�x2x3�x2x4�2x3x4, u � x1x2x3x4�1 and p � x1x3x4�x2x3x4�

x3 � x4, and the following ideal for n � 16:

IC16 � xx1 � ix5, x2 � ix6, x3 � ix7, x4 � ix8, x1 � x9, x2 � x10, x3 � x11, x4 � x12,

x1 � ix13, x2 � ix14, x3 � ix15, x4 � ix16, x1x2x3x4 � 1y.
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From the following list of six ideals of dimension 2 for n � 9:

I1 � xx1 � ω̄x7, x1 � ωx4, x2 � ω̄x8, x2 � ωx5, x3 � ω̄x9, x3 � ωx6, x1x2x3 � ωy,

I2 � xx1 � ω̄x7, x1 � ωx4, x2 � ω̄x8, x2 � ωx5, x3 � ω̄x9, x3 � ωx6, x1x2x3 � ω̄y,

I3 � xx1 � ω̄x7, x1 � ωx4, x2 � ω̄x8, x2 � ωx5, x3 � ω̄x9, x3 � ωx6, x1x2x3 � 1y,

I4 � xx1 � ωx7, x1 � ω̄x4, x2 � ωx8, x2 � ω̄x5, x3 � ωx9, x3 � ω̄x6, x1x2x3 � ωy,

I5 � xx1 � ωx7, x1 � ω̄x4, x2 � ωx8, x2 � ω̄x5, x3 � ωx9, x3 � ω̄x6, x1x2x3 � ω̄y,

I6 � xx1 � ωx7, x1 � ω̄x4, x2 � ωx8, x2 � ω̄x5, x3 � ωx9, x3 � ω̄x6, x1x2x3 � 1y,

we select IC9 :� I4. For n � 12 we pick the following ideal from the list given in [12]. For the

notation I
ω̄

C11
please see [12].

IC12 :� I
ω̄

C11
� xx1 � ωx3, x2 � ωx4, x1 � ωx5, x2 � x6, x1 � x7, x2 � x8, x1 � ωx9,

x2 � ωx10, x1 � ωx11, x2 � x12, x1x2 � ω̄y.

All expressions given in this series of examples, including many others are saved in several

MAPLE files. For symbolic verification of the expressions they are available upon request.

piq n � 8. Let IC8 � xx1�x6, x2�x5, x3�x8, x4�x7, q, u, py, be defined as in the above remark.

With the lex order x6 ¡lex
x5 ¡lex

x8 ¡lex
x7 ¡lex

x1 ¡lex
x2 ¡lex

x3 ¡lex
x4, using MAPLE, the

Gröbner (not reduced) basis of IC8 is G8 � tq1, � � � , q12u, where

q1 � x6 � x1; q2 � x5 � x2; q3 � x8 � x3; q4 � x7 � x4;

q5 � 2x1x2 � x1x3 � x1x4 � x2x3 � x2x4 � 2x3x4

q6 � x1x
2
3 � x1x

2
4 � 2x1 � x2x

2
3 � x2x

2
4 � 2x2 � 2x23x4 � 2x3x

2
4 � 2x3 � 2x4

q7 � x1x3x4 � x2x3x4 � x3 � x4

q8 � x1x
3
4 � 2x1x4 � x2x

3
4 � 2x2x4 � 2x3x

3
4 � x3x4 � x24 � 2

q9 � x22x
2
3 � x22x

2
4 � 2x22 � 2x2x

2
3x4 � 2x2x3x

2
4 � 2x2x3 � 2x2x4 � 2x3x4 � 2

q10 � x22x3x4 � x2x3 � x2x4 � 1

q11 � x22x
3
4 � 2x22x4 � 2x2x3x

3
4 � x2x3x4 � x2x

2
4 � 2x2 � 2x3x

2
4 � x3 � 2x4

q12 � 2x23x
2
4 � x23 � 2x3x4 � x24 � 2.

10



Rostam Sabeti

In the reduction process of this nonreduced Gröbner basis case, we must take care of the leading

coefficients of q5 and q12. We write

H8
4 � f 1

red � x6px3x4x5 � x4x5x7 � x5x8x7 � x7x8x1q � x1x2x3x4 � x2x3x4x5

�x7x8x1x2 � x8x1x2x3.

Since in
lex
pq1q � x6 let fq1 � x3x4x5 � x4x5x7 � x5x8x7 � x7x8x1, then

f 2
red � f 1

red � pfq1qq1

� x5px2x3x4 � x3x4x1 � x4x7x1 � x7x8x1q � x1x2x3x4 � x7x8x1x2

�x8x1x2x3 � x7x8x
2
1.

Similarly, with in
lex
pq2q � x5, inlex

pq3q � x8 and in
lex
pq4q � x7, we have

fq2 � x2x3x4 � x3x4x1 � x4x7x1 � x7x8x1,

fq3 � 2x7x1x2 � x1x2x3 � x7x
2
1,

fq4 � x1x2x4 � 2x1x2x3 � x21x3.

At this stage to the end, the general feature of the Do-While in algorithm 2 shows up. Set

f 5
red � f 1

red � pfq1q1 � fq2q2 � fq3q3 � fq4q4q,

� �x21x3x4 � x1x2x
2
3 � 4x1x2x3x4 � x1x2x

2
4 � x22x3x4,

� x1x3x4p4x2 � x1q � x1x2x
2
3 � x1x2x

2
4 � x22x3x4.

Notice that in
lex
pf 5
redq � x21x3x4 is divisible by in

lex
pq7q � x1x3x4. So far, members of the basis that

constitute a so-called chain of reduction q1 Ñ q2 Ñ q3 Ñ q4 Ñ q7 evidently are q1, q2, q3, q4, q7. Let

f 0
q7
� 4x2 � x1 and

f 7
red � f 5

red � pfq7qq7,

� x1x2p�x
2
3 � x3x4 � x24q � x1x3 � x1x4 � 3x22x3x4 � 4x2x3 � 4x2x4.

Now in
lex
pf 7
redq � x1x2x

2
3 is divisible only by in

lex
pq5q � x1x2. Set

fq5 �
1
2
p�x23 � x3x4 � x24q and calculate

11
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f 8
red � f 7

red � pfq5qq5,

� �0.5x1x
3
3 � x1x3 � 0.5x1x

3
4 � x1x4 � 3x22x3x4 � 0.5x2x

3
3 � 4x2x3

�0.5x2x
3
4 � 4x2x4 � x33x4 � x23x

2
4 � x3x

3
4.

The subsequent reduction

f 9
red � f 8

red � pfq6qq6,

� 0.5x1x3x
2
4 � 0.5x1x

3
4 � x1x4 � 3x22x3x4 � 0.5x2x3x

2
4 � 3x2x3 � 0.5x2x

3
4

�4x2x4 � 2x23x
2
4 � x23 � x3x

3
4 � x3x4,

holds with fq6 � �0.5x3. Let f 1
q7
� 0.5x4. Then

f 10
red � f 9

red � pf 1
q7
qq7,

� 0.5x1x
3
4 � x1x4 � 3x22x3x4 � 3x2x3 � 0.5x2x

3
4 � 4x2x4 � 2x23x

2
4 � x23

�x3x
3
4 � 1.5x3x4 � 0.5x24.

We continue by setting fq8 � 0.5 and

f 11
red � f 10

red � pfq8qq8 � 3x22x3x4 � 3x2x3 � 3x2x4 � 2x23x
2
4 � x23 � 2x3x4 � x24 � 1.

For fq10 � 3 we have

f 12
red � f 11

red � pfq10qq10 � 2x23x
2
4 � x23 � 2x3x4 � x24 � 2.

At last, fq12 � 1 results f 13
red � f 12

red � pfq12qq12 � 0. Therefore,

H8
4 � f 11

red � pfq10qq10 � 2x23x
2
4 � x23 � 2x3x4 � x24 � 2.

Using any computer algebra system, the above process can be verified symbolically. One may verify

that

H8
4 � fq1q1 � fq2q2 � fq3q3 � fq4q4 � fq5q5 � fq6q6 � pf 0

q7
� f 1

q7
qq7 � fq8q8

�fq10q10 � fq12q12,

12
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is indeed an expression of H8
4 . The so-called chain of reduction in this process would be q1 Ñ q2 Ñ

q3 Ñ q4 Ñ q7 Ñ q5 Ñ q6 Ñ q7 Ñ q8 Ñ q10 Ñ q12.

piiq n � 9. We implement algorithm 2 on IC9 and we find the expression corresponding to H9
4 .

With respect to the lex order x1 ¡lex
� � � ¡

lex
x9, the reduced Gröbner basis of IC9 is:

rG9
4 � tg1 � x1 � ωx7, g2 � x2 � ωx8, g3 � x3 � ωx9, g4 � x4 � ω̄x7,

g5 � x5 � ω̄x8, g6 � x6 � ω̄x9, h � x7x8x9 � ωu.

We start by setting:

f 1
red � H9

4 � x1x2x3x4 � x2x3x4x5 � x3x4x5x6 � x4x5x6x7 � x5x6x7x8

�x6x7x8x9 � x7x8x9x1 � x8x9x1x2 � x9x1x2x3,

� x1px2x3x4 � x2x3x9 � x2x8x9 � x8x7x9q � x2x3x4x5 � x3x4x5x6

�x4x5x6x7 � x5x6x7x8 � x6x7x8x9.

Let fg1 � x2x3x4 � x2x3x9 � x2x8x9 � x8x7x9 and f 2
red � f 1

red � pfg1qg1. Then we have

f 2
red � f 1

red � pfg1qg1

� x2px3x4x5 � ωpx3x4x7 � x3x7x9 � x8x7x9qq

�x3x4x5x6 � x4x5x6x7 � x5x6x7x8 � x6x7x8x9 � ωx27x8x9.

Then we let fg2 � x3x4x5 � ωpx3x4x7 � x3x7x9 � x8x7x9q and we continue the process to find

f 3
red, f

4
red, � � � . We have the following:

fg3 � x5x6x4 � ωx4x5x8 � ω̄x4x7x8 � ω̄x7x8x9,

fg4 � x5x6x7 � ωx5x6x9 � ω̄x5x8x9 � x7x8x9,

fg5 � �ω̄x6x
2
7 � x6x7x8 � x6x7x9 � ωx7x8x9,

fg6 � �ωx27x8 � ω̄x7x
2
8 � ωx7x8x9.

It can be verified that pfg1 , fg2 , fg3 , fg4 , fg5 , fg6 , 0q is an expression for H9
4 .
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piiiq n � 12. We implement the algorithm 2 on IC12 and we find an expression for H12
2 as a member

of IC12 which follows:

H12
2 � �ω̄px2 � x4qg1 � pωx1 � ω̄x5qg2 � pω̄x6 � ωx2qg3 � pω̄x1 � x7qg4

�px2 � x8qg5 � px9 � x1qg6 � ω̄px10 � x2qg7 � pω̄x11 � ωx1qg8

�pω̄x12 � ωx2qg9 � p3
2
� i

?
3

2
qx1g10,

� x1x2 � x2x3 � x3x4 � x4x5 � x5x6 � x6x7 � x7x8 � x8x9 � x9x10

�x10x11 � x11x12 � x12x1,

where g1 :� x1 � ωx3, g2 :� x2 � ωx4, g3 :� x1 � ωx5, g4 :� x2 � x6, g5 :� x1 � x7,

g6 :� x2 � x8, g7 :� x1 � ωx9, g8 :� x2 � ωx10, g9 :� x1 � ωx11, g10 :� x2 � x12,

g11 :� x1x2 � ω̄.

pivq n � 16. The expression for H16
3 as a memeber of IC16 can be treated as in the previous cases.

We have

H16
3 � p�ipx3x4 � x6x7 � x4x6qqh1 � px4x1 � x1x7 � ix7x8qh2,

�p�ix8x9 � x2x8 � ix1x2qh3 � px3x9 � ix9x10 � ix2x3qh4,

�p�x3x4 � x10x11 � ix4x10qh5 � px11x12 � ix1x4 � x1x11qh6,

�px1x2 � x2x12 � x12x13qh7 � px2x3 � x3x13 � x13x14qh8,

�ipx14x15 � x3x4 � x4x14qh9 � px1x15 � x4x1 � ix15x16qh10,

�px2x16 � ix1x2 � ix1x16qh11 � p�ix2x3 � ix1x2 � x1x3qh12

� x1x2x3 � x2x3x4 � x3x4x5 � x4x5x6 � x5x6x7 � x6x7x8 � x7x8x9�

x8x9x10 � x9x10x11 � x10x11x12 � x11x12x13 � x12x13x14 � x13x14x15

�x14x15x16 � x15x16x1 � x16x1x2.

h1 :� x1 � ix5, h2 :� x2 � ix6, h3 :� x3 � ix7, h4 :� x4 � ix8, h5 :� x1 � x9,

h6 :� x2 � x10, h7 :� x3 � x11, h8 :� x4 � x12, h9 :� x1 � ix13, h10 :� x2 � ix14,

h11 :� x3 � ix15, h12 :� x4 � ix16, h13 :� x1x2x3x4 � 1.
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