
DEFINE ISSUE using \ issue DEFINE TYPE OF PAPER USING \ articlehead

Series crimes

David R. Stoutemyer∗

Abstract

Puiseux series are power series in which the exponents can be fractional and/or negative
rational numbers. Several computer algebra systems have one or more built-in or loadable
functions for computing truncated Puiseux series. Some are generalized to allow coefficients
containing functions of the series variable that are dominated by any power of that variable,
such as logarithms and nested logarithms of the series variable. Some computer algebra systems
also have built-in or loadable functions that compute infinite Puiseux series. Unfortunately,
there are some little-known pitfalls in computing Puiseux series. The most serious of these is
expansions within branch cuts or at branch points that are incorrect for some directions in the
complex plane. For example with each series implementation accessible to you:

Compare the value of (z2 + z3)3/2 with that of its truncated series expansion about z = 0,
approximated at z = −0.01. Does the series converge to a value that is the negative of the
correct value?

Compare the value of ln(z2 + z3) with its truncated series expansion about z = 0, approxi-
mated at z = −0.01 + 0.1i. Does the series converge to a value that is incorrect by 2πi?

Compare arctanh(−2 + ln(z)z) with its truncated series expansion about z = 0, approxi-
mated at z = −0.01. Does the series converge to a value that is incorrect by about πi?

At the time of this writing, most implementations that accommodate such series exhibit
such errors. This article describes how to avoid these errors both for manual derivation of series
and when implementing series packages.

1 Introduction
This paper is a companion to reference [4]. That article describes how to overcome design limitation
that make many current Pusieux-series implementations unnecessarily inconvenient, such as not
providing the order that the user requests or not allowing requests for negative or fractional orders.

In contrast, this article describes how to overcome the more serious problem of results that are
incorrect on branch cuts and at branch points for most current implementations. This article is
relevant to both truncated and infinite series of almost any type, including hierarchical, Fourier,
Dirichlet and Poisson series. However, for concreteness the discussion is specific to Puiseux series
that are generalized to permit in the coefficients sub-polynomial functions of the expansion variable,
such as logarithms.

Section 2 discusses branch bugs for logarithms. Section 3 discusses branch bugs for fractional
powers. Section 4 discusses branch bugs for inverse trigonometric and inverse hyperbolic functions.
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An appropriate substitution can always transform any expansion point including ∞, −∞ and
the complex circle at radius ∞ to z = x + iy = reiθ = 0. Therefore without loss of generality the
discussion assumes that 0 is the expansion point.

To test an implementation for branch bugs in a truncated series U (z) for an expression u (z):

1. Evaluate |u (0)− U (0)|. If there is a singularity at z = 0, then the result might be undefined
even if the series is correct. Otherwise this absolute error should be 0 or very nearly so.

2. Do a high-resolution 3D plot of |u (z)− U (z)| | z → x + iy centered at z = 0 with enough
terms to span an exponent range of at least 4. Try zooming in from a moderate initial box
radius. An initial box radius of 0.5 works well for most examples in this article.

3. 3D plots can easily miss discontinuities that are ribs, crevasses, or thin cusps emanating from
z = 0 — particularly if an edge doesn’t lie along a grid line. Therefore if step 2 doesn’t reveal
an incorrect result, then

(a) Do a 2-D plot of |u (z)− U (z)| | z → r0e
iθ for θ = (−π, π] and various fixed r0 that are

well within the estimated radius of convergence.
(b) For each critical direction θc defined in Section 2.1.1, plot |u (z)− U (z)| | z → reiθc

for r = [−R,R] and various fixed R > 0 that are well within the estimated radius of
convergence.

4. If the result of step 1 is undefined because of a singularity, then exclude z = 0 or clip the plot
magnitude to a positive value � 1.

5. Within rounding error and the radius of convergence, the surface and the curves should
converge to 0.0 as the number of terms increases. If instead any of these plots converge
to an obvious jump touching z = 0, then the formula is almost certainly incorrect. If there
is a hint of a jump that grows from magnitude 0.0 at z = 0, then try instead plotting the
relative error |(u (z)− U (z)) /u (z)|, excluding z = 0.

For a real variable x, it suffices instead to evaluate u(0)− U(0) and plot |u (x)− U (x)| or∣∣∣∣u (z)− U (z)

u (z)

∣∣∣∣ .
2 Branch bugs for ln

“Spare the branch and spoil the child.”
— adapted from King Solomon’s proverbs.

Table 1 gives several logands together with one or more correct alternatives for their dominant
0-degree terms of the logarithm series expanded about complex z = 0 or real x = 0.

If an implementation gives a degree-0 term that isn’t equivalent to these correct alternatives at
x = 0 and as x → 0 from both directions or at z = 0 and as z → 0 from all directions, then the
computer algebra result is incorrect. For example, most implementations currently give the following
generalized infinite generalized Maclaurin series or a truncated version of it for ln (z2 + z3):

2 ln z +
∞∑

k=0

(−1)kzk+1

k + 1
. (1)
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Within the radius of convergence 1, this series converges to values that are too large by 2πi wherever

y ≥ 0 ∧ x <

√
1 + 3y2 − 1

3
,

or too small by 2πi wherever

y < 0 ∧ x ≤
√

1 + 3y2 − 1

3
,

with z = x + iy. For example, at z = 0.1i, ln (z2 + z3) ' 4.6002−3.04192i, whereas series (1)
truncated to o (z4) gives approximately 4.6002+3.24126i. Series (1) is also incorrect at z = −0.1.

If an implementation gives a degree-0 term that is equivalent to one of the results listed in Table
1 but more complicated, then there is room for improvement of the simplification in ways described
below.

One way to avoid returning an incorrect result is to refuse attempting series expansions on
branch cuts and on the branch points at their ends, either returning an error indication or an
unsimplified result such as “series (· · · )”. However, this precludes useful results for many examples
of frequent interest, such as

• fractional powers and logarithms of many expressions whose dominant exponent is non-zero
or whose dominant coefficient isn’t positive,

• arcsin (u (z)), arccos (u (z)), arccosh (u (z)), and arctanh (u (z)) at u (z) = 1 or u (z) = −1.

Another way to avoid returning an incorrect result is to force the user to specify a numeric direction
θ0 for the series expansion variable z = reiθ, compute

series
(
f
(
reiθ0

)
, r = 0+, o (rn)

)
,

substitute r → ze−iθ0 into the result, then preferably attach to the result the constraint “| z =
reiθ0 ∧ r > 0”. The result is then guaranteed only for direction θ0. This is a reasonable approach
when the only purpose of the series is to determine a uni-directional limit of an expression via that
of its dominant term, and for a bi-directional limit we can invoke series (. . .) twice with two different
values of θ0. However, this approach isn’t appropriate for omni-directional limits.

Moreover, with this approach it is important for θ0 to have no default, such as the most likely
choice 0. Otherwise many users won’t realize that their formula might not be correct for non-positive
or non-real z.

In contrast, this article presents formulas that are correct for all θ0 that aren’t precluded by any
constraints provided by the user, such as “ . . . | z > 0” or “. . . | − π/3 < arg z ≤ 2π/3. Moreover,
even even for the approach of requiring a numeric θ0, the formulas presented in the remainder of
this article are helpful for determining the correct behavior for that θ0.

2.1 Incorrect extraction of the dominant term
“The devil is in the details.”

— after Gustave Flaubert.
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Most computer-algebra systems use a particular branch when a multiply-branched function is
simplified for numeric arguments. This branch is most often the principal branch. However, some
computer algebra systems offer the option of using the real branch for fractional powers having odd
reduced denominators together with real radicands. Either way, for consistency the same branch
should be used for expressions and their series.

One source of incorrect ln series is omitting the Υi term in the following universal principal-
branch formula for the distribution of logarithms over products:

ln (uv) ≡ ln(u) + ln(v) + Υi, (2)

where

Υ = arg(uv)− arg(u)− arg(v) (3)

=


2π if arg(u) + arg(v) ≤ −π,
−2π if arg(u) + arg(v) > π,

0 otherwise.

(4)

This can be proved from

ln (|uv|) ≡ ln(|u|) + ln(|v|), (5)
ln (|w|) ≡ ln (w)− arg (w) i, (6)
arg(uv) ≡ mods (arg(u) + arg(v), 2π) . (7)

Here mods (u, v) is the residue of u of mod v in the symmetric interval (−v/2, v/2] for v positive.1

Remark 1. These formulas require the useful but non-universal definition

arg (0) := 0, (8)

as is done in Mathematica®. If a built-in arg (. . .) function does anything else, then an implementer
should prepend here and throughout this article appropriate cases for each possible combination of
an argument of arg (. . .) being 0. For example,

Υ =

{
0 if u = 0 ∨ v = 0,

arg(uv)− arg(u)− arg(v) otherwise.

=


0 if u = 0 ∨ v = 0 ∨ −π < arg(u) + arg(v) ≤ π,

2π if arg(u) + arg(v) ≤ −π,
−2π otherwise.

Here and throughout this article, Boolean expressions and braced case expressions are assumed to be
done using short-circuit evaluation from left- to-right within top-to-bottom order to avoid evaluating
ill-defined sub-expressions and to avoid the clutter of making the tests mutually exclusive.

1Many of the formulas involving arg (. . .) in this article can be expressed more concisely using the unwinding
number described by Corless and Jeffrey [1]. But alas, it isn’t yet built-into the mathematics curriculum and most
computer-algebra systems.
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Alternative (3) is more compact than alternative (4) and reveals that jumps in Υ can occur
only where one of arg(u), arg(v) or arg (uv) is π. However, alternative (4) is more candid because
it makes the piecewise constancy manifest rather than cryptic. Moreover, approximate values are
often substituted into expressions for purposes such as plotting, and the conditional alternative
(4) avoids having the magnitude of the imaginary part of a result be several machine ε when it
should be 0: Unlike the unconditional alternative, the conditional alternative never subtracts two
approximate angles from approximately π, giving approximately 0.

For series (ln (. . .) , z = 0, o (zn)) with negative n, the result is 0 + o (zn) if the logand doesn’t
contain an essential singularity. In contrast, for a non-negative requested n, the usual algorithm for
computing the logarithm of a series entails converting the dominant term of the logand series to 1
by factoring out the dominant term then distributing the logarithm over the resulting product:

ln (c (z) zα + g(z)) → ln

(
c (z) zα(1 +

g(z)

c (z) zα

)
→ (Ωi+ ln (c(z)zα)) + ln

(
1 +

g(z)

c (z) zα

)
. (9)

Here c (z) zα is the dominant term and g(z) is the sum of all the other terms, with alternatives (3)
and (4) giving

Ω = arg (c(z)zα + g(z))− arg

(
1 +

g(z)

c (z) zα

)
− arg (c (z) zα) (10)

=


2π if arg

(
1 + g(z)

c(z)zα

)
+ arg (c (z) zα) ≤ −π,

−2π if arg
(
1 + g(z)

c(z)zα

)
+ arg (c (z) zα) > π,

0 otherwise.

(11)

Always Ω = 0 at z = 0.
It is important to simplify Ω as much as is practical for each particular logand series. Not

only is the result more intelligible — it is usually also more accurate for approximate computation:
There can be catastrophic cancellation between terms of g(z). Therefore without good algebraic
simplification, Ω can be dramatically incorrect along and near branch cuts when evaluated with
approximate arithmetic.

Remark 2. For example, Ω ≡ 0 if g(z) ≡ 0, because then arg (1 + g(z)/ (c(z)zα)) ≡ 0 and
arg (c (z) zα) must be in the interval (−π, π].

Even if we can’t determine a simpler formula that is equivalent to formula (11) throughout the
entire complex plane or the entire real line for real z, Ω might be equivalent to a simpler expression
ω throughout the radius of convergence or the useful portion thereof. It is especially important to
exploit this for examples such as

series
(
z−1 + ez ln (−2− z) , z=0, o

(
z5
))

where Ω or ω infects all but one result term, giving a bulky result that is difficult to comprehend.
Let R > 0 be the classic radius of convergence computed disregarding any closer branch cuts, or

let R be the “radius of computational utility” for divergent series. Let R > 0 be the largest radius
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from z = 0 within which Ω and a simpler ω give identical values. Radius R can be an arbitrarily
small portion of R because a branch cut can pass arbitrarily close to z = 0. However, it is almost
always justifiable to use ω in place of Ω because:

• If our purpose is to determine the local behavior of the series at z = 0, such as for computing
a limit by computing the limit of the dominant term, then any R > 0 is sufficient justification
for using ω.

• It seems pointless to use Ω rather than a simpler ω for any purpose if R > R or if R is
greater than the percentage of R beyond which convergence is impractically slow or subject
to unacceptable catastrophic cancellation.

• If we don’t expect a generalized Puiseux series to capture infinite magnitudes associated with
singularities not at z = 0, then why should we expect such series to capture the less severe
finite-magnitude jumps associated with branch cuts that don’t touch z = 0?

• We can take the view that the generalized radius of convergence is the distance to the nearest
singularity or jump in Ω that we can’t account for with ω, and there should be no expectation
that a series is truthful beyond its generalized radius of convergence.

Here is one such opportunity for computing an ω that is significantly simpler than Ω:

Proposition 3. Let ωreal denote ω for real z. If all of the terms in the truncated logand series have
real coefficients and integer exponents, then ωreal ≡ 0.

Proof. If the truncated logand series has all integer powers of real z and all real coefficients, then
1 + g (z) / (c (z) zα) is real for all real z, and arg (1 + g (z) / (c (z) zα)) = 0 for all real z such that
g (z) / (c (z) zα) ≥ −1. There is a singularity wherever g(z)/ (c(z)zα) = −1, providing an upper
bound on the radius of convergence. Also, −π < arg (c(z)zα) ≤ π. Therefore throughout the radius
of convergence

−π < arg

(
1 +

g(z)

c (z) zα

)
+ arg (c (z) zα) ≤ π

in equation (11), making ωreal ≡ 0.

Remark 4. If we are in a mode that consistently uses the real branch for fractional powers having
odd denominators, such as the TI-Nspire real mode, then more generally ωreal ≡ 0 if all of the
coefficients are real and none of the reduced exponents have even denominators.

2.1.1 The non-zero dominant exponent case
“Beware of geeks bearing formulas.”

— Warren Buffett.

Here is a useful easy simplification test for real or complex z when the dominant exponent α 6= 0:

Proposition 5. If all of the coefficients in a truncated logand series U are real and all of the
exponents of z in U are integer multiples of a non-zero dominant exponent, then ω ≡ 0.
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Proof. Let the truncated logand series be U = c (z) zα + g(z) with dominant term c (z) zα having
non-zero α. Also, let “near z = 0” denote all

z = reiθ | r>0 ∧
∣∣∣∣ g(z)c(z)zα

∣∣∣∣<1, (12)

which bounds the radius of convergence. From equation (10), it is apparent that Ω can jump only
where one of its three arg (. . .) terms jumps. Term arg (1 + g(z)/ (c(z)zα)) can’t jump near z = 0
because c(z)zα dominates g(z). Every term in c(z)zα + g(z) can be expressed as k(z) (zα)m with
real k(z) and integer m, because the transformation zγ → (zα)m with m = γ/α is always valid for
integer m, as discussed in Section 3.1. Thus c (z) zα + g(z) is real where

arg (c (z) zα) = π, (13)

which are the only places that arg (c (z) zα) jumps. Since c (z) zα is negative there and dominates
g(z), adding the relatively small-magnitude real g(z) to negative c (z) zα leaves

arg (c (z) zα + g(z)) = π (14)

near z = 0. In equation (10), arg (c (z) zα + g(z)) and arg (c (z) zα) have opposite signs. Therefore
these jumps cancel within the radius of convergence.

Propositions 3 and 5 don’t identify all opportunities for dramatically simplifying ω. Consider
equation (10) in the neighborhood of z = 0. Let

η (θ) = lim
r→0+

arg
(
c
(
reiθ
))
. (15)

Then in the punctured neighborhood of z = 0, the term arg (c (z) zα) is

lim
r→0+

arg
(
c
(
reiθ
) (
reiθ
)α)

= mods (η (θ) + αθ, 2π) . (16)

Let η̂ denote η (θ) in formula (15) in the common case when η (θ) is independent of θ for all
−π < θ ≤ π not precluded by constraints provided by the user or introduced by the computer
algebra system. Solving mods (η̂ + αθc, 2π) = π for the critical angles θc gives

−π < θc =
(2n+ 1) π − η̂

α
≤ π, (17)

with integer n. Solving the inequalities in (17) for n gives for α > 0⌊
η̂

2π
− 1

2
− α

2

⌋
< n ≤

⌊
η̂

2π
− 1

2
+
α

2

⌋
, (18)

versus for α < 0 ⌈
η̂

2π
− 1

2
+
α

2

⌉
≤ n <

⌈
η̂

2π
− 1

2
− α

2

⌉
. (19)

There are no such angles if |α| < 1 and η̂ is sufficiently close to 0, in which case ω ≡ 0. More
generally let η be a lower bound and η̄ be an upper bound on η (θ) over −π < θ ≤ π not excluded
by any constraints. Then there are no critical angles if

(|α| − 1)π < η ∧ η < (1− |α|)π. (20)
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Here is how we can proceed when none of the above tests are beneficial: As z → 0,

c(z)zα + g(z) = c(z)zα

(
1 +

g(z)

c(z)zα

)
→ c(z)zα. (21)

Therefore the solution curves to equations (13) and (14) pair to form cusps where they don’t coincide
to cancel. Along a critical angle θc, arg (c(z)zα) = π. If also arg (1 + g(z)/ (c(z)zα)) = 0 along θc

near z = 0, then θ = θc is also the companion solution to equation (14) near z = 0. The arg (. . .)
terms for equations (13) and (14) have opposite signs in formula (10), so these jumps cancel within
the radius of convergence. Since arg (1 + g(z)/ (c(z)zα)) can’t jump near z = 0, ω is then identically
0 in the angular neighborhood of θc near z = 0.

If ω = 0 in the angular neighborhood of every critical angle, then ω ≡ 0. For example, this
is true for ln (−z2 + z3) and ln (−z−2 + z), which don’t satisfy Proposition 5 or inequality (20).
Even if there are some non-zero cusps, constraints might exclude those cusps for a non-infinitesimal
distance from z = 0. Even if there are some included cusps, it might be possible to omit either the
2π case or the −2π case as follows:

For α > 0, as θ increases through θc, arg
(
c ·
(
reiθ
)α) increases with θ on both sides of a jump

down from π to (−π)+. If arg (1 + g(z)/ (czα)) > 0 along θc near z = 0, then from equation (11),
ω = −2π along and clockwise of θc until but excluding the curved solution to equation (14). If
instead arg (1 + g(z)/ (czα)) < 0 along θc near z = 0, then ω = 2π counter-clockwise of θc through
the curved solution to equation (14).

Similarly for α < 0, for which arg
(
c ·
(
reiθ
)α) decreases on both sides of a jump up from (−π)+

to π as θ increases through θc: If arg (1 + g(z)/ (czα)) > 0 along θc near z = 0, then ω = −2π along
and counter-clockwise of θc until but excluding the curved solution to equation (14). If instead
arg (1 + g(z)/ (czα)) < 0 along θc near z = 0, then ω = 2π clockwise of θc through the curved
solution to equation (14).

Thus we can omit the 2π case if for all critical directions arg (1 + g(z)/ (czα)) ≥ 0, or we can
omit the −2π case if for all critical directions arg (1 + g(z)/ (czα)) < 0. For example, we can omit
the 2π case for ln (iz2 + iz4) and we can omit the −2π case for ln (z + iz2).

Notice that although ω can be 2π either clockwise or counter-clockwise of a critical direction, ω
can’t be 2π along a critical direction.

To determine whether expression arg (1 + g(z)/ (czα)) is zero, positive or negative along θc near
(but not at) z = 0, we could attempt computing

lim
r→0+

signum

(
arg

(
1 +

g
(
reiθc

)
c ·(reiθc)α

))
.

However, such limits are beyond the capabilities of most computer algebra systems if g has more
than one term — particularly if any of the exponents are fractional and/or any of the coefficients
depend on z. A simpler surrogate within the radius of convergence is to instead compute

lim
r→0+

signum

(
=

(
g
(
reiθc

)
c ·(reiθc)α

))
. (22)

However, this limit is also often beyond the capabilities of most computer algebra systems. Fortu-
nately there is an easily-computed surrogate for formula (22): Let s

(
reiθ
)

be the coefficient and β
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be the exponent of the lowest-degree term of g(z)/ (c(z)zα) for which(
Ic

(
g(z)

czα
, θc

)
:= lim

r→0+
=
(
s(reiθc)eiβθc

))
6= 0, (23)

if any such term exists. Let Ic (. . . , θc) := 0 if no such s
(
reiθ
)

exists. The imaginary part of
s
(
reiθc

) (
reiθc

)β dominates the imaginary parts of all subsequent terms of g(z) along θc if any exist.
Therefore Ic is a more-easily computed surrogate for determining whether arg (1 + g(z)/ (czα)) is
zero, positive or negative along θc near z = 0. The term limits for computing Ic are trivial in the
common case when a coefficient is a numeric constant, and easy even if a coefficient is a typical
sub-polynomial function of z. We can use Ω given by formula (10) or (11) if a coefficient contains
an indeterminant other than z that isn’t sufficiently constrained to decide the sign of the imaginary
part and if no imaginary parts were non-zero for previous terms.

The order to which the logand series is computed might not reveal the lowest-degree term for
which one of the Ic (. . . , θc) isn’t 0, thus affecting the resulting value of Ω. For example, if the series
for ln (z2 − iz3 − iz6) is computed to o (zn) with n ≥ 4, then the dominant term is

ln
(
z2
)

+

{
2π arg (1− iz − iz4 + · · ·+ o (zn)) + arg (z2) ≤ −π,
0 otherwise.

However, the piecewise term is absent if the series is computed to o (z3), making it incorrect by
about 2πi for values such as z = i/10−10−6 and z = −i/10+10−6. It is disturbing that computing
additional terms of a logand can thus change the zero-degree term of the logarithm series. Moreover,
it is awkward for algorithms that compute additional terms incrementally, such as described by
Norman [3]. Such is the nature of partial information along or near a branch cut.

A way to avoid this annoyance is to use the original logand expression in the arg (. . .) sub-
expressions of alternative (10) or (11) rather than using a truncated series for that logand. However,
the original logand isn’t always available: Perhaps as the logand we are given a truncated series,
not knowing a closed-form expression that it approximates. Even if we did know, using the original
expression can make computing a series in one step give a different result than series composition.
Such compositional inconsistency is an undesirable property.

More seriously, including the original non-series expression as a proper sub-expression of a series
result is worse than simply returning the original expression rather than a series: Presumably the
user requested the series to obtain insight about the behavior of the function, or to enable symbolic
operations that otherwise couldn’t be done, or to enable a numeric approximation. Returning a
result that contains the original expression as a proper sub-expression thwarts all of these objectives.
The annoyance of order-dependent coefficients is vastly preferable. A consolation is that a zero-
degree term that differs so dramatically from that of the infinite series is at least appropriate for a
nearby problem across the branch cut.
Remark 6. If the truncated logand series is simple enough so that for remaining cusps we can solve

arg (c (x+ iy) (x+ iy)α + g (x+ iy)) = π (24)

for x (y) or for y (x), or else solve

arg
(
c
(
reiθ
) (
reiθ
)α

+ g
(
reiθ
))

= π (25)
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for θ (r) or for r (θ), then we can construct a more candidly explicit representation of ω. For
example, with ln (z2 + z3),

Ω =


2π if = (z) < 0 ∧ 0 < < (z) ≤

√
1 + 3= (z)2 − 1

3
,

−2π if = (z) > 0 ∧ 0 ≤ < (z) <

√
1 + 3= (z)2 − 1

3
,

0 otherwise.

(26)

There is catastrophic cancellation here computing
√

1 + 3= (z)2 − 1 for |= (z)| � 1. This can be
avoided by expanding the expression into the series = (z)2 /2− 3= (z)4 /8 + . . ., which is also more
consistent with the user’s request for a series result. Perhaps generalized series reversion could be
used to obtain an explicit truncated series solution to equation (24) or (25) even when we can’t solve
them exactly — at least when the coefficients are all numeric and the exponents are all non-negative
integers.

When z is real, we can almost always simplify ωreal to either 0 or a two-piece result that is −2π
for negative z and/or positive z, but 0 everywhere else as follows:

Remark 7. If 0 isn’t a critical angle or Ic(g(z)/ (czα) , 0) ≤ 0, then ωreal = 0 for z ≥ 0. Otherwise
ωreal = −2π for z > 0.

If π isn’t a critical angle or Ic(g(z)/ (czα) , π) ≤ 0, then ωreal = 0 for z ≤ 0. Otherwise
ωreal = −2π for z < 0.

2.1.2 The degree-0 case
If α = 0 and η < π, then ω ≡ 0 because for formula (11), arg (1 + g(z)/ (c(z)zα)) → 0. If instead
α = 0 and arg (c (z)) ≡ π throughout all z near z = 0 that aren’t excluded by any constraints, then
arg (1 + g(z)/ (c(z)zα)) + arg (c (z)) can’t be less than −π, because arg (1 + g(z)/ (c(z)zα)) → 0.
Therefore we can at least omit the 2π case. Thus using ωπ,0 to denote ω for this special case of
z = 0 being in the branch cut,

ωπ,0 =

−2π if arg

(
1 +

g(z)

c(z)

)
> 0,

0 otherwise.
(27)

There are singularities wherever g(zs)/c(zs) = −1, and those singularities aren’t at the expansion
point z = 0. Consequently the radius of convergence doesn’t exceed the least of those |zs|. Therefore

ωπ,0 =

−2π if 0 < arg

(
g(z)

c(z)

)
< π,

0 otherwise.
(28)

Formula (28) avoids adding a small magnitude quantity to 1.0 near z = 0, so this formula is more
likely to be correct than formula (27) with approximate arithmetic.

Whenever we are comparing arg (f (z)) with −π/2, 0, π/2, or π, we can often simplify the test
further and make it more accurate for approximate numbers by writing the comparison in terms of

10
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< (f (z)) and/or = (f (z)) — particularly when f (z) has more than one term. Thus

ωπ,0 =

−2π if =
(
g(z)

c(z)

)
> 0,

0 otherwise.
(29)

This test can often be simplified further: Let b(z)zσ be the dominant term of g(z)/c(z), and let

τ(θ) = lim
r→0+

arg
(
b
(
reiθ
))
. (30)

Let τ̂ denote τ in the common case where it is independent of θ for all 0 < θ ≤ π that aren’t
excluded by any constraints.

In the neighborhood of z = 0, as θ increases from (−π)+ through π, arg (g(z)/ (c(z)zα)),
arg (b(z)zσ) and arg (τ̂ zα) increase from (-σπ)+ + τ̂ through σπ + τ̂ , but jumping down from π to
(−π)+ as θ increases past every critical angle where mods(σθc+τ̂ , 2π) = π. Expression = (g(z)/c(z))
changes sign at those places and also at every critical angle where mods(σθc + τ̂ , 2π) = 0. There
are no critical angles of either type if 0 < σ < 1/2 and τ is sufficiently close to π/2 or −π/2. More
specifically if τ is a lower bound on τ(θ) and τ is an upper bound, then ωπ,0 ≡ 0 when

(σ − 1)π < τ ∧ τ < −σπ. (31)

If instead
σπ < τ ∧ τ < (1− σ)π, (32)

then

ωπ,0 =

{
0 if z = 0,

−2π otherwise.
(33)

As examples, ωπ,0 ≡ 0 for ln
(
−1 + iz1/4

)
, whereas equation (33) applies to ln

(
−1− iz1/4

)
.

Remark 8. If critical angles occur only at the edges of regions not excluded by constraints, then
we can compute Ic (g(z)/c(z), . . .) at those critical angles and at one included non-critical angle to
attempt simplifying formula (29). For example with ln

(
−1 + iz1/2 + z

)
, the one critical angle is π,

along which Is is non-positive. Ic is also non-positive along the included non-critical angle −π/2,
so ωπ,0 ≡ 0.

In contrast for ln
(
−1− iz1/2 + z

)
, the one critical angle is π, along which Ic is non-positive.

However, Ic is positive along the included non-critical angle π/2. Therefore ω is 0 for the ray z ≤ 0
but −2π everywhere else.

If a critical angle is interior to an included region, then we can simply use formula (29). Remark
7 is also applicable to ωπ,0 for real z.

Remark 9. For an example such as ln (c+ z2 + z3) where a value such as 1, -1 or 0 could subsequently
be substituted for the literal constant c, a completely correct result should piecewise account for all
possible cases.

11
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2.2 Incorrect extraction of the dominant coefficient
A logarithm of a product is more concise and more efficient to approximate numerically than a sum
of logarithms of the factors. For this reason, users often prefer a result that contains a logarithm
of a product rather than an equivalent sum of logarithms.

However, at this time many existing generalized Puiseux-series implementations always dis-
tribute the logarithm of the dominant term over its coefficient and cofactor. This distribution is
justified for a hierarchical series if the coefficient is itself a series in logarithms or nested logarithms
depending on z — at least when this distribution unifies two otherwise different logarithms. For
example, it is more consistent to have ln (z) throughout a series than to have ln (z) in some places
and ln (−2z) in other places.

However, this distribution provides an additional opportunity for incorrect results caused by
ignoring the Υi term in equation (2). Applying this transformation twice and simplifying gives

ln (c (z) zα + g(z)) → (Φi+ ln (c (z)) + ln (zα)) + ln

(
1 +

g(z)

c (z) zα

)
, (34)

where

Φ = Ω + arg (c(z)zα)− arg (c(z))− arg (zα) , (35)

= Ω +


2π if arg (c(z)) + arg (zα) ≤ −π,
−2π if arg (c(z)) + arg (zα) > π,

0 otherwise,

(36)

= arg (c (z) zα + g(z))− arg

(
1 +

g(z)

c (z) zα

)
− arg (c(z))− arg (zα) , (37)

=


2π if arg (c(z)) + arg (zα) + arg

(
1 +

g(z)

c(z)zα

)
≤ −π,

−2π if arg (c(z)) + arg (zα) + arg

(
1+

g(z)

c(z)zα

)
> π,

0 otherwise.

(38)

Alternatives (35) and (36) are advantageous when ω is a constant, because only one term occurs in
the arguments of arg (. . .). Otherwise alternative (38) is more concise and candid.

Let υ be a lower bound and υ be an upper bound on mods (αθ, 2π) for all angles −π < θ ≤ π
that aren’t excluded by constraints, with η and η being corresponding bounds on η (θ) defined by
equation (15). In equation (36) the 2π case can be omitted if

η + υ > −π, (39)

and/or the −2π case can be omitted if

η + υ < π. (40)

The same is true for alternative (38) because arg (1 + g(z)/ (c(z)zα)) → 0.
We can use η = η = η̂ for the common case where η is independent of θ. For unrestricted

complex z we can use υ = min (1, |α|)π and υ = −υ. For unrestricted real z we can use the

12
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intervals

[υ, υ] =


[απ, 0] if − 1 < α < 0,

[0, 0] if α = 0,

[0, απ] if 0 < α ≤ 1,

[−π, π] otherwise.

(41)

Alternative (37) reveals that jumps in ω near z = 0 can occur only where arg (zα) = π, where
arg (c(z)) = π, and where arg (c (z) zα + g(z)) = π. When arg (c(z)) 6= 0, the three solution sets
for these three equations typically don’t pair to cancel or form cusps. Instead they typically form
non-cusp wedges of values −2π, 0 and 2π. Therefore, if there are critical angles interior to the
included directions, then:

• Non-zero local φ occur in infinitely more directions than non-zero ω. Therefore it is less likely
that any constraints will preclude all of the non-zero wedges or even all of the positive ones
or all of the negative ones.

• It is impossible for both edges of every wedge to coincide and thereby cancel to give φ ≡ 0 for
all directions near z = 0.

Thus we often pay dearly for distributing the logarithm over a non-positive coefficient and its
co-factor, which is unnecessary in many applications.

Remark 10. For real z, limz→0+ arg (zα) = 0 and limz→0 arg (1 + g(z)/ (c(z)zα)) → 0. Therefore
equation (38) reveals that φ = 0 for z ≥ 0 if limz→0+ arg (c(z)) /∈ {−π, π}. When limz→0+ arg (c(z)) ∈
{−π, π}, then we can compute Ic (g(z)/ (c(z)zα) , 0) from definition (23) to decide whether φ is 2π,
−2π or 0 for z > 0. Similarly limz→0− arg (zα) = mods (απ, 2π). Therefore if

lim
z→0−

(mods (απ, 2π) + arg (c(z))) /∈ {−π, π} ,

then φ = 0 for z ≤ 0. Otherwise we can compute Ic (g(z)/ (c(z)zα) , π) to determine whether φ is
2π, −2π or 0 for z < 0. We can then combine these results to obtain φreal.

2.3 Incorrect extraction of the dominant exponent
If the dominant exponent is neither 0 nor 1 and either the coefficient of the dominant term is 1
or we have distributed the logarithm over it, then we can consider extracting the exponent of the
dominant power.

2.3.1 Principal branch
The relevant universally correct principal-branch identity for extracting the exponent of ln (zα) is

ln (uα) ≡ α ln(u) + ξi, (42)

where

ξ = arg (uα)− α arg(u), (43)

= 2π

⌊
1

2
− α arg(u)

2π

⌋
. (44)
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These alternatives can be derived from identity (6) together with ln (|uα|) = α ln (|u|) and the fact
that arg (uα) = mods (α arg (u) , 2π). Alternative (44) is more accurate for approximate arithmetic
and more candid because it is manifestly piecewise-constant integer multiples of 2π.

Expression ξ can be simplified to a single constant 2nπ if

(2n− 1)π < α arg(u) ≤ (2n+ 1)π, (45)

for an integer n together with the smallest and largest arg(u) in (−π, π] that aren’t excluded by
any constraint. For example, ξ ≡ 0 if

−π < α arg(u) ≤ π. (46)

If instead (2n − 1)π < α arg(u) ≤ (2n + 3)π for all included arg (u), then ξ can be more candidly
represented as {

2nπ if α arg(u) ≤ (2n+ 1)π,

(2n+ 2)π otherwise.
(47)

Extraction of a fractional power has the benefit of converting a troublesome fractional power into
a benign multiplication by a fraction.

Also, there is more justification for extraction of the dominant exponent for a hierarchical series
wherein the coefficient can be a series in a logarithm or nested logarithm of z.

In our case, u = z, and combining this transformation with distribution over the dominant term
and the coefficient thereof gives the overall transformation

ln (c (z) zα + g(z)) → (Ψi+ ln (c (z)) + α ln (z)) + ln

(
1 +

g(z)

c (z) zα

)
, (48)

where

Ψ = Φ + arg (zα)− α arg (z) , (49)

= Φ + 2π

⌊
1

2
− α arg(z)

2π

⌋
, (50)

= Ω + arg (c(z)zα)− arg (c(z))− α arg (z) , (51)

= Ω + 2π

⌊
1

2
− α arg(z)

2π

⌋
+


2π if arg (c(z)) + arg (zα) ≤ −π,
−2π if arg (c(z)) + arg (zα) > π,

0 otherwise,

(52)

= arg (c (z) zα + g(z))− arg

(
1 +

g(z)

c (z) zα

)
− arg (c (z))− α arg (z) , (53)

= 2π

⌊
1

2
− α arg(z)

2π

⌋
+


2π if arg(c(z)) + arg(zα) + arg

(
1+

g(z)

c(z)zα

)
≤ −π,

−2π if arg(c(z)) + arg(zα) + arg

(
1+

g(z)

c(z)zα

)
> π,

0 otherwise.

(54)

Alternative (50) is advantageous when ψ is non-constant but φ is simple. Alternative (52) is
advantageous when ψ and φ are non-constant but ω is simple. Otherwise alternative (54) is most
candid and least subject to catastrophic cancellation.
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Equation (53) reveals that the critical angles are the union of the solutions to arg (z) = π,
arg (c(z)zα) = π, and (if c (z) depends on z) arg (c(z)) = π. The piecewise-constant values of
Ψ are also multiples of 2π, but no longer limited to be one of −2π, 0 or 2π. Therefore with or
without constraints on arg (z), the local version ψ is even less likely than φ to be identically 0 or
otherwise constant, and likewise for ψreal. However, we will see that the use of Ψ rather than Ω
is mandatory for the fractional power of a series. Therefore it is important to simplify Ψ as much
as is practical: The floor term in alternatives (50), (52) and (54) can be simplified as discussed
at the beginning of this sub-subsection. Subsection 2.2 describes how to simplify the conditional
term in alternative (52). Simplification of the conditional term in alternative (54) is similar because
arg (1 + g(z)/ (c(z)zα)) → 0.

For real z, we can compute a local version of Ψ, ψreal, by computing φreal, then adding

2π

⌊
1

2
− α

2

⌋
to the case for negative z.

2.3.2 The real branch for ln of fractional powers
The Derive computer algebra system offers a Branch control variable that, if assigned the value
Real causes fractional powers having odd denominators to use the real rather than principal branch
when a radicand is negative. TI-Nspire bundles this choice into its Real mode.

For example, in Real mode (−1)1/3 → −1 rather than 1/2+ i
√

3/2, and (−1)2/3 → 1 rather than
−1/2 + i

√
3/2. This default option is much appreciated by students and faculty who fear or loathe

non-real numbers, which is a majority of TI’s customers most of the time. However, this choice is
incompatible with formulas (42) through (43). For example, these principal-branch formulas give

ln
(
x2/3

)
→ 2

3
ln (x) +

(
arg
(
x2/3

)
− 2

3
arg (x)

)
i.

If we subsequently substitute -8 for x, then this result simplifies to

2

3
ln (−8) +

((
arg
(
(−8)2/3

)
− 2

3
arg (−8)

)
i

)
→ 2 ln (2) +

2

3
πi,

whereas for the real branch, ln
(
(−8)2/3

)
→ ln (4) → 2 ln (2) .

The easiest way to simplify logarithms of fractional powers using the real branch is to refrain
from extracting reduced fractional exponents having an odd denominator unless the sign of the base
can be determined — perhaps with the assistance of a constraint on arg (z). Moreover, for real-
branch mode we should also refrain from extracting integer exponents that are even. For example,
we shouldn’t extract the exponent 12 from ln (x12) for a real x because

ln
(
x12
)
→ 12 ln (x) +

(
arg
(
x12
)
− 12 arg (x)

)
i

→ 12 ln (x)−

{
12πi if x < 0,

0 otherwise.

Even though this result is real for all real x, this appearance of i in the result is unwelcome to
most real-mode customers. Even principal-branch complex-mode customers would rather not see i
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in an expression if it can as concisely or more concisely be expressed without i — especially if the
result is real for all real values of interest for any variables therein. However, to help reduce the
number of distinct logands in a result for x ∈ R, we can extract all of an even exponent but 2:

ln
(
x12
)
→ 6 ln

(
x2
)
.

Another alternative for real x is ln (x12) → 12 ln (|x|). However, absolute-value functions are
troublesome and best avoided where possible. For example, if in the same series we use

ln
(
x3
)
→ 3 ln (x)−

{
2πi if x < 0,

0 otherwise,

then we obtain a series that contains both ln (x) and ln (|x|).

3 Branch bugs for fractional powers
Some series implementations can give incorrect series results for fractional powers. For example,
with (z2 + z3)

3/2 most implementations currently incorrectly give the equivalent of

∞∑
k=0

3 (−1)k (2k)!

(2k − 3)(2k − 1)k!24k
zk+3

or a truncated version of it. This series is incorrect by a factor of -1 left of x =
(√

3y2 + 1− 1
)
/3

for z = x+ iy.
Table 2 lists one or more correct alternative multiplicative correction factors for the Puiseux

series of some fractional-power expressions expanded about complex z = 0 or real x = 0.
The probable causes of an incorrect result are related to those for logarithms of series. The

usual algorithm for computing a numeric power β of a series requires that the dominant term be 1.
Therefore if the series of the radicand is c (z) zα + g(z), with c (z) zα being the dominant term, we
must:

1. Factor out c (z) zα.
2. Distribute the exponent β over the three factors (z) , czα and 1 + g (z) / (c (z) zα).
3. Transform (zα)β to zαβ.
4. Compute the series for (1 + g (z) / (c (z) zα))β by the usual algorithm.
5. Distribute c (z)β zαβ over the terms computed in step 5.

Steps 2 and 3 can contribute to an angular rotation factor of the form (−1)··· that should also be
distributed in step 5.
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3.1 Principal-branch series of fractional powers
Zippel’s formula [5] generalizes to the following universal principal-branch formula for the distribu-
tion of real exponents over products:

(uv)β ≡ (−1)δ uβvβ (55)

where

δ =
β

π

(
arg
(
(uv)β

)
− arg(uβ)− arg(vβ)

)
. (56)

For real α and β, a universal principal-branch formula for transforming a power of a power to
an unnested power is

(wα)β → (−1)ζ wαβ (57)

where

ζ :=
β

π
(arg (wα)− α arg (w)) . (58)

This can be derived from the identities

|p| ≡ (−1)− arg(p)/πp, (59)
|qα|β ≡ |q|αβ . (60)

Applying these formulas to our case gives

(c (z) zα + g (z))β →
(
c(z)zα

(
1 +

g (z)

c (z) zα

))β

→ (−1)Λc (z)β zαβ

(
1 +

g (z)

c (z) zα

)β

(61)

where modulo 2, which suffices for (−1)Λ,

Λ ≡ β

π

(
arg (c (z) zα + g (z))− arg

(
1+

g(z)

c(z)zα

)
− arg(c (z))− α arg(z)

)
=

β

π
Ψ, (62)

with Ψ defined by alternatives (49) through (54). Let

L := (−1)Λ. (63)
= L1L2, (64)
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where

L1 = (−1)
2β

1

2
−
α arg (z)

2π


, (65)

L2 = (−1)βΩ/(2π)


(−1)2β if arg(c (z)) + arg(zα) ≤ −π,
(−1)−2β if arg(c (z)) + arg(zα) > π,

1 otherwise,

(66)

=


(−1)2β if arg(c (z)) + arg(zα) + arg

(
1+

g(z)

c(z)zα

)
≤ −π,

(−1)−2β if arg(c (z)) + arg(zα) + arg

(
1+

g(z)

c(z)zα

)
> π,

1 otherwise.

(67)

Alternative (66) is preferable for L2 when ω is constant. Techniques described in subsection 2.3
can further simplify the floor sub-expression in L1. Also, the exponents of -1 in these formulas can
be simplified and canonicalized by replacing them with their near-symmetric residue modulo 2.

Remark 11. In the common case where β is integer, then

(−1)2β = (−1)−2β = (−1)2βb1/2−α arg(z)/(2π)c = 1,

so L can be simplified to 1.

Remark 12. In the next most common case where β is a half-integer, L1 can be expressed more
candidly as

L̂1 =

{
1 if mods (π − α arg(z), 2π) ≥ 0,

−1 otherwise,
(68)

and L2 can be simplified to

L̂2 = (−1)βΩ/(2π)

{
1 if − π < arg(c (z)) + arg(zα) ≤ π

−1 otherwise.
(69)

=

1 if − π < arg(c (z)) + arg(zα) + arg

(
1+

g(z)

c(z)zα

)
≤ π,

−1 otherwise.
(70)

It is easy and worthwhile to test for these cases. Alternative (69) is preferable when ω is a constant.

Techniques described in subsection 2.3 can further simplify local equivalents to L2 and L̂2 —
particularly for real z.

Also, if the local equivalent simplifies to a piecewise constant that is one value `0 at z = 0 for
which 0`0 simplifies to 0, but another value `∗ everywhere else, then we can simply use `∗ for all of
the terms having positive degree, because those powers of z are 0 at z = 0. This can dramatically
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simplify the result because often there are no non-positive degree terms or only one. For example,
with real x there is only one non-positive degree term for

series
((
−1 + x−ix2

)7/2
, x = 0, o

(
x2
))

→

({
1 if x = 0

−1 otherwise

)
(−i)− 7

2
ix+

35

8
ix2 + o

(
x2
)
.

Otherwise if L doesn’t simplify to a constant, then we have to include a perhaps complicated
factor multiplying every term of the result, because extracting the dominant coefficient and exponent
are mandatory for numeric powers of series. This is significantly more annoying than the possible
one piecewise-constant term for a logarithm of a series. If we choose to distribute non-constant L
over every term, then the result is significantly bulkier and less intelligible. If instead we choose to
return an undistributed product of this factor with a sum of terms, then we have denied the user
what they implicitly requested by a function named series — a sum of terms.

If we are implementing the full generality of a hierarchical series, then such recursively-represented
series have some appeal, because the jumps in the rotation angle make it have some properties of
some essential singularities, which dominate any power of z. However, one can argue that such
jumps belong in the coefficients because the magnitude of the rotation factor is always 1, whereas
the logarithmic singularities that we already allow in the coefficients have infinite magnitude at
z = 0.

It is easy for a human user to use an expand (. . .) function to distribute the factor over the terms
after seeing an unexpanded result. However, the user might be other functions whose authors must
be knowledgeable enough to realize that they should always apply expand (. . . , z) to the result of
series (. . .) because it could be an expandable product.

If we are not implementing the full generality of hierarchical series, then a more serious disadvan-
tage of not automatically distributing the factor is that it requires a special field for a multiplicative
factor in the series data structure; and one such specialized exceptional field is inadequate for adding
series containing such multiplicative factors if the series have different dominant exponents.

Expressions such as (−1)2β can alternatively be expressed as L := e2βπi or represented that way
internally. However for presentation in results, (−1)2β avoids a perhaps-unnecessary i and more
obviously indicates that the factor has magnitude 1.

Remark 13. Whenever z is real and L contains more than one piecewise factor, their product can
often be combined into a single factor by separately simplifying their product under the alternative
constraints z < 0, z = 0, and z > 0, then forming a single piecewise or constant factor accordingly
if the three values are constants. This process often simplifies the product to the constant 1 when
β is a half integer.

3.2 Real-branch series of fractional powers
For computing a fractional power of a series we must fully distribute the exponent over the dominant
coefficient and dominant power, then combine the two exponents of the latter into a product. A
way to accomplish this correctly for real-branch mode is to use in this mode the following rewrite
rules for reduced exponents for a real expression t together with integers m and n:

arg
(
t2m/(2n+1)

)
→ 0, (71)

arg
(
t(2m+1)/(2n+1)

)
→ arg (t) . (72)
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4 Branch bugs for inverse trig & hyperbolic series
Kahan [2] is often cited as a standard for defining the branch cuts of the inverse trigonometric
and inverse hyperbolic functions, together with the principal values on those branch cuts and on
the branch points that end them. In comparison to Derive, his definition of arctan (. . .) has the
disadvantage of violating the useful identity

arctan

(
z√

1− z2

)
≡ arcsin (z) . (73)

However, this section uses Kahan’s definitions, which are used by TI-nspire.
This section doesn’t discuss the six secondary functions such as arcsec (z) := arccos (1/z) and

arccot (z) := π/2 − arctan (z) because their series are easily computed from such definitions. Be-
ware, however, that different mathematical software might use different definitions. For example,
Mathematica uses

arccot (z) :=

π/2 if z = 0,
i

2
(ln (1− i/z)− ln (1 + i/z)) otherwise,

which is not equivalent everywhere to π/2− arctan (z).
One way to compute series for the primary inverse trigonometric and inverse hyperbolic functions

is by their integral definitions. However, this doesn’t directly determine the dominant term, and
the implementation is complicated when the coefficients can contain piecewise constant and nested
logarithmic functions of the series variable.

Another way to compute such series is to use their integral definitions. However, the handling of
non-constant coefficients that can include nested logarithms and piecewise constants is problematic,
and this method alone doesn’t specify the degree-0 term of the result.

Consequently, this article instead uses Kahan’s definitions in terms of logarithms and powers.
Many of the tests in this section entail comparing the imaginary part of a series V with 0.

For both real and complex z these tests can often be simplified by determining critical angles and
perhaps also computing Ic (V, θc), as described in Sub-subsections 2.1.1 and 2.1.2. Some of the
following formulas instead entail comparing the real part of a series V with 0. They often can
similarly be simplified by determining critical angles and perhaps also computing Ic (iV, θc), which
maps the real part to an imaginary part.

4.1 Series for arctanh
The inverse hyperbolic tangent of a series U can be computed from the identity

arctanh (U) ≡ ln (1 + U)− ln (1− U)

2
. (74)

The logarithms in formula (74) can contribute expressions involving ω, φ or ψ as discussed in
Section 2. The result is candid in most cases. However, if series U = czα + g(z) has a negative
dominant exponent α, then the zero-degree term computed by (74) is

ln (czα)− ln (−czα) + (Ω (U + 1) + Ω (−U + 1)) . (75)

20



DEFINE SHORT AUTHOR HEADER USING \ authorhead

This expression can and should be replaced with the simpler local equivalent

πi

2


±1 if z = 0,

1 if = (U) > 0 ∨ = (U) = 0 ∧ < (U) < 0

−1 otherwise,

, (76)

which is also less prone to rounding errors.

4.2 Series for arctan
The inverse tangent of a series U can be computed from the identity

arctan (U) ≡ −i arctanh (iU) . (77)

The degree-0 term of arctan (U) is

0 if α > 0,

±π/2 if α < 0 ∧ z = 0,

π/2 if α < 0 ∧ (< (u) > 0 ∨ < (u) = 0 ∧ = (u) > 0) ,

−π/2 if α < 0 ∧ (< (u) < 0 ∨ < (u) = 0 ∧ = (u) < 0) ,
1
2

(
−i ln

(
ibzσ

2

)
+ Ω (ibzσ + ih(z))

)
if U = i+ bzσ + h(z),

1
2

(
i ln
(−ibzσ

2

)
− Ω (−ibzσ − ih(z))

)
if U = −i+ bzσ + h(z),

i arctanh(t) + 1
2
Ωπ,0 (1− t+ ig(z)) if U = ti+ g(z) ∧ t > 1,

i arctanh(t)− 1
2
Ωπ,0 (1 + t− ig(z)) if U = ti+ g(z) ∧ t < −1,

arctan (c (z)) otherwise.

(78)

Formula (77) should automatically achieve these simplified forms except probably for the three
cases where α < 0.

Table 3 lists some simplified correct 0-degree terms for arctan (. . .). Corresponding examples for
arctanh (. . .) can be derived from (77).

4.3 Series for arcsinh, arcsin and arccos
The inverse hyperbolic arcsine, arcsine and arccosine of a series U can be computed from

arcsinh (U) ≡ ln
(
U +

√
1 + U2

)
, (79)

arcsin (w) ≡ −i arcsinh (iw) , (80)

arccos (w) ≡ π

2
− arcsin (w) . (81)

The square root might contribute a factor containing expressions involving arg (. . .) to all of its result
terms. The subsequent logarithm in identity (79) might then contribute horrid nested instances of
arg (. . .) to a 0-degree term in the result.

Mathematica 7.0.1.0 avoids this by instead using correction terms and factors that are specific
to inverse trigonometric and inverse hyperbolic functions: The resulting arguments of arg (. . .) are
unnested and entail the terms of U , which are often fewer and simpler than those of 1 + U2 and
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U +
√

1 + U2. Extensive numeric experiments provide convincing evidence that they are correct
in most instances. Most of the formulas in this subsection and the following one are simplified
and corrected versions of those corrections. When using these corrections and identity (79), it is
important to use the rewrite ln (pzα) → ln(p) + α ln(z), but suppress the branch corrections for
logarithms and fractional powers discussed in previous sections. It is also important to compute
intermediate series such as

√
1 + U2 to sufficient order so that the final order is as requested.

A correction term or factor is unnecessary for arcsinh (U(z)) if the dominant degree of U(z) is
positive or if the dominant degree is 0 and U (0) isn’t on either branch cut or either branch point.
Otherwise, here are the different cases:

4.3.1 Case arcsinh (U(z) = ĉi+ g(z)) with ĉ < −1 ∨ ĉ > 1

If the dominant term of U(z) is ĉi with ĉ < −1 ∨ ĉ > 1, then

arcsinh (ĉi+ g (z)) =
iπ sign(ĉ)

2
+ T ·

(
arccosh (ĉ) + o

(
z0
))
,

where

T =

{
1 if sign(ĉ)< ( g(z)) ≥ 0,

−1 otherwise.
(82)

4.3.2 Case arcsinh (U(z) = c̄i+ g(z)) with c = 1 ∨ c̄ = −1

If the dominant term of U(z) is c̄i with c = 1 ∨ c̄ = −1 and the next non-zero term is bzσ, then

arcsinh (c̄i+bzσ+h(z)) =
iπc̄

2
+ (−1)PQ ·

(
ic̄
√

2ibzσ/2 + o
(
zσ/2

))
where

P =

1

2
−

arg

(
ic̄b+

ic̄h(z)

zσ

)
+ σ arg(z)

2π

 , (83)

Q =

−1 if arg (b) =
πc̄

2
∧ <

(
h(z)

zσ

)
< 0,

1 otherwise.
(84)

Expression ic̄b+
ic̄h(z)

zσ
→ ic̄b as z → 0, so the critical angles for P are

−π < θc =
(2n+ 1) π − arg (ic̄b)

σ
≤ π (85)

for all integer n satisfying⌊
arg (ic̄b)

2π
− 1

2
− σ

2

⌋
< n ≤

⌊
arg (ic̄b)

2π
− 1

2
+
σ

2

⌋
(86)

There are no such angles if 0 < σ < 1 and arg (ic̄b) is sufficiently close to 0: If

(σ − 1)π < arg (ic̄b) < (1− σ)π, (87)
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then P ≡ 0, which is easily tested.
If 0 < σ ≤ 2, then a more candid and accurate representation of (−1)P is1 if − π < arg

(
ic̄b+

ic̄h(z)

zσ

)
+ σ arg(z) ≤ π,

−1 otherwise.
(88)

4.3.3 Case arcsinh (. . .) with negative dominant exponent and imaginary dominant co-
efficient

Use formula (79) including the angle rotation factor for the square root and the correction term for
the logarithm. Brace yourself for a truly ugly result.

4.3.4 Case arcsinh (. . .) with negative dominant exponent and non-imaginary dominant
coefficient

If the dominant exponent α of U(z) is negative and the dominant coefficient c isn’t pure imaginary,
then

arcsinh (czα + g(z)) = (−1)WN ·
(
iπW +

ln (4c2)

2
+ α ln (z) + o

(
z0
))

. (89)

where

W =

1

2
−

arg

((
c+

g(z)

zα

)2
)

+ 2α arg(z)

2π

 , (90)

N =

{
1 if <(c) > 0,

−1 otherwise.
(91)

Expression
(
c+

g(z)

zα

)2

→ c2 as z → 0, so the critical angles for W are

−π < θc =
(2n+ 1) π − arg (c2)

2α
≤ π (92)

for all integer n satisfying⌊
arg (c2)

2π
− 1

2
− α

2

⌋
< n ≤

⌊
arg (c2)

2π
− 1

2
+
α

2

⌋
(93)

There are no such angles if −1/2 < α < 0 and arg (c2) is sufficiently close to 0: If

(α− 1)π < arg
(
c2
)
< (1− α)π, (94)

then W ≡ 0, which is easily tested.
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If −1 ≤ α < 0, then more candidly and accurately,

W =



1 if arg

((
c+

g(z)

zα

)2
)

+ 2α arg(z) > π,

−1 if arg

((
c+

g(z)

zα

)2
)

+ 2α arg(z) ≤ −π,

0 otherwise;

(95)

(−1)W =

1 if − π < arg

((
c+

g(z)

zα

)2
)

+ 2α arg(z) ≤ π,

−1 otherwise.

(96)

Some incorrect series for arcsinh (. . .), arcsin (. . .) and arccos (. . .) in current implementations
are attributable to incorrect or omitted correction terms and/or factors. Table 4 lists some examples
for arcsinh (. . .). Corresponding examples for arcsin (. . .) and arccos (. . .) can be derived from (80)
and (81).

4.4 Branch corrections for arccosh
The inverse hyperbolic arccosine of a series U can be computed from either of

arccosh (U) ≡ 2 ln

(√
U − 1

2
+

√
U + 1

2

)
, (97)

arccosh ≡ ln
(
U +

√
U − 1

√
U + 1

)
. (98)

The latter is slightly slower asymptotically because of the series multiplication. The alternative
that gives a simpler result might depend on the simplifier and the case, such as whether or not the
dominant degree of U is negative.

Each square root in these formulas might contribute a factor containing expressions involving
arg (. . .) to all of its result terms. The subsequent logarithm in identity (97) or (98) might then
contribute horrid nested instances of arg (. . .) to a 0-degree term in the result. Here are some
simplified correction terms and factors that avoid this:

Let the dominant term of U be czα, and let the sum of the remaining terms be g(z). Let bzσ be
the dominant term of g(z), and let h(z) be the remaining terms of g(z). A correction term and/or
factor is unnecessary if α = 0 ∧ (= (c) 6= 0 ∨ c > 1). Otherwise we have the following cases:

4.4.1 Case arccosh (· · · ) with dominant degree 0 & dominant coefficient < -1
If α = 0 and c < −1, then

arccosh (c(z) + g (z)) = 2iπJ + arccosh (c(z)) + o
(
z0
)

(99)

where

J =

{
−1 if = (g(z)) < 0,

0 otherwise.
(100)
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4.4.2 Case arccosh (· · · ) with dominant degree 0 and dominant coefficient in (-1, 0) or
(0,1)

If α = 0 ∧ (−1 < c < 0 ∨ 0 < c < 1) then

arccosh (c+ g (z)) = K ·
(
arccosh (c) + o

(
z0
))
, (101)

where

K = (−1)J =

{
−1 if = (g(z)) < 0,

1 otherwise.
(102)

4.4.3 Case arccosh (· · · ) with dominant degree 0 and dominant coefficient 1
If instead α = 0 and c = 1, then

arccosh (1 + bzσ + h (z)) = BE ·
(√

2bzσ/2 + o
(
zσ/2

))
, (103)

where

B = (−1)


1

2
−

arg

(
b+

h(z)

zσ

)
+ σ arg (z)

2π


, (104)

E =

−1 if arg (b) = π ∧ =
(
h (z)

zσ

)
< 0,

1 otherwise.
(105)

Expression b+ h(z)
zσ → b as z → 0, so the critical angles for B are

−π < θc =
(2n+ 1) π − arg (b)

σ
≤ π (106)

for all integer n satisfying ⌊
arg (b)

2π
− 1

2
− σ

2

⌋
< n ≤

⌊
arg (b)

2π
− 1

2
+
σ

2

⌋
. (107)

There are no such angles if 0 < σ < 1 and arg (b) is sufficiently close to 0: If

(σ − 1)π < arg (b) < (1− σ)π, (108)

then B ≡ 0, which is easily tested.
If 0 < σ ≤ 2, then a more candid and accurate representation of B is1 if − π < arg

(
b+

h(z)

zσ

)
+ σ arg (z) ≤ π,

−1 otherwise.
(109)
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4.4.4 Case arccosh (· · · ) with dominant degree 0 and dominant coefficient -1
If α = 0 and c = −1, then

arccosh (−1 + bzσ + h (z)) = iπC + CBE ·
(
i
√

2bzσ/2 + o
(
zσ/2

))
where

C =

{
1 if = (bzσ + h (z)) < 0,

−1 otherwise.
(110)

4.4.5 Case arccosh (· · · ) with negative dominant degree
If instead α < 0 then

arccosh (czα + g (z)) = 2iπ (D1 +M) + ln (2c) + α ln (z) + o
(
z0
)

(111)

where

D1 =

1

2
−

arg

(
c+

g (z)

zα

)
+ α arg (z)

2π

 , (112)

M =

1 if arg (c) = π ∧ =
(
g(z)

zα

)
< 0,

0 otherwise.
(113)

Expression c+ g(z)
zα → c as z → 0, so the critical angles for D1 are

−π < θc =
(2n+ 1) π − arg (c)

α
≤ π (114)

for all integer n satisfying⌊
arg (c)

2π
− 1

2
− α

2

⌋
< n ≤

⌊
arg (c)

2π
− 1

2
+
α

2

⌋
. (115)

There are no such angles if −1 < α < 0 and arg (c) is sufficiently close to 0: If

− (1 + α)π < arg (c) < (1 + α)π, (116)

then D1 ≡ 0, which is easily tested.
If −2 < α < 0, then a more candid and accurate representation of D1 is1 if − π < arg

(
c+

g(z)

zα

)
+ α arg (z) ≤ π,

−1 otherwise.
(117)
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4.4.6 Case arccosh (· · · ) with positive dominant degree
If instead α > 0, then

arccosh (czα + g (z)) = (−1)D1 (−1)D2 G ·
(
iπ

2
+ o

(
z0
))

(118)

where

D2 =

1

2
− 1

2π

arg

 −1

c+
g(z)

zα

− α arg(z)


 , (119)

G =



−1 if z 6= 0 ∧ = (c) < 0 ∨

arg (c) = π ∧ =
(
g(z)

zα

)
< 0 ∨

arg (c) = 0 ∧ =
(

g(z)

czα + g(z)

)
< 0,

1 otherwise.

(120)

Expression −1/ (c+ g(z)/zα) → −1/c as z → 0, so the critical angles for D2 are

−π < θc =
(2n+ 1) π − arg (−1/c)

α
≤ π (121)

for all integer n satisfying⌊
arg (−1/c)

2π
− 1

2
− α

2

⌋
< n ≤

⌊
arg (−1/c)

2π
− 1

2
+
α

2

⌋
. (122)

There are no such angles if 0 < α < 1 and arg (c) is sufficiently close to 0: If

(α− 1)π < arg (−1/c) < (1− α)π, (123)

then D2 ≡ 0, which is easily tested.
If 0 < α ≤ 2, then a more candid and accurate representation of D2 is1 if − π < arg

(
−1/

(
c+

g(z)

zα

))
+ α arg (z) ≤ π,

−1 otherwise.
(124)

When using these corrections and identity (97) or (98), it is important to use the rewrite
ln (czα) → ln(c) + α ln(z) but suppress in these formulas the logarithmic and fractional power
adjustments discussed in Sections 2 and 3. Also, sub-expressions such as

−1

c+
g(z)

zα

and
g(z)

czα + g(z)

in (119) and (120) can and should be approximated by appropriate-order series. Note that a
truncated series for these two sub-expressions usually can’t be exact for non-zero g(z). Therefore
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we should expect some narrow cusps in which the corrections are not piecewise constant. If g(z) is
known to o (zm), then we can compute the series for these two sub-expressions to o (zm−α).

For both arcsinh (. . .) and arccosh (. . .), if we are unable to narrow the choice to one of the above
cases for reasons such as c containing insufficiently constrained indeterminates other than z, then
we should construct a piecewise result from all of the cases that we can’t preclude.

Table 5 contains some correct results for arccosh (. . .) series.

Summary
The generalization from Taylor series to generalized Puiseux series introduces a surprising number of
difficulties that haven’t been fully addressed in previous literature and implementations. The most
serious of these is incorrect results for expansion points that are on a branch cut or a branch point.
Formulas are presented here that correct this for logarithms, fractional powers, inverse trigonometric
functions, and inverse hyperbolic functions. These corrections typically entail an additive piecewise-
constant multiple of 2πi and/or a unit-magnitude piecewise-constant multiplicative factor. Some
of these corrections are applicable even to Taylor series. There are many alternative formulas for
these corrections. The alternatives presented here are chosen:

• to reduce catastrophic cancellation when evaluated with approximate arithmetic,
• to candidly reveal the piecewise constancy,
• to reveal the boundaries of the pieces as explicitly as is practical,
• to simplify significantly where practical, such as for real expansion variables or numeric coef-

ficients.
• to be as concise as possible subject to the above goals.

Tests, formulas and algorithms are given that compute simplified versions of these correction terms
and factors near the expansion point for both real and complex expansion variables.
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Table 1: 0-degree term of series (lnu, var=0, o (varn)) with n≥4, x, y ∈ R, z = x+iy:

# u Alternative 0-degree terms of lnu near variable = 0 why

1a z2 + z3 ln(z2) +


2iπ if = (z)<0 ∧ < (z) ≥ = (z)2/2 + · · ·+ o (= (z)n)

−2iπ if = (z)≥0 ∧ < (z) ≥ = (z)2/2 + · · ·+ o (= (z)n)

0 otherwise

(11)
(23)

rem. 6

1b 2 ln z + 2iπ

⌊
π−2 arg z

2π

⌋
+


2iπ, = (z)<0 ∧ < (z) ≥ = (z)2/2 + · · ·
−2iπ, = (z)≥0 ∧ < (z) ≥ = (z)2/2 + · · ·
0, otherwise

(52)
(23)

rem. 6

2a z2 + z3ez ln(z2) +


2iπ if arg(1+z+z2+ · · ·+ o (zn)) + arg(z2) ≤ −π
−2iπ if arg(1+z+z2+ · · ·+ o (zn)) + arg(z2) > π

0 otherwise

(11)

2b 2 ln z+2πi

⌊
π−2 arg z

2π

⌋
+


2iπ, arg(1+ · · ·+ o(zn)) + arg(z2) ≤ −π
−2iπ, arg(1+ · · ·+ o(zn)) + arg(z2) > π

0, otherwise

(54)

2c ln(z2) + (arg (z2+ · · ·+ o (zn))− arg(1+ · · ·+ o (zn))− arg(z2)) i (10)
2d 2 ln(z) + (arg (z2+ · · ·+ o (zn))− arg(1+ · · ·+ o (zn))− 2 arg(z)) i (53)

3 -z−7/6−z7/3 ln
(
−z−7/6

)
or −7 ln (z) /6 +

{
iπ if = (z) ≥ 0

−πi otherwise

prop 5
or (54)

4 -1−z2−z3


iπ if

(
= (z) ≥ 0 ∧ < (z) ≤ = (z)2/2 + · · ·+ o (= (z)n)

)
∨(

= (z) > 0 ∧ < (z) ≥ = (z)2/2 + · · ·+ o (= (z)n)
)

−iπ otherwise

(29)
rem. 6

5 -1−z2ez

{
iπ if = (z2 + 2z3 + z4 + · · ·+ o (zn)) ≤ 0

−iπ otherwise
(29)

6 −1+iz1/4 iπ (31)

7 -1−iz 1
4 + z

{
iπ if z = 0

−iπ otherwise
(32)

8 -1+iz
1
2 +z

{
iπ if z ≤ 0

−iπ otherwise
rem. 8

9 c+ z2


ln (z2) if c = 0

ln (c)− 2iπ if arg (c) = π ∧ = (z2) < 0

ln (c) otherwise

rem. 9

10 −x−2 + ex ln (x−2) prop 3

11 x2 + x3ex ln (x2) , or 2 ln (|x|) , or 2 ln (x) +

{
−2iπ if x < 0

0 otherwise

prop 3
or (54)

12a x4/3 + x2 ln
(
x4/3

)
rem. 7

12b real
branch

ln
(
x4/3

)
, or 4 ln (|x|) /3, or 4 ln (x) /3−

{
4iπ/3 if x < 0

0 otherwise

sec.
2.3.2
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Table 2: For n≥4, x, y∈R, z=x+iy: series
(
uβ, var=0, o(varn)

)
→ (−1)λ (S+· · · )

# uβ λ, or L = (−1)λ S why

1a (z2 + z3)
3/2

L=


1,

(
=(z)≥0 ∧ <(z)≥=(z)2/2+...+o(=(z)n)

)
∨
(
=(z)<0 ∧ <(z)>=(z)2/2+...+o(=(z)n)

)
−1, otherwise

z3

(68)
(70)

rem. 6

1b L =


1 if (<(z) > 0 ∨ <(z) = 0 ∧ =(z) ≥ 0)

= (−π < arg (z2) + arg (1 + z) ≤ π)

−1 otherwise

z3 (68)
(70)

1c λ = 3
2π

(arg (z2 + z3)− arg (1 + z)− 2 arg (z)) z3 (53,62)

2a (z2 − iz3)
3/2

L =

{
1 if < (z) > 0 ∨ < (z) = 0 ∧ = (z) ≥ 0

−1 otherwise
z3 (50)

(68)

2b λ = b1/2− (arg z) /2c z3 (50)

3a (z2 + z3)
7/4

L=


1,

(
=(z)≥0 ∧ <(z)≥=(z)2/2+...+o(=(z)n)

)
∨
(
=(z)<0 ∧ <(z)>=(z)2/2+...+o(=(z)n)

)
i,

(
=(z)≥0 ∧ <(z)<=(z)2/2+...+o(=(z)n)

)
−i, otherwise

z7/2

(65)
(67)

rem. 6

3b λ = 7
4π

(arg (z2 + z3)− arg (1 + z)− 2 arg (z)) z7/2 (53,62)
4
(
−1+iz1/4+z

)3/2
L = 1 −i (31,52)

5
(
−1+iz1/2+z

)3/2
L = 1 −i rem. 8

6a (−1−z2−z3)
3/2

L =


−1 if (y ≥ 0 ∧ x < y2/2− 3y4/8 + ...)∨

(y < 0 ∧ x ≥ y2/2− 3y4/8 + ...)

1 otherwise

−i
(68)
(70)

rem. 6

6b λ = 3
2π

(arg (−1−z2−z3)− arg (1+z2+z3)−π) −i (29,62)

7 (c+z2)
3/4 | c 6=0 L =

{
i if arg c = π ∧ = (z2/c) > 0

1 otherwise
c3/4 rem. 9

(29)

8
(
−z−1/2

)1/2
L =

{
−1 if arg (z) < 0

1 otherwise
iz−1/4 rem. 2

(52)

9 (ln (z) + z)
3/2 L = 1 ln (z)

3/2 (29)

10 (iz + z2)
3/2

L =

{
−1 if < (z) < 0 ∧ = (z) ≥ 0

1 otherwise
(−1)

3
4 z

3
2

(23)
(69)

11 (z−1 + 1)
3/2

L =

{
−1 if z < 0

1 otherwise
z−3/2 prop. 5

(69)

12 (−2 + x)
3/2 L = 1 −i prop. 3

13 (−1−
√
x)

7/2
L =

{
1 if x ≥ 0

−1 otherwise
−i (23)

14a
(
x4/3 + x2

)3/2
L =

{
−1 if x < 0

1 otherwise
x2 (23,69)

14b real branch L = 1 x2 rem. 4
30



DEFINE SHORT AUTHOR HEADER USING \ authorhead

Table 3: 0-degree term of series (arctan (u) , z=0, o (zn)) with z ∈ C, x ∈ R, n ≥ 3 :

# u A correct 0-degree term near z = 0

1 z−2 + z−1 π

2


±1 if z = 0

1 if − π/2 < arg (z−2 + z−1) ≤ π/2

−1 otherwise

2 2i+ zez ln 3

2
i+


π

2
if <

(
z + z2 +

z3

6
+ · · ·+ o (zn)

)
≤ 0

−π
2

otherwise

3 2i+ z1/4ez π

2
+

ln 3

2
i

4 −2i+ zez ln 3

2
i+


π

2
if z 6= 0

−π
2

otherwise

5 −2i− z1/4ez −π
2
− ln 3

2
i

6 i+ zez π − ln (iz) + ln 2

2
i−

0 if arg

(
1+z+

z2

2
+
z3

6
+ · · ·+ o(zn)

)
+ arg(iz) ≤ π

π otherwise

7 i+ izez ln
(z

2

)
− i

2

8 −i+ z2ez

i ln

(
−iz2

2

)
2

+


π if arg

(
1+z+

z2

2
+
z3

6
+ · · ·+ o(zn)

)
+ arg (−iz2) ≤ −π

π if arg

(
1+z+

z2

2
+
z3

6
+ · · ·+ o(zn)

)
+ arg (−iz2) > π

0 otherwise

9 −i+ iz1/2ez i ln (z/4)

4

10 x−2 + x−1 π

2


±1 if x = 0

1 if x > 0

−1 otherwise

11 2i+ x3/4ex ln 3

2
i+


π

2
if x ≥ 0

−π
2

otherwise

12 2i+ x1/2ex π/2 + i (ln 3) /2

13 −2i+ x3/4ex − ln 3

2
i+


π

2
if x > 0

−π
2

otherwise

14 −2i− x3/4ex −π/2− i (ln 3) /2

15 i+ x5/4ex
− ln

(
ix5/4/2

)
2

16 −i+ x5/4ex
ln
(
−ix5/4/2

)
2

31



DEFINE SHORT TITLE USING \ titlehead DEFINE TYPE OF PAPER USING \ articlehead

Table 4: First two non-zero terms of series (arcsinh (u) , z=0, o (z∞)) with z ∈ C,
x ∈ R:

# u First two non-0 terms of arcsinhu near variable = 0 Sec.

1 -2i+ z2 + z3 −iπ
2

+

({
1 if < (z2 + z3) > 0

−1 otherwise

)(
ln
(
2 +

√
3
)

+
iz2

√
3

+ · · ·
)

4.3.1

2 2i+ z2 + z3 iπ

2
+

({
1 if < (z2 + z3) ≥ 0

−1 otherwise

)(
−

ln
(
2 +

√
3
)

2
− iz2

√
3

+ · · ·

)
4.3.1

3 2i+ z1/4 iπ

2
+ ln

(
2 +

√
3
)
− iz1/4

√
3

+ · · · 4.3.1

4 i+ z2 + z3 iπ

2
+ (−1)

1

2
−

arg (−1 + iz) + 2 arg z

2π


(iz + · · · ) 4.3.2

5 i+ iz2 + iz3 iπ

2
+(−1)

1

2
−

arg (−1+iz)+2 arg z

2π

({
1 <(z)≥0

−1 otherwise

)(√
2z+ · · ·

)
4.3.2

6 −i+ iz2 + iz3 −iπ
2

+ (−1)

1

2
−

arg (−1 + iz) + 2 arg z

2π

 (
i
√

2z + · · ·
)

4.3.2

7 −i− iz2 + z3 −iπ
2

+(−1)

1

2
−

arg (−1+iz)+2 arg z

2π

({
1, <(z)≤0

−1 otherwise

)(
−
√

2z+ · · ·
)

4.3.2

8 iz−1 + 1 ugh! 4.3.3

9 z−2 + z−1 (−1)w (ln 2−2 ln z+πiw+z+· · · ) |w=

⌊
1

2
− arg (1 + 2z + z2)+4 arg z

2π

⌋
4.3.4

10 −2i+ x3/2

(
−πi

2
− ln

(
2 +

√
3
){1 if x ≤ 0

−1 otherwise

)
− ix3/2

√
3

+ · · · 4.3.1

11 −2i− x3/2

(
−πi

2
− ln

(
2 +

√
3
))

+
ix3/2

√
3

+ · · · 4.3.1

12 2i+ x3/4

(
πi

2
+ ln

(
2 +

√
3
){1 if x ≥ 0

−1 otherwise

)
− ix3/4

√
3

+ · · · 4.3.1

13 2i+ x3/2

(
πi

2
+ ln

(
2 +

√
3
))

− ix3/2

√
3

+ · · · 4.3.1

14 i+ x3/2 πi

2
+

({
1 if x ≥ 0

−1 otherwise

)(
(1− i)x3/4 + · · ·

)
4.3.2

15 i− x3/2 πi

2
− (1 + i)x3/4 + · · · 4.3.2

16 −i+ x5/2 −πi
2

+

({
1 if x ≥ 0

−1 otherwise

)(
(1 + i)x5/4 + · · ·

)
4.3.2

17 −i+ x3/2 −πi
2

+ (1 + i)x3/4 + · · · 4.3.2

18 x−2 + x−1

(
ln 2− 2 ln x+

{
0 if x ≥ 0

2πi otherwise

)
+ x+ · · · 4.3.4
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Table 5: 1st two non-0 terms of series (arccosh (u) , z=0, o (z∞)) with z ∈ C, x ∈ R:

# u 1st two non-0 terms of arccoshu near z = x = 0 Sec.

1 -2 + z2 + z3

(
ln
(
2 +

√
3
)

+

{
iπ if = (z2 + z3) ≥ 0

−iπ otherwise

)
− z2

√
3

+ · · · 4.4.1

2 -2 + iz1/4 + z
(
ln
(
2 +

√
3
)

+ iπ
)
− iz1/4/

√
3 + · · · 4.4.1

3
1

2
+ z2 + z3

({
1 if = (z2 + z3) ≥ 0

−1 otherwise

)(
iπ

3
− 2iz2

√
3
· · ·
)

4.4.2

4 1 + z2 + z3

({
1 if − π < arg (1 + z) + 2 arg z ≤ π

−1 otherwise

)(√
2z +

z2

√
2

+ · · ·
)

4.4.3

5 −1 + z2 + z3

({
1 = (z2 + z3) ≥ 0

−1 otherwise

)(
iπ +B ·

(
−i
√

2z + · · ·
))

|B = (−1)

1

2
−
arg (1 + z) + 2 arg z

2π

 4.4.4

6 z−2 + z−1

(
2iπ

⌊
π − arg (1 + z) + 2 arg (z)

2π

⌋
+ ln 2− 2 ln z

)
+ z + · · · 4.4.5

7 z + z2

(
(−1)D1+D2

{
1 if = (z + · · · ) ≥ 0

−1 otherwise

)(
iπ

2
− iz + · · ·

)

| D1 =

⌊
1

2
− arg (1 + z) + arg z

2π

⌋
∧D2 =

⌊
1

2
− arg (−1 + z + z2 + · · · )− arg z

2π

⌋
4.4.6

8 −2− x3/4

(
ln
(
2 +

√
3
)

+ iπ

{
−1 if x < 0

1 otherwise

)
+
x3/4

√
3

+ · · · 4.4.1

9 −2 + x
(
ln
(
2 +

√
3
)

+ iπ
)
− ix/

√
3 + · · · 4.4.1

10
1

2
−
√
x

({
1 if x ≥ 0

−1 otherwise

)(
πi

3
+

2ix1/2

√
3

+ · · ·
)

4.4.2

11 1/2 + x πi/3− 2ix/
√

3 4.4.2

12 1− x2 − x3

({
1 if x ≥ 0

−1 otherwise

)(√
2ix+

i√
2
x2 + · · ·

)
4.4.3

13 1− x2 − x3/2
√

2ix+ ix3/2/
√

2 + · · · 4.4.3

14 −1 + x2 πi+

({
1 if x ≥ 0

−1 otherwise

)(
−
√

2ix+ · · ·
)

4.4.4

15 −x−2 − x−1

(
−2 ln x+ ln 2 +

{
πi if x ≥ 0

3πi otherwise

)
− 3ix

2
+ · · · 4.4.5

16 −x−2 + x−1/2 (−2 ln x+ ln 2 + πi)− x3/2 + · · · 4.4.5
17 2x− x3/2 πi/2− 2ix+ · · · 4.4.6
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