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Abstract

Herein, we present another sequel to work on a generalization of the Lambert W function. We pro-
vide a fast and efficient computational scheme for getting all the roots of the transcendental-algebraic
governing the generalized Lambert W function for a broad class of cases in the real plane.

AMS Numbers: 33E30, 01-01, 01-02
Also related to: 70B05, 81Q05, 83C47, 11A99

1 Introduction

In previous work [[1], we focussed on asymptotic series expansions of solutions to:

e =a,(x—r1)(T—19) (1)
This was a first generalization of the Lambert W function which appears in a number of applications [2-5].
The work of [1]] presented series expansions, both Taylor type and asymptotic, for eq. (I). However, it
is realized that eq. (T) can have as much as 3 roots in the real plane and the series expansions account
for only 2 particular solutions (either real or complex) for a given range. For general implementation,
in particular implementation in a computer algebra or symbolic manipulation system, it is necessary to
fully work out the floating-point attributes of any given special function. There are many schemes like
the Newton-Raphson scheme to find a numerical root for a given function in a given range. However, it
becomes necessary to work out a fast and efficient scheme to obtain all the numerical roots of eq. to
ensure its implementation.

Subsequently, it was realized that eq. (1)) could be further generalized to the case of a rational polynomial
[9I:
e = —= 2)



where ¢ > 0 is a constant as before and Py (z) and @ p/(z) are polynomials in x of respectively orders N
and M and we will keep this general form in mind when the scheme for obtaining solutions to eq. (I) is
generalized.

This presentation is outlined as follows. Firstly, we focus on a 3-root example of eq. (I)) and establish
bounds for the roots and from these bounds, we zeroin on the roots themselves in better than quadratic
convergence using a Newton-Raphson scheme backed up with the Kantorovich theorem. We then discuss
the generalizations of this approach for eq. (2) when the right side Py is a cubic or quartic polynomial i.e.
with N = 3,4 and M = 0. This approach is demonstrated with concrete examples.

2  Maximum Number of Roots

Firstly, it is important to establish the following

Proposition:

For a transcendental-algebraic equation corresponding to the case M = 0 for eq. (2)), and has
the form:
e " = Py(x) 3)

where Py (x) is a polynomial of degree N with N real distinct roots, there is at most NV + 1
real roots to eq. (3).

This proposition can be demonstrated graphically with Maple [[10] by the following exercise:

Let Py (z) be a Chebyshev polynomial of order N. Then Py (z) has N real roots. If we shift
the polynomial by 1, i.e. + — x — 1, then multiply the result by a scaling factor like —1 for
odd N, we can easily find a ¢ > 0 so that e™“* and Py (z) have N + 1 intersections: N real
roots are positive or zero and one root is negative. The exponential function e“*, ¢ > 0 is
growing faster than any polynomial and e™“” is less than 1 and decreasing.

In general for a polynomial of degree /N with IV distinct roots, the Gauss-Lucas theorem and specifically
Rolle’s theorem tells us that between any two successive real roots, the structure of Py () is very simple
allowing for one point in which the derivative of the polynomial P’y (x) is zero. For the case when
Py (x) has less than N real roots, say n real roots where n < N because of multiplicity of the real roots,
we expect n + 1 real roots as an upper bound. Note that when the roots r; are all equal to each other, then
eq. (3] can be factored and the polynomial degree reduced.



3 Solutions to Quadratic Transcendental Equation in Eq. (1)

3.1 Establishing the bounds of the roots

To illustrate the problem, let us start with a particular example of eq.(T)):

c = 1 4)
L+ 1 + L 5 ~ 2.0571055630
a = —€e — —€ —e = Z.
0 9 8 72
7¢? + 9e — 16 + /4096 — 10368¢ + 6561e2 — 128¢9 — 162¢10 + ¢18
ry = 9
e? — 9% + 8
1
no= T ® 3.0244254046
1
2 = Ty N 3.9908734844

Without any loss of generality, we can set ¢ = 1
since this corresponds to a re-scaling of the vari-
able = and parameters ag, r1 and r3 of eq. (]I[) For
these parameters, the roots of eq. are:

r1 = =5 (5)
To = 3

r3 =

These can be shown in the plot of Figure The
roots can be seen from the intersection of the plot
for e™* and ag(z — 71)(x — 7r2) with the parame-
ters governed by eq. (4)). The series expansions [1]]
made use of a parameter: zp = %\/02/CL0 e=crm/2
where rp,, = (r1+72)/2. From section2|the great-

est number of real roots eq. (I)) can have is 3. The 6 4 2 0 2 4 6

starting approximations [1]: Figure 1: Roots at x=—5, 3 and 4 for eq. (1) with
parameters in eq. (@).

2
W() = EW(iZO)

where W on the right-hand-side of the equation above is the standard Lambert W function. This yields
zp = 0.0603483382, ry, = 3.50764944445 for the parameters in eq. (4) and approximate solutions:

rm + (Wo)s = 3.62165830
rm + (Wo)— = 3.37892929

This gives us at best an approximation for the roots 3 and 4 but not —5 so readily. The series expansions
in our previous work could represent at most two of these roots but not all three roots directly. Thus we
need a complimentary scheme to ensure getting all the roots. We divide the problem in two regions: one
with £ > 0 and the other z < 0. For the latter region, note that if we make the 0:

r——T Cc— —C Ty ——T1 Ty — —Ty, (6)

eq. (I) becomes:
e =a, (x+r1)(T+72)



and represents a reflected image of Figure . In this example, ¢ > 0 and thus exp(—cx) of (1) will be
bounded from below by zero and bounded above by unity for the region x > 0. In other words, defining:

Y = e @)

it is understood that Y € [0, 1] when > 0. For x < 0, then Y € [1,00). We now formally treat Y as
a constant and simply apply the well-known solutions for any quadratic aX? + bX + ¢ = 0 whose roots

are:
b+ Vb2 — 4ac
2a
For the quadratic polynomial on the right-hand-side of eq. (IJ), we get:

Xi—;<7“1+7’2:|:\/(7’1—7"2)2+4y> (8)

ao

Xy =

where it is understood that Y = e~“* which brings us back to the pseudo-quadratic of Byers-Brown
[1,/6H8]]. However, unlike Byers-Brown we do not use this pseudo-quadratic for series expansion. The
resulting series are slow in convergence because of the branch structure implied in eq. (§) when viewed in
the complex plane. Rather, we use eq. directly for computation to establish bounds of the roots. For
Y =0and Y = 1, this provides us with 4 points. Note that when a¢ > 0, X1 will also be real if r; and
19 are real roots to the quadratic polynomial on the right-side of eq. (I). Since both roots share the same
square-root term, they are both equally real or equally complex. If ag < 0 and X is complex, this puts
into question whether or not eq. (1) has real roots at all and may require some exception processing such
as lowering the value of Y = 1 down to Y < |ag(r1 — 12)?/4].

One could argue that the £ cases of (8 bound the roots for the individual casesof Y = 0and ¥ =1
giving a total of only 2 possible roots but although true in some cases, this would be hasty in general. For
the time being, we compute 4 points and sort them in increasing order for z > 0. Two of these points
correspond to the Y = 1 case and are given by:

R _ 7e%949e—164+v4096—10368e+6561e2+2304e* —2592¢5 —128e9 — 16210+ 288e 1318
+ = e9—9e+8
1
R, = §R_ ~~ 2.6593420730
1
Ry = §R+ ~ 4.3559568158

Once sorted, these 4 points are:
[R1,71,72, R2] = [2.6593420730, 3.0244254046, 3.9908734844, 4.3559568158] (©)]
Now it’s matter of evaluating:
f(@) = exp(—cx) —ag(x — 1) (x —12) (10)
at these very points in (9):

[f(R1), f(r1), f(re), f(R2)] = [—0.93000574243, 0.048585730140, 0.018483561518, —0.98716984217]

(11
which provide our bounds. By the intermediate value theorem [|11], we can see the change in sign between
respectively R; and r; and between Ry and ro, establishing bounds to 2 roots. We now repeat this exercise
for the region x < 0. We now consider the region Y € [1, Y,,42]. The endpoint 5 may seem artificial but
it’s a matter of ensuring any value Y;,,4,, small enough but to that f(Y},4,) > 0. This can be guaranteed



since the exponential term exp(—cx) rises more quickly in the region < 0 than any quadratic. We
choose Y, = D and this choice will turn out to be sufficient.

S _ 7€%249e—164+1/4096—10368e+6561e2+11520e? —12960e5 —128e% —162e10+144013 418
+ = e9—9¢e+8
1
ST = §S* ~ 1.8754407900
1
Sy = §S+ ~ 5.1398580989

Once sorted, these 4 points are:
[—S2, —Ra, — Ry, —51] = [—5.1398580989, —4.3559568159, —2.6593420730, —1.8754407900] (12)
at these very points in (12)):

[f(=52), f(—=R2), f(—R1), f(—=S1)] = [17.342798224, —48.782093196, —63.468163560, —52.606067113]
(13)

In this case, we see only one change of sign and thus a bound for only one more root. Thus, we can discern

3 roots in all.

3.2 Zeroing on the roots: Kantorovich Theorem

At this stage, a computer algebra systems like Maple which provides a functionality called fsolve
would readily yield the root once the bounds for the roots are known. However, in case such systems
are not available or simply for the sake of completeness of the algorithm, we now consider a scheme for
zeroing on the root once the bounds are given. It is well known that when a initial guess for the root of a
function is known, if it is sufficiently close, the Newton-Raphson scheme can offer better than quadratic
convergence. However, a criteria telling us if this root is sufficiently before applying the Newton-Raphson
scheme would be very helpful. This is realized with the Kantorovich theorem. The Newton-Raphson
algorithm considers a Taylor series expansion of any general function f(x) as:

2

[@+e) = @) +ef (@) + 5 (@)

where € is assumed small. Allowing f(x + €) = 0, the iteration for successive guesses of the roots x,, of
f(z) are given:

f ()
e 14
Tit+1 T () ) (14)
where e; is the error of the " iteration [12,/13]:
f ()
€ =¢€ = — . (15)
' f' (@)
When this scheme converges:
lim z; — 2” f(@z*) =0.

11— 00

If there exists a point o which lines on the closed interval I containing the root z* of f(x)) taken as a C*?
function and finite positive constants (mg, My, Ko) such that [14-16]:

. 1

0) || = mo

(i) ‘J{((f;;)) < My (16)
(iii) | f"(z0)| < Ko



and if hg = 2 moMyKy < 1, Newton’s iteration will converge to a root z* of f(x) and
lz; — 2*| < KT(i) where KT(i)=2""Myhd . (17)

For illustration purposes, we have stated these conditions in parallel to their counterparts for a single func-
tion f(x). Note that () and (i7) are conditions of boundedness. Condition (7ii) can also be equivalently
expressed as:

(@) = f'(y)] < Kolz —y| forallz,y €1 (18)

As pointed out by Tapia [[15]], this theorem gives sufficient conditions to insure the existence of a root and
the convergence of Newton’s process. Moreover, if hyg < 1, the convergence of K7'(i) is quadratic (the
number of good digits of the root is doubled at each iteration).

In this case, we have a critical point for mg and My when f’(z) = 0 and solving for x. Since:a
f'(x) = —cexp(—cx)—2apz + ag(ry +72) (19)

this yields:

1 ce3(ntr2) 1
2 ag 2

() =0 = wzeulk] = %W <k, —= + —(r1 +r2) (20)

where W is the standard Lambert W function and k is an integer representing all the branches in which
the W function is real. For this particular example, k = —1,0 with & = 0 representing the principal
branch and k£ = —1 has a branch point at —e~!. The formula in eq. is general for arbitrary c, ag, 71
and r5. Thus, we can expect the principle branch of the W function to be amongst the roots and for |k| to
be small in magnitude. In view of section 2] eq .(20) establishes regions of roots and the number of roots
even more so than the bounds we found in section[3.1] For this particular 3-root example, (20) is:

Terit—1] = —3.3380708176. ..
Tei[0] = 3.5003119589... (1)

The location of these two critical points divides the x-axis into 3 regions. The left most point can tell
us what Y4 > el=333870l ~ 97 However our choice of Yaz = 5 is good enough in this example.
Moreover, it reinforces the notion that no roots exist between x = r; and £ = ry. However, for the
intervals in the bounds we established, the Kantorovich conditions hold very well.

[ho(Ry1), ho(r1), ho(r2), ho(R2)] = [0.6430829954, 0.1050235098, 0.03760437762, 0.6599106776]

[ho(—S2), ho(—Rz2), ho(—R1), ho(—S1)] = [0.3164937840, 3.465689765, 10.50792320, 1.038566654]
(22)
Clearly the Kantorovich conditions tell us when a root applies and turn out to be even more important than
the bounds we established in section[3.1] Table[3.2]shows that for all 3 roots, the Kantorovich bound holds
up and we get very rapid convergence from the bounds established in the first section to the actual root.

4 Solutions to Cubic Transcendental Equation in Eq.

Consider a particular case of eq. where N = 3 and M = 0 or equivalently where the quadratic
polynomial on right-hand-side of eq. (I)) is replaced by a cubic polynomial:

—CIT

e =ay(x—r1)(x—ro)(x—r3) (23)



Table 1: Convergence of Newton-Raphson/Kantorovich bound for eq.

¥ = -5
ro = —5.13985809890

¥ =3
xo = 3.0244254047250

¥ =4
zo = 3.9908734842

[z — @7

|

KT()

\xi - 35*|

|

KT(i)

|z — | |

KT()

1.1501196897e-2
8.3588049471e-5
4.4447310177e-9

W DN = =

4.0624161631e-2
6.4286473200e-3
3.2197338607e-4

6.2524266166e-4
3.8918002348e-7
1.509723032e-13

2.630906913e-3
1.381535391e-4
7.619124596¢-7

8.50086025¢e-5
7.239366092e-9
5.25109317e-17

3.4639364290e-4
6.5129586747e-5
4.6049523112e-9

The solutions for a cubic polynomial are well

known and readily implemented in a system like

Maple using the Root Of implementation.
c =1 (24)

1

30

—0.8295442842

ao

~

r1 —1.7498372963
ro ~ 2.0376547064
r3 ~ 0.8445802935

The numbers r; with 7 = 1, 2, 3 are too lengthy to
write here and so only the floating point approxi-
mations are given. The roots of eq. (23) are:

S L T 5T LT RS
Figure 2: Roots at x=—4, —3, 1 and 2 for eq. (23)

with parameters in eq. (24)). vy = —4 (25)
o = -3
r3 =
Ty = 2

These can be shown in the plot of Figure [d] The roots can be seen from the intersection of the plot for
e~® and ag(z — r1)(z — r2)(z — r3) with the parameters governed by eq. (24). For eq. (23), reflection
symmetry yields:

r——xr Cc— —Cc ag— —ag (26)
T — —ry Trg—-—r9g 13— —Tr3,
eq. becomes:
e = —a, (x+11)(x+1r2)(T +73) 27

and represents a reflected image of Figure f)). Note the minus sign in contradistinction to the quadratic
case of section [3| because of the change in sign of ag. We repeat the analysis given in section [3] but show
only the highlights. Care must be taken for the cubic case because the roots of cubic polynomials are
expressed in terms of cubic roots and these roots are often in the complex plane. Thus we must be careful
to extract real bounds from the possible bounds. For the regime x > 0 where Y = e % € [0,1), we
obtain:

[ula r1,73,U2,Uus, TQ] (28)
[—1.8585722629, —1.7498372963, 0.8445802935, 1.49092364, 1.5000463207, 2.0376547064]



Table 2: Convergence of Newton-Raphson/Kantorovich bound for eq.

x*=—4 x*=-3
xg = —4.1177608579 xo = —3.3500642513
i o — a*| | KT(i) i —a*| | KT(i)
1 || 1.7962719444e-2 | 5.46044101e-2 0.1546358144 | 1.7111102871
2 || 5.0758675434e-4 | 1.4938362841e-2 || 3.9625707509e-2 | 2.9005874531
3 || 4.2129220718e-7 | 2.2360605911e-3 || 4.880109845e-6 | 16.669857343
=1 x* =2
xo = 0.8445802935 xo = 2.0376547064
i o — x| | KT(i) i — x| | KT(i)
1 || 1.2052125422e-2 | 3.0777915006e-2 || 1.6326953295e-3 | 6.020339117e-3
2 || 9.7459148339e-5 | 4.9776391861e-2 || 3.2995757618e-2 | 5.030880003e-4
3 || 6.5464896532e-9 | 1.7282074285e-4 || 1.352200184e-11 | 7.026191162¢-6

For the Kantorovich analysis,

[ho(u1), ho(r1), ho(73), ho(u2), ho(us), ho(r2)] (29)
= [6.0536283540,9.6767648688, 0.2635125024, 133.22056221, 216.11264014, 0.1671294559]

Thus only points 75 and 73 are acceptably close to a root. The critical points for which the derivative f'(z)
are zero:
Terit = [—3.5794772231, —1.2520736568, 1.5336103231] (30)

and are obtained by recursive use of the approach in section [3]since the derivative of eq. with respect
to x yields a quadratic for the right-hand-side. This establishes 4 different regions and also tells us we
must take extra care for the region x < 0 and that the region Y = e € [1,Y,,4.] needs some extra
granularity by which to extra two more roots. Evaluating the eq. aty = 1, %Ymaw, Yinaz Where
Ymaz = 60 and collecting only the real results:

[t1,t2,t3, 4,5, te] (31)
= [—4.1177608579, —3.3500642513, —1.8639130872, 1.4981553954, 2.2412309775, 2.6250792807]

and for these points, the Kantovorich h( values are respectively:

[ho(t1), ho(t2), ho(ts), ho(ta), ho(ts), ho(ts)] (32)
= [0.5471485847, 3.3902986514, —5.5923736326, 193.56899958, 0.6673918032, 0.9881773857]

The results are shown in Table[d). Note that we present the case where ¢, = —3.3400642513 as a starting
case even if ho(t2) > 1. However, the Newton-Raphson converges nonetheless to a root. It is important
to know that the Kantorovich theorem provides sufficient rather than necessary conditions. In principle,
we could go as far as quartic polynomial for the right-hand-side of eq. (2) namely N = 4 and M = 0 but
no further since a fourth degree polynomial is the highest degree polynomial for which the roots can be
expressed in terms of the coefficients according to the Abel-Rufini theorem. The determinations of bounds
could be improved especially for higher-order polynomials using known methods for polynomials.

S Outline of General Algorithm

From sections [3|and 4] we can infer the general algorithm for obtaining the real roots of eq. (2)) for M = 0
and N =1...4:



1. Obtain coefficient ag and roots r; for i = 1... N of polynomial on right-hand-side of eq. (2).

2. Differentiate eq. with respect to x. This creates an equation just like eq. (2) but with the right-
hand-side replaced by a polynomial of degree N — 1. Solve for the real roots yielding the critical
points f’(x) = 0 for the Kantorovich algorithm.

3. Divide region of z into x > O and = < 0.

4. Obtain real bounds for Y = e ¢* € [0, 1), namely the values Y = 0 and Y = 1 for region = > 0.
Sort the results.

5. Apply reflection symmetry x — —x and see what happens to ag and r; fori =1... N.

6. Obtain real bounds for Y = e® € [1,Y,42] Where Y}, is greater in magnitude than the absolute
value of the small critical value of Step 2. Sort the results.

7. For the bounds determined in the last step, add if need be, intermediate points for steps 4 and 6.
8. Evaluate the eq. (2) and h for these points obtained in steps 4 and 6.

9. Apply Newton-Raphson scheme for cases when hy < 1 and for points when Newton-Raphson
scheme converges.

10. Collect and sort all real roots obtained.

6 Conclusions

We have outlined a method for obtaining all the roots of special cases of eq. (2) for M = 0, N = 2 (specif-
ically eq. (I)) and N = 3,4. We make use of the explicit formulae for obtaining roots of respectively
quadratic, cubic and quartic polynomials and also the Kantovorich theorem within the Newton-Raphson
scheme. The method is recursive that in solving eq. (2), it requires finding the critical points of the Kan-
torovich theorem, namely f/(xz) = 0 and thus the solution for eq. (2)) for a polynomial of one degree less
ie. N —1. For N = 2 or eq. (I, these critical points are expressed in terms of the standard Lambert
W function, namely eq. (20). The method here could serve as functionality for e.g. Maple’s £solve
implementation for real roots.

We are not ruling out the possibility that the method shown here could be generalized to the complex plane.
The formulae for the roots of quadratic, cubic and quartic polynomials apply equally to the complex plane.
Moreover, the Newton-Raphson scheme and the Kantorovich theorem can be generalized to the complex
plane. However, establishing the bounds becomes more different likely requiring bounds according to a
norm definition and these bounds need to be vindicated. It is likely that the complex plane needs to be
separated into four quadrants for Rz > 0 and Rz < 0 as well as Sz > 0 and Sz < 0. At any rate, one
would need an incentive to make this challenging generalization to the complex; the original incentive
having come from physical problems involving real quantities.

The results herein combined out previous results [ 1] reinforce the notion that our generalization is natural
and shows how the various cases of the generalization are connected to each other, not unlike the way
polynomials are connected to each other.
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