
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Fast parallel GCD algorithm of many integers

Sidi M. SEDJELMACI
LIPN, CNRS UMR 7030
University of Paris-Nord

Av. J.-B. Clément, 93430 Villetaneuse, France
sms@lipn.univ-paris13.fr

Abstract: We present a new parallel algorithm which computes the GCD of n integers of O(n) bits in
O(n/ log n) time with O(n2+ε) processors, for any ε > 0 on CRCW PRAM model.

The computation of the GCD of two integers is not known to be in the NC parallel class, nor it is known
to be P-complete [1]. The best parallel performance was first obtained by Chor and Goldreich [2], then
by Sorenson [7] and Sedjelmaci [5] since they propose, with different approaches, parallel integer GCD
algorithms which can be achieved in O(n/ log n) time with O(n1+ε) number of processors, for any ε > 0,
in PRAM CRCW model. A naive approach, using a binary tree computation to compute the GCD of
n integers of O(n) bits would require O(n) parallel time with O(n2+ε) processors. One may also use the
existing parallel GCD algorithms of two integers and try to adapt them to design a GCD for many integers.
However, it is not obvious how to find a parallel GCD for n integers which conserve the same O(n/ log n)
time, with O(n2+ε) processors, which is roughly the bit-size of all the n input integers. In this paper, we
prove that we can compute the GCD of n integers of O(n) bits, in only O(n/ log n) parallel time with
O(n2+ε) processors, for any ε > 0 on CRCW PRAM model, in the worst case. Another probabilistic
approach is given in [3]. To our knowledge, it is the first deterministic algorithm which computes the GCD
of many integers with this parallel performance and polynomial work. Our algorithm, called ∆-GCD is
the following:

Input: A set A = { a0, a1, · · · , an−1 } of n distinct positive integers, ai < 2n, with n ≥ 4.
Output: gcd(a0, a1, · · · , an−1).

α := a0 ; I := 0 ; p := n ;
While (α > 1) Do

For (i = 0) to (n− 1) ParDo
If (0 < ai ≤ 2n/p) Then { α := ai ; I := i ; }

Endfor
If (α > 2p/n) Then /* Compute in parallel I, J and α */
α := min { | ai − aj | > 0 } = aI − aJ ; aI := α ;

Endif
For (i = 0) to (n− 1) ParDo /* Reduce all the ai’s */

If (i 6= I) Then ai := ai mod α ;
Endfor /* ∀ i , 0 ≤ ai ≤ α */
If (∀ i 6= I , ai = 0) Then Return α ; /* Here α = gcd(a0, · · · , an−1) */
p := np ;

Endwhile

Return α.

ISSAC poster abstracts

We use a weak version of the function min based the pigeonhole principle, where only the O(log n) leading
bits of the integers are considered. The integer α is, at each while iteration, O(log n) bits less. More details
for the computations of I, J and α are given in [6], as well as a first C program checking the correctness of
the ∆-GCD algorithm.

Theorem : The ∆−GCD algorithm computes in parallel the GCD of n integers of O(n) bits in length,
in O(n/ log n) time using O(n2+ε) processors on CRCW PRAM model, with ε > 0.

Proof: (Sketch, see [6]). The algorithm terminates after O(n/ log n) loop iterations. Let ti be the time
cost at iteration i, 1 ≤ i ≤ N , with N = O(n/ log n). Let ki be the maximum bit length of all the quotients
qj = baj/αc, with

∑N
i=1 ki ≤ n. We prove that ti = O(min { ki

logn , log n }). The total number of proces-

sors is n× O(n1+ε) = O(n2+ε) and the parallel time is then t(n) =
∑N

i=1 ti =
∑N

i=1 min ({ ki
logn , log n}) =∑

ki<logn 1 +
∑

logn<ki<log2 n
ki

logn +
∑

ki>log2 n log n = O(n/ log n). 2

A Blankinship-like algorithm can be easily designed to compute Extended GCD, and an upper bound of
the multipliers [4] could be considered as well. A slightly modified Rosser’s algorithm (pivoting with α)
can be used to solve linear Diophantine equations. Moreover, a O(n2/ log n) sequential version of ∆-GCD
should be considered with precomputed lookup tables for arithmetic operations on O(log n) bit integers.

References

[1] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations, Infor-
mation and Control, 52, 3, 1982, 241–256

[2] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica, 5, 1990,
1-10

[3] G. Cooperman, S. Feisel, J. von zur Gathen and G. Havas, GCD of many integers, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin, 1627 (1999), 310–317

[4] G. Havas, S. Majewski, Extended gcd calculation, Congressus Numerantium, 111, 1627 (1998), 104-
114

[5] S.M. Sedjelmaci, On A Parallel Lehmer-Euclid GCD Algorithm, in Proc. of the International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’2001), 2001, 303-308

[6] S.M. Sedjelmaci, Fast Parallel GCD algorithm of many integers, lipn.univ-paris13.fr/∼sedjelmaci,
Rapport interne, LIPN, April, 2013

[7] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

