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Message from the SIGSAM Chair

Ilias S. Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

Dear SIGSAM Members,
It is a great honor to serve as Chair of ACM SIGSAM, a historical organization with numerous and

long-lasting contributions to Computer Algebra and Symbolic Computation. I would like to take this op-
portunity to thank all candidates at the recent elections. Everyone is a valuable member of the community
and I would encourage them to take part in the next election as well and/or to continue to be actively
involved in SIGSAM activities and projects. SIGSAM is a volunteer-based organization and therefore it
is important to involve as many volunteers as possible. I would also like to welcome the three elected
members of the new SIGSAM executive, namely:

• Vice Chair: Jean-Guillaume Dumas (Université Joseph Fourier, France), VC_SIGSAM@acm.org

• Secretary: Ziming Li (Institute of Systems Science, China), Secretary_SIGSAM@acm.org

• Treasurer: Agnes Szanto (North Carolina State University, USA), Treasurer_SIGSAM@acm.org

I am looking forward to working with all three of them. I am also looking forward to work with those of
you that would be willing to take some time off your busy schedules to work on some projects that I plan
to pursue. To be more specific, I plan to intensify work on the following projects:

• Update and re-organize the SIGSAM webpage http://www.sigsam.org/

• Design and implement a campaign to increase SIGSAM membership. This will include reviewing all
benefits of SIGSAM membership and discussing ways to increase the value of membership for all of
those interested in computer algebra and related fields

• Enlarge and maintain coverage of CCA in on-line publication databases, i.e. DBLP, MathSciNet

The annual SIGSAM business meeting was held during the ISSAC 2013 conference in Boston and it
was reported that:

1. SIGSAM is financially healthy with a balance of more than $60, 000.
2. SIGSAM sponsorship of ISSAC paper prizes and Jenks award funded by endowed accounts which

also remain healthy
3. Item 1 enabled SIGSAM to reduce the fee from ACM for ISSAC sponsorship from 16% to 10% which

was the same as when ISSAC was sponsored by INRIA at Grenoble.
4. ACM has revised its publishing policies. This includes authorizer which allows authors to post

official copies of their ACM publications. It also allows ACM published proceedings to be available
to everyone for one year. I.E. we can post the table of contents of ISSAC proceedings with links to
all papers for one year on the ISSAC or SIGSAM website.

5. Past SIGSAM Chair, Prof. Jeremy Johnson, Drexel University, presented the SIGSAM Program
Review on March 14, 2013. SIGSAM received renewed viability from ACM SGB for another 3 years.
The official ACM statement is:
SIGSAM
The SGB EC congratulates SIGSAM on their continuing importance to the community, but has
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concerns about submissions and attendance at the ISSAC conference and finds SIGSAM viable to
continue its status for the next 3 years.

The preparations for the ISSAC 2014 conference are well underway, under the leadership of general
co-chairs Kosaku Nagasaka (Kobe) and Franz Winkler (RISC-Linz). The conference will be held July
23–25 in Kobe, Japan. Please consult the website http://www.issac-symposium.org/2014/ for more
information. ISSAC 2014 is in cooperation with ACM. It is worthwhile to note that ISSAC 2014 is a
satellite conference of the International Congress of Mathematicians (ICM 2014) that will be held August
13–21 in Seoul, Korea, http://www.icm2014.org/ .

The venue for the ISSAC 2015 conference was selected during the business meeting at ISSAC 2013
in Boston. There were four candidate cities and the winning city was Bath, UK. The representative of
one of the four candidate cities expressed concerns over the preparation and the logistics of the bidding
presentations. I witnessed some aspects of the entire process first hand and I believe the concerns were
justified and valid. In order to address these concerns, I believe that SIGSAM and the ISSAC steering
committee should investigate the entire bidding process and possibly offer recommendations on how to
systematize it and streamline it, so as to hopefully avoid this type of concerns at future bids for ISSAC
conferences.

SIGSAM sponsored the following ISSAC 2013 awards:

• Distinguished Student Author Awards: Pierre Lairez for Creative Telescoping for Rational Functions
Using the Griffiths-Dwork Method (with Alin Bostan and Bruno Salvy) and Qingdong Guo for
Computing Rational Solutions of Linear Matrix Inequalities (with Mohab Safey El Din and Lihong
Zhi).

• Distinguished Paper Award: Jingguo Bi, Qi Cheng, and J. Maurice Rojas. Sub-Linear Root Detection
and New Hardness Results for Sparse Polynomials Over Finite Fields.

• Distinguished Poster Awards: Jeremy Johnson and Lingchuan Meng. Towards Parallel General-
Size Library Generation for Polynomial Multiplication. James Wan. Hypergeometric Generating
Functions and Series for 1

π .
• Distinguished Software Presentation Award: Fredrik Johansson. Arb: a C Library for Ball Arith-

metic.
• The 2013 Richard Dimick Jenks Memorial Prize for Excellence in Software Engineering applied to

Computer Algebra was awarded to the William Stein for the Sage Project.

I would like to thank CCA editor Manuel Kauers (RISC-Linz, Austria) and Information Director William
J. Turner (Wabash College, USA) along with the editorial board for making sure that the four yearly issues
of CCA are published in a timely manner on-line and in the printed version. Timely publication of CCA
is an important aspect of the periodic viability review for SIGSAM. I would also like to thank Clément
Pernet (Université Jopseph Fourier, Grenoble, France) for serving as the SIGSAM representative on the
Editorial Board of ACM Transactions on Mathematical Software (TOMS) http://toms.acm.org/ .

Finally I would like to thank the extremely efficient ACM staff for their help and support during my
past ten years as Editor of CCA and on other occasions such as conference organization. Special thanks
go to Irene Frawley, Program Coordinator, SIG Activities, for her enthusiasm and dedication. I hope to
continue to work with all of them and be productive in my new role as SIGSAM Chair.

Ilias S. Kotsireas
SIGSAM Chair chair_SIGSAM@acm.org
Wilfrid Laurier University
Waterloo, ON, Canada
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Abstract

Herein, we present a sequel to earlier work on a generalization of the Lambert W function. In particular,
we examine series expansions of the generalized version providing computational means for evaluating
this function in various regimes and further confirming the notion that this generalization is a natural
extension of the standard Lambert W function.

AMS Numbers: 33E30, 01-01, 01-02
Also related to: 70B05, 81Q05, 83C47, 11A99

1 Introduction

The Lambert W function satisfying W (t)eW (t) = t provides an exact solution to:

e−cx = ao (x− r1) (1)

with x = r1 + 1
cW (c e−cr1/ao). The Lambert W function appears in a myriad number of applications. In

particular, it appears in the “lineal” gravity two-body problem [1, 2] as a solution to the Einstein Field
equations in (1 + 1) dimensions. The Lambert W function appears as a solution for the case when the
two-bodies have exactly the same mass. However, the case of unequal masses required a Generalization of
Lambert’s function [1, eq.(81)].

e−cx = ao (x− r1)(x− r2) (2)

This generalization originally appeared from the (quantum-mechanical) Double Well Dirac Delta Potential
model [3], a one-dimensional version of a special case of the quantum-mechanical three-body system known
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Asymptotic series of Generalized Lambert W Function

as the Hydrogen Molecular Ion (and also appears in quantum gravity [2]). For this problem, specifically
r1 = 1, r2 = λ, c = 2 R where R is the internuclear distance. ao = 1

λ and λ was treated formally as real
perturbative parameter (the case at λ = 1 allows eq. (2) to factor into (1) which is solvable in terms of
the standard Lambert W function). In its original form, this equation was written in a more complicated
form, namely a pseudo-quadratic: with two solutions for x [3–6]:

x±(λ) = 1
2(λ+ 1)± 1

2

{
(1 + λ)2 − 4λ[1− e−cx±(λ)]

}1/2

where E± = −x±/2 are the quantum state energies (for respectively the two distinct solutions x±). All
these quantities including the energies were real though we do not rule out a generalization to the complex
plane.

A difficulty encountered by Byers-Brown and Scott et al. is that Physical Chemists followed a conventional
practice of starting with the case λ = 0 whose solution is x0 = 1 as a starting point and considering a series
expansion about x0 of eq. (1) in powers of λ. This was called the “polarization expansion” for the range
0 < λ < 1 and proves very difficult to sum, necessitating the use of Padé-Hermite Approximants [3]. This
slow convergence became aggravated for larger but similar molecular systems like the Hydrogen Molecular
Ion requiring much discussion (and calculation) to sort out the convergence of the eigenstates and related
quantities once and for all [7, 8].

Subsequently, it was realized that eq. (2) could be further generalized to the case of a rational polynomial [9]:

e−c x =
PN (x)

QM (x)
(3)

where c > 0 is a constant as before and PN (x) and QM (x) are polynomials in x of respectively orders N
and M . Eq. (3) expresses the solution for the energy eigenvalues of the three-dimensional (and realistic)
version of the Hydrogen molecular ion. These generalizations were found to express solutions to a huge class
of fundamental problems and were found to be natural extensions of the standard W function requiring
merely a formal nesting of the standard Lambert W function [10] and thus economical conceptually in terms
of mathematical resources. Some exact solutions were even found for some special cases for eq. (2) [10].

Herein, we examine the more pragmatic matter of obtaining series expansions for eq. (2) for analytical and
computational purposes. In the process, we will show how closely they relate to the series expansions of
the standard W function. We will examine three series expansions which apply to three different regimes.
Though eq. (2) is not the full generalization in eq (3) it already embodies a link between gravity theory
and quantum mechanics albeit in lower dimensions [2] and is therefore instructive as a special case beyond
the standard W function. Finally, some concluding remarks are made at the end. Since we are dealing
with applications in Physics, the input parameters c, ao and the polynomial roots ri where i = 1, 2, . . . are
assumed to be real.

2 Series Expansions

2.1 Taylor series in rd

By a series of manipulations, eq. (1) can be brought in the familiar standard form:

x0 = W (x0)e
W (x0) where x0 =

c e−cr1

ao
(4)
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Using very similar manipulations and defining respectively the mean and difference of the roots r1 and r2:

rm =
r1 + r2

2
and rd =

r1 − r2
2

, (5)

and by completing the square for the quadratic on the right of eq. (2):

(x− r1)(x− r2) = (x− rm)2 − r2d
and defining W (rd) = x− rm, eq. (2) can be rewritten as:

e−c(W (rd)+rm) + ao r
2
d = ao W (rd)

2 . (6)

The above can be viewed as the intersection between an exponential of the form Ae−c x and a “simple
harmonic oscillator” of the form Bx2. Potentially, there can be two and as much as three intersections (in
the real plane), in some cases, roots of the same sign. To obtain real solutions, we constrain ao > 0. It
is very similar to eq. (1) the equation governing the standard Lambert W function with the mean of the
roots rm playing the role of the r1 in the monomial on the right side of eq. (1), the difference in the roots
rd representing a departure from the form of eq. (1). This makes perfect since because when rd = 0, then
r1 = r2 and eq. (2) can be factored into the form of eq. (1) bringing us back to the standard W function.
We define:

z0 =
1

2

√
c2

ao
e−crm/2 =

1

2

c√
ao
e−crm/2 (7)

where it is understood that W (0) is/are the solution(s) when rd = 0:

W (0) =
2

c
W (±z0) =

2

c
W0 (8)

and where W (±z0) on the right side of eq. (8) is the standard Lambert W function. For real results, in
particular for the parameters mentioned for the Double Well Dirac potential mentioned just below eq. (2),
we are interested in real results and make use of the main branch of the standard W function. In this
case, c > 0 helps ensure |z0| < 1/e (although W (−z0) could have a real result on a different branch for c
sufficiently small). Implicit differentiation on both sides of eq. (6) yields:

∂W (rd)

∂rd
=

2rd
ce−c(W (rd)+rm)

ao
+ 2W (rd)

=
2rd

c W (rd)2 − c r2d + 2 W (rd)
(9)

Naturally successive derivatives with respect to rd yields the Taylor series in rd. Its radius of convergence
will be obtained from the disk about the point of expansion rd = 0 (assuming it is regular at the point
of expansion) bounded by the closest singularity or branch point in the complex plane namely when the
denominator of this derivative and all successive derivatives is zero, with W (rd) simultaneously satisfying
eq. (6). Note that the expression on the right most side of eq. (9), obtained by virtue of eq. (6), does not
formally depend on ao nor rm but only on c and rd. Even though this is a quadratic in W (rd), only one
solution satisfies eq. (6), namely:

W (rd crit) =
−1 +

√
1 + c2 rd

2
crit

c
(10)

The critical radius in the complex plane is:

rd crit = ± 1

c

√
2 W (−2 z20) +W (−2 z20)2 . (11)
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Here W0 = W (±z0) is the standard W function and the radius is |rd crit|. Note that when z0 = 0,
W (z0) = W (−2z20) = 0 (on the main branch) and the radius of convergence is also zero even though
z0 = 0 is analytic on the main branch for the (standard) Lambert W function. The series in rd is thus:

W (rd) = 2
W0

c
+

1

4

c r2d
W0(W0 + 1)

+
1

64

c3 r4d (2 W 2
0 − 1)

W 3
0 (W0 + 1)3

(12)

+
1

1536

c5 r6d (8W 4
0 − 12W 2

0 + 3− 4W 3
0 )

W 5
0 (W0 + 1)5

+
1

49152

c7 r8d (48W 6
0 − 132W 4

0 + 90W 2
0 − 15− 64W 5

0 + 40W 3
0 )

W 7
0 (W0 + 1)7

+O(c9r10d )

which is a series in r2d for x = W (rd) + rm with x governed by eq. (2) and the radius of convergence
is provided by the magnitude of (11). Within its radius of convergence, it converges rapidly. Note that
when argument of z0 is such that W0 = 0 (which happens when e.g. z0 = 0 on the main branch) or
W0 + 1 = 0 (which happens when z0 = −e−1 which is a branch point on the main branch), the individual
series coefficients are confronted with divisions by zero, a result consistent, for the case W0 = 0, with a
radius of convergence of zero as given by eq.(11).

The validity of this series is demonstrated with some numerical tests. To reiterate the earlier problem, for
a relatively high value of λ = 0.8 and an internuclear distance near the bond length R = 2, we have:

ao =
5

4
, c = 4, rd =

1

10
, rm =

9

10

The solution of eq. (2) is x = 1.0485 obtained to within 4 decimals using the series in eq. (12) to within
and including order O(r10d ) using W0 = W (z0) as the lead term. Similarly, the other solution x = 0.6248 is
obtained using W0 = W (−z0) as the lead term. The convergence of this series is much more rapid than the
original “polarization expansion” mentioned in the introduction. Furthermore, this series is not limited to
the real plane. For λ = 9

10 − 1
10 i

ao =
45

41
+

5

41
i, c = 4, rd =

1

20
+

1

20
i, rm =

19

20
− 1

20
i

The series to (and including) order O(r14d ) yields x = 1.0651408 − 0.0281742 i to within 7 decimals for
W0 = W (z0) and similarly x = 0.72818558 − 0.0876039 i for W0 = W (−z0) This series expansion is valid
for small differences in the roots rd, so clearly an asymptotic expansion valid for large rd is also needed.

It would seem that in the case of three real roots, that we would only recover at most two out of three
solutions. However, when two roots appear for e.g. x > 0 and the third root appears for x < 0, the latter
can be recovered by reflection symmetry on the parameters. Let x → −x, c → −c, ri → −ri and these
same formula can be used to recover that third solution.

2.2 Reversion of Power Series

To get an asymptotic series valid for large rd, we further transform eq. (6) with the following variable
transformations:

W (rd)
2 =

(
2

c

)2

(U2 + d2)

d = c rd/2 (13)
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and x = W (rd) + rm as before. Following the procedure for the standard W function [11], we start from:

z0 = f(U) = Ue±
√
U2+d2 where z0 =

1

2

c e−crm/2√
ao

(14)

where the sign ± takes into account that the negative square root is also possible. When d = 0, eq. (14)
reduces to the form of the standard W function. Eq. (14) has the form:

z = f(U)

and we seek to reverse the power series to obtain:

U = g(z);

Defining φ(U) = U/f(U) = e∓
√
U2+d2 and noting that φ(0) 6= 0, we use a specialized version of the

Lagrange-Bürmann [12] formula:

U(z) = zφ(0) +
∞∑

k=1

zk+1

(k + 1)!

∂kφ(U)k+1

∂Uk

]

U=0

(15)

Implicit differentiation of eq. (14) w.r.t. z yields:

∂U(z)

∂z
=

√
U(z)2 + d2 e∓

√
U(z)2+d2

U(z)2 +
√
U(z)2 + d2

(16)

We can see that the square root term dominates the functional form of the derivatives and the branch
structure U(z) in the complex plane much in accordance with the findings of Byers-Brown [5,6]. Note that
eq. (16) has no explicit dependence on z and thus there is no need to verify its consistency with (14). To
get the radius of convergence, we need to consider both the branch structure of the square root term in the
denominator of (16) and values of U(z) in the complex plane about the region z = 0 which would make
this denominator zero. Thus the radius of convergence is limited by either:

|Ucrit| < |d|

or

|Ucrit| <
1

2
|
√

2± 2
√

1 + 4d2| (17)

whichever is smaller. We obtain:

U(z) = ze∓d ∓ 1

2

z3e∓3d

d
± 1

8

z5(±5d+ 1)e∓5d

d3
+ O(z7e±7d) (18)

=
1

2

c e−
1
2 cr±
√
ao

∓ 1

8

c2 e−
3
2 cr±

a
3/2
o rd

± 1

64

c2 e−
5
2 cr±(±5 c rd + 2)

a
5/2
o r3d

+ O(e−
7
2 r±c) (19)

where r+ = r1, r− = r2, x = rm + (2/c)
√
U2 + d2 as x given in eq. (2). This series would have growing

exponential terms of the form exp(−k ∗ d) unless k > 0 and consequenly this necessitates the requirement
that c r± > 0. Thus, we obtain a valid asymptotic expansion valid for large d or equivalently large rd.

As in the previous section, we also get two kinds of solutions, respectively for positive and negative d, but
they do not necessarily relate at all to the solutions of the previous section. The first section involved a
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series expansion in r2d where rd = (2/c)d and invariant with respect to the sign of d. Here we are dealing
with a situation where the difference between the roots rd is very large and thus quite possibly only one
intersection between the exponential term on the left side of eq. (2) and its right side namely a quadratic
in x, and thus only one solution.

As a numerical check and departing from the earlier physical chemistry problem in the earlier section,
consider these particular values:

ao = 1, c = 2, r1 = 2, r2 = 1 ⇒ d = rd =
1

2
, rm =

3

2
.

The asymptotic series in eq. (19) with only the first 3 terms up to and including O(1/d3) yields the solution
x = 2.01739 to within 4 decimals. Another test case, this time with some complex values:

ao = 1, c = 1, r1 = 2− i, r2 = 1 + i ⇒ d =
1

4
− 1

2
i, rd =

1

2
− i, rm =

3

2

This same series with only 3 terms gives us x = 1.9703 − 0.9430 i to within 4 decimals. Thus, though
initially motivated for the case of real numbers, these expansions can be used in the complex plane within
certain restrictions.

2.3 Asymptotic series for large argument

The question arises what happens if we decide the left side z0 of eq. (14) is large? For the principal branch
when z > 0, taking logs of both sides of the equation governing the standard Lambert W function i.e.
WeW = z yields:

ln[W (z)] = ln(z) − W (z) (20)

Recursive substitution yields successively:

ln(z)
ln(z)− ln(ln(z))
ln(z)− ln(ln(z)− ln(ln(z)))
. . .

By taking logs on both sides of eq. (14) for the positive square root case only:

ln(z)− ln(U) =
√
U2 + d2 or (ln(z)− ln(U))2 = U2 + d2 (21)

Thus, we consider two types of recursion.

U →
√

(ln(z)− ln(U))2 − d2 (22)

U2 → 1

4
(−2 ln(z) + ln(U2)− 2d)(−2 ln(z) + ln(U2) + 2d) (23)

The second recursion avoids the square root (and its messy consequences for recursion) and looks like a
factored form involving a combination of asymptotic formulae for the standard W function. By successive
substitution, we obtain:

U ≈

√√√√√√


ln(z) − ln




√√√√
(

ln(z) − ln

(√
. . . ln

(
ln(z) − ln

(√
(ln(z) − ln(U))2 − d2

))2
. . .− d2

))2

− d2







2

(24)
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Table 1: Non-Linear transformations applied to Taylor series of eq.(12) for rd = 0.8

no. of terms W (rd) Taylor Series Shanks Levin t

1 -0.9999999996 -0.9999999996 -0.9999999996
2 -1.6400000000 -1.6400000000 -2.7777777780
3 -1.4352000000 -1.4848484850 -1.5213977230
4 -1.6099626670 -1.5294964030 -1.5192810810
5 -1.4421905070 -1.5246574640 -1.5243445560
6 -1.6265161880 -1.5271424650 -1.5267037510
7 -1.4108133840 -1.5280997520 -1.5277557490
...

...
...

...
-1.528554071 -1.528554071 -1.528554071

and:

U2 ≈ 1

4

(
−2 ln(z) + ln

(
1

4
(−2 ln(z) + ln (. . . (25)

+ ln

(
1

4

(
−2 ln(z) + ln(U2)− 2d)(−2 ln(z) + ln(U2) + 2d

))
+ . . .+ 2d

))
+ 2d

)

However, we find from experience that the argument z has to be very large indeed for these asympotic
formulations to converge. This exercise is more to demonstrate the resemblence with the counterpart
expansion for the standard W function, namely eq. (21). For computational value, sections 2.1 and 2.2 are
more useful. Nonetheless, the very large z0 argument is tractable.

2.4 Summation techniques

Finally, the series summation can be accelerated even beyond the radii of convergence using non-linear
transformations as mentioned in the introduction. These transformations are applied to the sequence of
partial sums and are capable of accelerating the convergence of a series and even sum divergent series (e.g.
see the work of [13, 14]). We take the point of view that a Taylor or asymptotic series has all the desired
“information”, getting numbers from the series is a matter of a summation technique. For the series in rd
of the first section for both W (±z0), it was found that the series, when oscillating in rd, could indeed be
extended beyond their radius of convergence. This is demonstrated for the test case:

ao = 1, c = 1, rm = 1 .

Here, the asymptotic solution of eq. (19) matches the extrapolated Taylor series of solution about W0(z0)
of (12) in 4 decimal places. Here rd crit ≈ 0.64 and we consider the regime when rd > rd crit, the
alternating Taylor series is divergent. This Taylor series to order O(r12d ) ( 6 terms in powers of r2d) is
used for the t transformation of Levin [15] and the Shanks transformation [16]. To demonstrate agreement
between the Taylor series and the outcome of the non-linear transformations, tables 1 and 2 compares
the Taylor series of eq. (12) and the outcome of the Shanks and Levin t transformations for respectively
rd = 0.8 and rd = 1.5. At the bottom of each table is listed what exact solution to the number of digits
shown. The Taylor series of eq. (12) diverges violently when rd = 1.5 but the non-linear transformations
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Table 2: Non-Linear transformations applied to Taylor series of eq.(12) for rd = 1.5

no. of terms W (rd) Taylor Series Shanks Levin t

1 0.38889448 0.3888944774 0.3888944774
2 2.81078092 2.8107809190 -0.0743922833
3 -3.02541152 1.0991727410 -5.1438626370
4 24.71693722 1.7964086140 1.7380384290
5 -139.85949420 1.3876539200 1.5296581130
6 953.20098980 1.5894954440 1.5167708910
7 -6823.99405600 1.4791930140 1.5165517370
...

...
...

...
1.516240428 1.516240428 1.516240428

converge nicely. Three terms of the asymptotic expansion in eq. (19) for rd = 1.5, yield x = 1.516240673
which agrees with the exact solution starting from W0(z0) to within 7 decimals. This demonstrates that
the solutions of section 2.2 can match one of the solutions of section 2.1.

3 Conclusions

Previously [10] we had inferred a canonical form for a generalization as expressed by (2) and (3) and given
both mathematical and physical justifications for it. Herein, we formulated Taylor series and asymptotic
series useful for analysis and computation. We find that the results are similar to those governing the
standard W function and represent a natural extension though the branch structure in the complex plane
may differ.

This approach could be extended to higher order polynomials fitting the pattern of eq. (3). For example,
when the right side of eq. (3) we can complete the cube in some special cases, i.e. for

x3 + a x2 + b x + c =

(
x +

1

3

)3

−
(

1

27
a3 − c

)3

when b =
a2

3

which can allow a special case of eq.(3) and create a cubic relation counterpart of eq. (14):

e−crm

ao
= Y 3 ec (Y 3+d3)1/3 (26)

where (x − rm)3 = Y 3 + d3 and d3 = a3

27 − c and rm = −a/3. However, for larger order polynomials
and rational polynomials, this approach is quickly exhausted and one has to rely on numerical techniques
which is very feasible.

Finally, the Taylor series summation can be accelerated even beyond the radii of convergence using non-
linear transformations known as the Levin or Shanks transformations allowing a matching between the
Taylor series and the asymptotic series. The resulting series can be converted into FORTRAN or C code
using the interface between Maple and these languages [18].
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NSF Funding Opportunities for Symbolic Computation

Communicated by Erich Kaltofen and Alexey Ovchinnikov

The NSF CCF Core Programs, Algorithmic Foundation, is to fund as one of its areas research
symbolic computation. Please, note the change of deadlines of this major funding opportunity this
year:

• Medium projects: September 24, 2013 – October 15, 2013

• Large projects: November 4, 2013 – November 19, 2013

• Small projects: January 2, 2014 – January 17, 2014

For further information, please, refer to the program web page:

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503299&org=CISE

and (new) solicitation:

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503220&org=CISE

where you can find further details, NSF contact information for further questions, and what has
been recently funded under the Core Programs.
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The Computational Geometry Algorithms Library CGAL∗

Efi Fogel† Monique Teillaud‡

Abstract

The Computational Geometry Algorithms Library (CGAL) is an open source software library that
provides industrial and academic users with easy access to reliable implementations of efficient geometric
algorithms.

Usage. CGAL is used in a diverse range of domains requiring geometric computation such as computer
graphics, scientific visualization, computer aided design and modeling, geographic information systems,
molecular biology, medical imaging, and many more. Since CGAL provides a wide range of components,
we restrict ourselves to mentioning just a few here.

As an example application of CGAL, a series of packages are provided which are useful in robotics and
automation: Minkowski sums, offset polygons, Boolean operations on curved regions. The high precision
of CGAL allows users to solve geometric problems involving motion in restricted environments, such as
those arising in assembly planning.

The robustness and efficiency of components such as the Delaunay triangulation and mesh construction
and manipulation packages makes CGAL attractive for simulations, in particular those involving proteins,
particle physics, fluid dynamics, medical modeling, biophysics, geophysics, and astronomy. Indeed, the
aforementioned components are largely used in these areas.

Some support for manipulations of polynomials and for solving univariate polynomial equations and
bivariate polynomial systems is also provided, as well as handling for convex quadratic programs.

History of the CGAL Open Source Project. Several European research groups started to develop
their own small geometry libraries in the early 90’s. In 1996, a consortium of eight sites was created to
gather the work of these groups into a single software library, namely CGAL. Their main goal was to
promote research in computational geometry and to translate the results into robust software suitable for
industrial applications.

Around this time the Computational Geometry Impact Task Force Report [C+96, C+99] made a series
of recommendations. Amongst these recommendations, the production and distribution of usable (and
useful) geometric software, and the need to establish a reward structure for software implementations in
academia, were key.

On November 2003, when version 3.0 was released, CGAL officially became an Open Source project,
allowing new contributors to join the project.

License. CGAL is distributed under the GPL license (apart from a few basic parts, which are distributed
under the LGPL license). In particular, it is publicly and freely available for academic use. Commercial
licenses are offered by Geometry Factory, a company founded in 2003 mainly for this purpose.
∗http://www.cgal.org
†Tel-Aviv University http://acg.cs.tau.ac.il/people/efifogel
‡INRIA Sophia Antipolis-Méditerranée http://www-sop.inria.fr/members/Monique.Teillaud/
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Editorial board. The CGAL editorial board was created in 2001. It currently consists of thirteen
members. The main task of the editorial board is to assure the quality of CGAL. It is also responsible for
making decisions about technical matters and coordinating communication and promotion of CGAL.

All new packages must be submitted to the Editorial Board to be reviewed before they can be accepted
and integrated into the library, in a process that is very similar to the standard review process for papers
published in conference proceedings or journals. More information about the submission process is available
at http://www.cgal.org/review_process_rules.html.

Style and Techniques. CGAL is a unique library both in general and within the field of computational
geometry in particular, as it consists of a large number of components with a homogeneous API (Application
Programming Interface). Careful choices in design and programming style have made CGAL the de facto
standard in the field of applied computational geometry. Its development started whilst the standardization
process of C++ and the STL (Standard Template Library) was taking place. Indeed, the programming
style is very close to the programming style of STL; it rigorously adheres to the generic programming
paradigm—a discipline that consists of the gradual lifting of concrete algorithms abstracting over details,
while retaining the algorithm semantics and efficiency. The programming style of CGAL also facilitates
the process of interfacing with third party software.

Each package comes with header files consisting not only of the interface, but also the generic imple-
mentation of the package code, comprehensive and didactic on-line documentation, a set of non-interactive
standalone example programs, and an optional interactive demo with a graphical user interface.

Robustness. CGAL follows the exact geometric-computation paradigm, which simply amounts to en-
suring that errors in predicate evaluations do not occur; it guarantees robustness of the applied algorithms.

We additionally remark that every package also includes a collection of function and regression test. 1

The tests provided by each package are combined into one place to form the CGAL test suite. This test
suite is run daily and its results are automatically assembled, analyzed, and reported.

Impact. Measuring the impact of software is a difficult task, especially in the Open Source software
community. Even if some hard numbers can be found, they can be difficult to interpret. The following
facts may shed some light on the impact of CGAL:

• There are roughly 1000 downloads per month from http://gforge.inria.fr/

• CGAL is included in various software distribution channels, such as Fedora, Debian/Ubuntu, and
Macports.

• The range of uses of CGAL is very broad, as shown by the sample list of projects using CGAL,
which is available at http://www.cgal.org/projects.html. In addition, many projects shown in
http://acg.cs.tau.ac.il/projects use CGAL or even describe the development of a CGAL
component.

• The CGAL triangulation packages were integrated in Matlab 2009a.2

• Springer has published a book entitled “CGAL Arrangements and Their Applications” authored by
some of the developers of the 2D Arrangements package and its derivatives.

• Concerning the public mailing lists, there are currently
1However these are not distributed as part of the public releases.
2Watch the video at http://www.mathworks.com/products/demos/shipping/matlab/

New-MATLAB-Mathematics-Features-in-R2009a.html
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– 4000 subscribers to the announcement list cgal-announce@lists-sop.inria.fr
– 1500 to the public discussion list cgal-discuss@lists-sop.inria.fr, with high traffic: users

are free to ask questions, which are often rapidly answered by the developers or other users.
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Revisiting QRGCD and Comparison with ExQRGCD∗

Kosaku Nagasaka†and Takaaki Masui‡
†Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501 JAPAN

‡Kobe-Takatsuka High School, 9-1 Mikatadai, Nishi-ku, Kobe 651-2277 JAPAN
† nagasaka@main.h.kobe-u.ac.jp, ‡ masui.takaaki@gmail.com

1 Introduction

In this poster, we are interested in computing “approximate polynomial GCD”: for the input polynomials
f(x), g(x) ∈ R[x], we call the polynomial d(x) ∈ R[x] “approximate polynomial GCD” of tolerance ε ∈ R≥0

if it satisfies
f(x) + ∆f (x) = f1(x)d(x), g(x) + ∆g(x) = g1(x)d(x)

for some polynomials ∆f (x),∆g(x), f1(x), g1(x) ∈ R[x] such that deg(∆f ) ≤ deg(f), deg(∆g) ≤ deg(g),
‖∆f ‖2< ε ‖f ‖2 and ‖∆g ‖2< ε ‖g‖2 where ‖·‖2 denotes the 2-norm. Although there are many studies,
we revisit the QRGCD algorithm[2] which is one of algorithms based on matrix decompositions and is also
implemented as a part of the SNAP package of Maple. It is notable that the QRGCD algorithm is very
simple and has been used as the benchmark algorithm for newly proposed algorithms. The framework of
the QRGCD algorithm is as follows. For details, please refer the original paper[2].

1. Compute the QR decomposition of Syl(f, g): Syl(f, g) = QR.

2. Find the gap between the k-th and (k+1)-th row vectors ~rk, ~rk+1 of R and form the polynomial with
coefficients ~rk, which is an approximate polynomial GCD (or its factor).

3. Apply the same procedures to the reversal polynomials of cofactors since R may not have the ap-
proximate common divisor whose roots are outside the unit circle in the complex plane.

However, since QRGCD was proposed in the early stage of approximate GCD, its theoretical background is
not enough analyzed from the current theoretical point of view and the official implementation is different
from the paper. For example, Bini and Boito[1] reported that QRGCD failed to recognize the correct
degree of GCD for polynomials with small leading coefficients. This result is caused by the preconditioning
routine in the official implementation hence QRGCD works well for such polynomials. Therefore, our aim
consists of two parts: 1) verifying the efficiency of QRGCD with much theoretical considerations, and 2)
improving the framework and algorithm to be more accurate and able to satisfy the given tolerance.

2 Notable Facts on QRGCD and its Implementation in SNAP

Recently, the concept of “structured perturbation” is important in the theory of approximate GCD. How-
ever, at the time of QRGCD proposed, this concept is not widely discussed hence there are unclear state-
ments in the original paper from this point of view. Analyzing their theory from this concept could be
interesting. For example, any relationship between the QR factoring and structured perturbation, the
reason that the QR factoring can not detect the roots outside the unit circle and so on.

∗This work was supported in part by JSPS KAKENHI Grant Number 22700011.
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Moreover, we found the 4 significant differences between the original algorithm and the SNAP imple-
mentation. According to our personal conversations, some of them are implemented by the original authors
and others may be by H. Kai, the person implemented it in the SNAP package. The differences are 1) the
preconditioning routine “find non-zero terms”, 2) the matrix norm used, 3) the polynomials to be applied
to the algorithm “Split”, and 4) the fail-safe retry loop. The first one may be the cause that many people
think QRGCD is weak for polynomials with small leading coefficients. Without this, QRGCD works well
for such polynomials. Other differences seem to be some techniques to make QRGCD working well.

3 Improved QRGCD Algorithm (ExQRGCD)

We refine the framework of QRGCD from the different approach with recent theoretical results of ap-
proximate polynomial GCD and propose the improved algorithm called “ExQRGCD”. The most notable
difference is that our algorithm detects a row vector of R by estimating relative distance from the expected
approximate GCD while QRGCD detects by estimating absolute distance. As a result, ExQRGCD works
more accurately. For example, it works for the following polynomials (QRGCD does not work well for this
kind of polynomials unfortunately). For i = 1, . . . , 10, we have generated 100 pairs of (f, g) such that

f(x) = d(x)
2i∏

j=1

(x− ωf,j)
2i∏

j=1

(x− ω̂f,j), g(x) = d(x)
2i∏

j=1

(x− ωg,j)
2i∏

j=1

(x− ω̂g,j)

where d(x) =
∏3i

j=1(x− ωd,j)
∏3i

j=1(x− ω̂d,j), ω·,j = O(10−2), ω̂·,j = O(102) is randomly chosen, f(x), g(x)
are normalized (i.e. ‖f(x)‖2=‖g(x)‖2= 1) and rounded with Digits := 10. We computed with tolerance
10−5. Figure 1 shows the result that ExQRGCD is explicitly better than QRGCD though as for computing
time, ExQRGCD is 39.8 times slower than QRGCD (note that QRGCD outputs failure for 62% pairs so
computing time is very fast for the rest easy cases). The average of resulting perturbations of ExQRGCD
is also better. For other random generated examples, ExQRGCD is almost 2 times slower than QRGCD
since ExQRGCD is more conservative than QRGCD for detecting approximate GCD hence it computes
QR decompositions several times (this is more than that of QRGCD in general).

ExQRGCD

QRGCD
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Number of fail events or wrong ∆∗ (QRGCD)
i=1 2 3 4 5 6 7 8 9 10 ∆f ∆g

29 63 68 71 64 60 66 66 69 68 110 119

Number of fail events or wrong ∆∗ (ExQRGCD)
i=1 2 3 4 5 6 7 8 9 10 ∆f ∆g

0 0 0 0 0 0 0 0 0 0 0 0

Figure 1: Sum of Detected Degrees and Resulting Perturbations (failure is not counted)

We note that our preliminary implementations on Maple and written in C, and generated polynomial
data are available: “http://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/issac2013/”.
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Schützenberger’s factorization on q−stuffle Hopf algebra
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Schützenberger’s monoidal factorization [9] has been introduced and plays a central role in the renormalization [7]
of associators which are formal power series in non commutative variables1. The coefficients of these power series are
polynomial at positive integral multi-indices of Riemann’s zêta function2 [5, 10] and they satisfy quadratic relations
[1] which can be explained through Lyndon words. These relations can be obtained by identification of the local
coordinates on a bridge equation connecting the Cauchy and Hadamard algebras of polylogarithmic functions and
use the factorizations of the non commutative generating series of polylogarithms [6] and of harmonic sums [7]. This
equation is mainly a consequence of the double isomorphy between these structures to respectively the shuffle [6] and
stuffle [3] algebras both admitting the Lyndon words as a transcendence basis.

Symbolic computation allows us to introduce a formal variable q in order to better understand the mechanisms of
the shuffle and to obtain algorithms on stuffles. We will then examine the q-stuffle interpolating between the shuffle
[9], stuffle [8] and minus-stuffle [3]. In particular, we will give an effective construction of pair of bases in duality. It
uses essentially an adapted version of the Eulerian projector in order to obtain the primitive elements of the q-stuffle
Hopf algebra and they are obtained thanks to the computation of the logarithm of the diagonal series. This study
completes the treatment for the stuffle [7] and boils down to the shuffle [9].

More precisely, let Y = {ys}s≥1 be an alphabet with the total order y1 > y2 > · · · . Let also k be a unitary
Q-algebra containing q. One defines the q-stuffle, or its dual co-product, as follows, for any ys, yt ∈ Y and u, v ∈ Y ∗,

u q1Y ∗ = 1Y ∗ qu = u and ysu qytv = ys(u qytv) + yt(ysu qv) + qys+t(u qv), (1)

∆ q (1Y ∗) = 1Y ∗ ⊗ 1Y ∗ and ∆ q (ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys + q
∑

s1+s2=s

ys1 ⊗ ys2 . (2)

This product is commutative, associative and unital. With the co-unit defined by, ε(P ) = 〈P | 1Y ∗〉, for P ∈ k〈Y 〉, one
gets H q

= (k〈Y 〉, conc, 1Y ∗ ,∆ q
, ε) and H∨

q
= (k〈Y 〉, q, 1Y ∗ ,∆conc, ε) which are mutually dual bialgebras

and, in fact, Hopf algebras because they are N-graded by the weight.
Group-like elements, redefined below, form a group for which the log-exp correspondence is explained by as follows

Lemma 1 (q-extended Friedrichs criterium) Let S ∈ k〈〈Y 〉〉 (for 2., we suppose in addition that 〈S | 1Y ∗〉 = 1).

1. S is primitive, i.e. ∆
q
S = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S, if and only if, for any u, v ∈ Y +, 〈S | u qv〉 = 0.

2. S is group-like, i.e. ∆
q
S = S ⊗ S, if and only if, for any u, v ∈ Y +, 〈S | u qv〉 = 〈S | u〉〈S | v〉.

3. S is group-like if and only if logS is primitive.

Proposition 1 Let DY =
∑

w∈Y ∗ w ⊗ w be the diagonal series over Y . Then

1. logDY =
∑

w∈Y +

w ⊗ π1(w), where π1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉u1 . . . uk.

2. For any w ∈ Y ∗, we have w =
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉π1(u1) . . . π1(uk).

1These associators were introduced in quantum field theory by Drinfel’d and the universal associator, i.e. ΦKZ , was obtained with
explicit coefficients which are polyzêtas and regularized polyzêtas [5].

2These values are usually abbreviated MZV’s by Zagier [10] and are also called polyzêtas by Cartier [1].
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Let P = {P ∈ Q〈Y 〉 | ∆
q
P = P ⊗ 1 + 1 ⊗ P} be the set of primitive polynomials. Since, in virtue of

∆
q
π1(w) = π1(w)⊗ 1 + 1⊗ π1(w), Im(π1) ⊆ P, we can state the following

Theorem 1 ([2]) 1. Let {Πl}l∈LynY be defined by, for any yk ∈ Y,Πyk
= π1(yk) and for any l ∈ LynX of

standard factorization l = (s, r),Πl = [Πs,Πr]. Then {Πl}l∈LynY forms a basis of P.

2. Let {Πw}w∈Y ∗ be defined by, for any w ∈ Y ∗ such that w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynY,
Πw = Πi1

l1
. . .Πik

lk
. Then {Πw}w∈Y ∗ forms a basis of k〈Y 〉.

3. Let {Σw}w∈Y ∗ be the family of the quasi-shuffle algebra obtained by duality with {Πw}w∈Y ∗ . Then {Σw}w∈Y ∗
generates freely the quasi-shuffle algebra.

4. The family {Σl}l∈LynY forms a transcendence basis of (k〈Y 〉, q).

We now give formulas which permit to compute the basis {Σw}w∈Y ∗ without inverting a huge Gram matrix.

Theorem 2 (q-extended Schützenberger’s factorization, [2]) 1. For any y ∈ Y , Σy = y.

2. For any ys1
. . . ysk ∈ LynX, Σys1 ...ysk

=
∑

{s′1,··· ,s′
i
}⊂{s1,··· ,sk},l1≥···≥ln∈LynY

(ys1 ···ysk )
∗⇐(y

s′1
,··· ,y

s′n
,l1,··· ,ln)

qi−1

i!
ys′1+···+s′i

Σl1···ln .

3. For any w = li11 . . . likk , with l1, . . . , lk ∈ LynY and l1 > . . . > lk, Σw =
Σ qi1

l1 q . . . qΣ qik
lk

i1! . . . ik!
.

4. DY =
∑

w∈Y ∗
Σw ⊗Πw =

↘∏

l∈LynY
exp(Σl ⊗Πl).

Theorems 1.1 and 2.2 are based mainly on respectively the logarithm of the diagonal series DY and the standard
sequences [9, 2] and lead to simplified algorithms getting bases in duality as shown in the following

Example 1

Πy2 = y2 −
q
2
y2
1,

Πy2y1 = y2y1 − y1y2,

Πy3y1y2
= y3y1y2 −

q
2
y3y3

1 − qy2y2
1y2 +

q2

4
y2y4

1 − y1y3y2 +
q
2
y1y3y2

1 +
q
2
y2
1y2

2 −
q2

2
y2
1y2y2

1 − y2y3y1

+
q
2
y2
2y2

1 + y2y1y3 +
q
2
y2
1y3y1 −

q
2
y3
1y3 +

q2

4
y4
1y2,

Πy3y1y2y1
= y3y1y2y1 − y3y2

1y2 −
q
2
y2y2

1y2y1 − y1y3y2y1 + y1y3y1y2 +
q
2
y2
1y2

2y1 −
q
2
y2
1y2y1y2 − y2y1y3y1

+
q
2
y2y1y2y2

1 + y2y2
1y3 + y1y2y3y1 −

q
2
y1y2

2y2
1 − y1y2y1y3 +

q
2
y1y2y2

1y2.

Σy2
= y2,

Σy2y1
= y2y1 +

q
2
y3,

Σy3y2y1
= y3y1y2 + y3y2y1 + qy2

3 +
q
2
y4y2 +

q2

3
y6 +

q
2
y5y1,

Σy3y1y2y1
= 2y3y2y2

1 + qy3y2
2 + y3y1y2y1 +

3q
2

y2
3y1 +

q
2
y3y1y3 +

q2

2
y3y4 +

q
2
y4y2y1 +

q2

4
y4y3 + qy5y2

1 +
q2

2
y5y2 +

q2

2
y6y1 +

q3

8
y7.

In conclusion, since the pioneering works of Schützenberger and Reutenauer [9], the question of computing bases
in duality (maybe at the cost of a more involved procedure, but without inverting a Gram matrix) remained open
in the case of cocommutative deformations of the shuffle product. We have given such a procedure allowing a
great simplification for an interpolation between shuffle and stuffle. In the next framework, this product will be
continuously deformed, in the most general way while remaining commutative [4].
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Abstract: We present a new parallel algorithm which computes the GCD of n integers of O(n) bits in
O(n/ log n) time with O(n2+ε) processors, for any ε > 0 on CRCW PRAM model.

The computation of the GCD of two integers is not known to be in the NC parallel class, nor it is known
to be P-complete [1]. The best parallel performance was first obtained by Chor and Goldreich [2], then
by Sorenson [7] and Sedjelmaci [5] since they propose, with different approaches, parallel integer GCD
algorithms which can be achieved in O(n/ log n) time with O(n1+ε) number of processors, for any ε > 0,
in PRAM CRCW model. A naive approach, using a binary tree computation to compute the GCD of
n integers of O(n) bits would require O(n) parallel time with O(n2+ε) processors. One may also use the
existing parallel GCD algorithms of two integers and try to adapt them to design a GCD for many integers.
However, it is not obvious how to find a parallel GCD for n integers which conserve the same O(n/ log n)
time, with O(n2+ε) processors, which is roughly the bit-size of all the n input integers. In this paper, we
prove that we can compute the GCD of n integers of O(n) bits, in only O(n/ log n) parallel time with
O(n2+ε) processors, for any ε > 0 on CRCW PRAM model, in the worst case. Another probabilistic
approach is given in [3]. To our knowledge, it is the first deterministic algorithm which computes the GCD
of many integers with this parallel performance and polynomial work. Our algorithm, called ∆-GCD is
the following:

Input: A set A = { a0, a1, · · · , an−1 } of n distinct positive integers, ai < 2n, with n ≥ 4.
Output: gcd(a0, a1, · · · , an−1).

α := a0 ; I := 0 ; p := n ;
While (α > 1) Do

For (i = 0) to (n− 1) ParDo
If (0 < ai ≤ 2n/p) Then { α := ai ; I := i ; }

Endfor
If (α > 2p/n) Then /* Compute in parallel I, J and α */
α := min { | ai − aj | > 0 } = aI − aJ ; aI := α ;

Endif
For (i = 0) to (n− 1) ParDo /* Reduce all the ai’s */

If (i 6= I) Then ai := ai mod α ;
Endfor /* ∀ i , 0 ≤ ai ≤ α */
If ( ∀ i 6= I , ai = 0 ) Then Return α ; /* Here α = gcd(a0, · · · , an−1) */
p := np ;

Endwhile

Return α.

92



ISSAC poster abstracts

We use a weak version of the function min based the pigeonhole principle, where only the O(log n) leading
bits of the integers are considered. The integer α is, at each while iteration, O(log n) bits less. More details
for the computations of I, J and α are given in [6], as well as a first C program checking the correctness of
the ∆-GCD algorithm.

Theorem : The ∆−GCD algorithm computes in parallel the GCD of n integers of O(n) bits in length,
in O(n/ log n) time using O(n2+ε) processors on CRCW PRAM model, with ε > 0.

Proof: (Sketch, see [6]). The algorithm terminates after O(n/ log n) loop iterations. Let ti be the time
cost at iteration i, 1 ≤ i ≤ N , with N = O(n/ log n). Let ki be the maximum bit length of all the quotients
qj = baj/αc, with

∑N
i=1 ki ≤ n. We prove that ti = O( min { ki

logn , log n } ). The total number of proces-

sors is n× O(n1+ε) = O(n2+ε) and the parallel time is then t(n) =
∑N

i=1 ti =
∑N

i=1 min ({ ki
logn , log n}) =∑

ki<logn 1 +
∑

logn<ki<log2 n
ki

logn +
∑

ki>log2 n log n = O(n/ log n). 2

A Blankinship-like algorithm can be easily designed to compute Extended GCD, and an upper bound of
the multipliers [4] could be considered as well. A slightly modified Rosser’s algorithm (pivoting with α)
can be used to solve linear Diophantine equations. Moreover, a O(n2/ log n) sequential version of ∆-GCD
should be considered with precomputed lookup tables for arithmetic operations on O(log n) bit integers.
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Introduction. Differential-difference algebras were defined by Mansfield and Szanto in [5], which arose
from the calculation of symmetries of discrete systems (c.f., [2]). Mansfield and Szanto developed the
Gröbner basis theory of differential difference algebras over a field by using a special kind of left admissible
orderings (which they called differential difference orderings). We generalize the main results of [5] to any
left admissible ordering, and apply the generalized results to compute the Gelfand-Kirillov dimensions of
cyclic differential difference modules.

Definition of differential difference algebras. Let k be a field, R be a k-algebra and integers m,n ≥ 1.
Suppose that R[D; id, δ] = R[D1; id, δ1] · · · [Dn; id, δn] and R[S;σ, 0] = R[S1;σ1, 0] · · · [Sm;σm, 0] are two
Ore algebras ([5]) such that σi ◦ δj = δj ◦ σi for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Furthermore, suppose that each
σi : R → R, 1 ≤ i ≤ m, can be extended to a k-algebra automorphism σi : R[D; id, δ] → R[D; id, δ] such

that σi(Dj) =

n∑

l=1

aijlDl, aijl ∈ R. Let F be the free R-R bi-module with basis {S1, . . . , Sm, D1, . . . , Dn},

T be the tensor algebra on F over R, and K be the two-sided ideal in T generated by the set of the
following elements of T :
(1) Dir − rDi − δi(r), 1 ≤ i ≤ n, r ∈ R; (2) Sir − σi(r)Si, 1 ≤ i ≤ m, r ∈ R;
(3) SiSj − SjSi, 1 ≤ i, j ≤ m; (4) DiDj −DjDi, 1 ≤ i, j ≤ n;
(5) DiSj − Sjσj(Di), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Then the R-algebra T/K, denoted by R[D; id, δ][S;σ, 0], is called a differential difference algebra of type
(m,n), or DD-algebras for short.

DD-algebras are generalizations of commutative polynomial algebras, Ore extensions, skew polynomials
of derivation (or automorphism) type, and quantum planes. Since elements in S do not commute with those
in D in general, DD-algebras are different from difference-differential rings (see, e.g., [6]). The following
example distinguishes DD-algebras from algebras of solvable type [3], or PBW extensions [1], or G-algebras
[4].
Example. Let A = k[D; id, 0][S;σ, 0] be a DD-algebra of type (1, 2) with σ1(D1) = D2 and σ1(D2) = D1.
Then D1S1 = S1D2 and D2S1 = S1D1. Hence A is not an algebra of solvable type (or a PBW extension,
or a G-algebra).

Gröbner bases of DD-algebras. We only consider the special case when R = k. From now on,
let A = k[D; id, δ][S;σ, 0] be a DD-algebra. Then, it is easy to see that δ = 0 and σ|k = id. Thus
A = k[D; id, 0][S;σ, 0] and σ|k = id. One can prove that the set M = {SαDβ : α ∈ Nm, β ∈ Nn} is a
k-basis of A. Let u = SαDβ ∈ M, α = (α1, . . . , αm) ∈ Nm and β = (β1, . . . , βn) ∈ Nn. Then the (total)
degree of u is defined as deg(u) = α1 + · · · + αm + β1 + · · · + βn, and the degree of u with respect to Si
(Dj , respectively) is defined as degSi

= αi (degDj
= βj , respectively).
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For any given well ordering on M and f = c1u1 + · · ·+ ctut ∈ A (0 6= ci ∈ k, ui ∈ M, 1 ≤ i ≤ t) with
u1 > · · · > ut, the leading monomial of f is denoted by lm(f) = u1. A DD-monomial ordering on M is a
well ordering > on M such that if SαDβ > Sα

′
Dβ′

and f ∈ A \ k, then lm(fSαDβ) > lm(fSα
′
Dβ′

). Note
that DD-monomial orderings are more general than differential difference orderings defined in [5].

Let f, g ∈ A. If there exists h ∈ A such that f = hg, we say that f is right divisible by g.
Let > be a DD-monomial ordering on M and I be a left ideal of A. A finite set G ⊆ A is called a

(finite) left Gröbner basis of I with respect to > if G satisfies: (i) G generates I as a left ideal of A; and
(ii) For any 0 6= f ∈ I, there exists g ∈ G such that lm(f) is right divisible by lm(g).

Similarly as in [5], we can define reductions and S-polynomials. Then the reduction algorithm and the
left Gröbner basis algorithm still work under a DD-monomial ordering. We have

Theorem 1 Let G ⊆ A be a finite set and I be the left ideal of A generated by G. Then G is a left Gröbner
basis of I if and only if Spoly(g1, g2)→G 0 for any g1, g2 ∈ G.

It can be proved that the Hilbert basis theorem is valid for DD-algebras: every left ideal of A is finitely
generated. Thus we have

Theorem 2 Every left ideal of a DD-algebra k[D; id, δ][S;σ, 0] has a (finite) left Gröbner basis.

Gelfand-Kirillov dimension of cyclic A-modules. For convenience, let xi = Si, xm+j = Dj for
1 ≤ i ≤ m, 1 ≤ j ≤ n and let l = m + n. Denote Xα = xα1

1 xα2
2 · · ·xαl

l for α = (α1, . . . , αl) ∈ Nl. Then
M = {Xα : α ∈ Nl}. For u = Xα ∈ M and p ∈ N, define topp(u) = {i : 1 ≤ i ≤ l, αi ≥ p} and

shp(u) = Xβ, where βi = min{p, αi}, 1 ≤ i ≤ l.
Then we have the following theorem which computes the Gelfand-Kirillov dimension of a cyclic DD-

module.

Theorem 3 Let I be a left ideal of A and G be a left Gröbner basis of I with respect to a total degree
DD-monomial ordering. Set p = max{degxi(lm(g)) : g ∈ G, 1 ≤ i ≤ l}. Then

GKdim(M) = max{| topp(u)| : shp(u) = u}.
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Problem statement. Let Mp,q(R) be the space of p × q matrices with real entries, r ∈ N be an
integer, Vr ⊂ Mp,q(R) be the determinantal variety of matrices of rank at most r and E be a linear (or
affine) subspace of Mp,q(R) (e.g. Toeplitz, Hankel, Sylvester matrices). Given a matrix M ∈ E, the
goal is to compute a close matrix in E ∩ Vr. More precisely, we want a numerical algorithm computing a
function ϕ : E −→ E such that, if M is close enough to E ∩ Vr, then the sequence defined by M0 = M ,
Mi+1 = ϕ(Mi) converges quadratically towards a matrix M∞ ∈ E∩Vr. As shown in [5], this problem which
is also known as Structured Low-Rank Approximation (SLRA) is central in data fitting or in numerical
analysis. It is also underlying classical symbolic-numeric problems.

Main results. We propose a Newton-like algorithm (NewtonSLRA) which answers the above specifi-
cation and appears to converge quadratically. The main principle of this algorithm is close to Cadzow’s
algorithm [1] which proceeds by a sequence of Singular Value Decompositions (SVD) and orthogonal pro-
jections on E. However, we choose a direction of projection which is tangent to the determinantal variety
in order to ensure quadratic convergence. Each iteration of the algorithm NewtonSLRA computes a function
ϕ(M) in three main steps: (1) compute a rank r approximation M̃ of M ; (2) from the left and right

kernels of M̃ , compute a set of generators of the tangent space T
M̃
Vr; (3) compute the point in E ∩ T

M̃
Vr

which minimizes the distance to M̃ (this is achieved by solving a linear least squares problem). Com-
puting the best rank r approximation with respect to the Frobenius norm is achieved by the SVD. It
also provides an orthonormal basis (for the scalar product 〈M1,M2〉 = tr(M1 · TM2)) of the normal space

N
M̃
Vr = KerL(M̃)⊗KerR(M̃) which is used for computing the projection on E. The most expensive step

is the SVD which is achieved in O(pqmin(p, q)) operations in fixed precision. The main theoretical result
lies in the following theorem which ensures the local quadratic convergence towards a matrix M∞ ∈ Vr ∩E
near the optimal solution, under conditions on the dimensions of dim(E) and dim(Vr). To the best of our
knowledge, this is the first proof of quadratic convergence of an iterative method for the SLRA problem:

Theorem 1. If dim(E) = dim(Vr) and dim(E)+dim(Vr) > pq, then the algorithm NewtonSLRA computes a
function ϕ : E → E verifying the following property: for all µ > 1 and for all M̂ ∈ Vr ∩E such that Vr and
E verify mild transversality conditions at M̂ , there exists ε > 0 such that for all M0 with ‖M0 − M̂‖ < ε,
the sequence Mi+1 = ϕ(Mi) converges towards a matrix M∞ ∈ Vr ∩ E and

‖Mi −M∞‖ ≤
(

1

2

)2i−1
‖M0 −M∞‖ and ‖M0 −M∞‖ ≤ µ‖M0 − M̂‖.

The proof relies on tools from Smale’s α-theory, slightly modified to take into account the properties
of this Newton-like iteration.

Application to univariate approximate GCD. Approximate GCD computation is a symbolic-
numeric example of SLRA problem: a degree condition on the GCD of univariate polynomials amounts to
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a rank condition on their Sylvester matrix. In this setting, the algorithm takes as input two floating-point
polynomials f , g of degrees m and n, and an integer d ∈ N; it outputs three floating-point polynomials
a, b, h of respective degrees m − d, n − d, d such that ‖f − ah‖2 + ‖g − bh‖2 is small. Here, E is
the linear space of truncated Sylvester matrices (see e.g. [6]) and Vr is the variety of rank deficient
matrices of sizes (m+ n− d+ 1)× (m+ n− 2d+ 2). We compare in Table 1 our Maple implementation of
NewtonSLRA with the Maple implementation of GPGCD [6], which is a state-of-the art algorithm dedicated to
the computation of approximate GCDs. Instances are constructed by generating two random polynomials
f̃ , g̃ such that deg(GCD(f̃ , g̃)) = d and by adding a random error polynomial fε, gε such that the relative

noise
√
‖fε‖2 + ‖gε‖2/

√
‖f̃‖2 + ‖g̃‖2 is equal to a fixed parameter ε. The column “perturbation” gives the

relative distance between the output and the input of the algorithms. Notice that NewtonSLRA performs
almost as well as GPGCD, which relies on optimization techniques to minimize the function ‖f −ah‖2 +‖g−
bh‖2. In comparison, NewtonSLRA does not converge to the minimum of this function, but we see in Table 1
that the distance to the optimum is small. Also, experimental results indicate that NewtonSLRA converges
quadratically (although dim(E) and dim(Vr) do not verify the assumptions of theorem 1), whereas GPGCD

converges linearly (see the right part of table 1 for an example). We also tried to use directly the QRGCD

routine from the package SNAP in Maple [3] but it failed to find an approximate GCD in our examples
because of the high level of noise in the coefficients of the input polynomials.

NewtonSLRA GPGCD

(m,n, d, ε) time perturbation time perturbation

(100, 100, 50, 0.001) 0.803s 4.838e-4 0.806s 4.742e-4

(500, 500, 250, 0.001) 37.5s 5.127e-4 45.4s 4.923e-4

(1000, 1000, 500, 0.001) 282s 5.781e-4 317s 5.155e-4

(2000, 2000, 1000, 0.0001) 1567s 5.104e-5 1161s 5.088e-5

sizes of iteration steps

iteration NewtonSLRA GPGCD

1 0.9e-1 0.9e-1
2 0.5e-3 0.5e-3
3 0.6e-8 0.2e-5
4 0.1e-17 0.8e-8
5 0.1e-36 0.4e-10

Table 1: Comparison between GPGCD [6] and NewtonSLRA for computing approximate GCDs

Other applications of SLRA in symbolic-numeric computations and future work. Several
other algebraic problems are characterized by rank conditions on structured matrices, for which these
techniques could lead to symbolic-numeric algorithms, e.g. solving bilinear systems, computing the minimal
polynomial of algebraic power series or computing low degree Pade approximants. Moreover, there is still
room for improvement: the most computationally-intensive step of this algorithm is the computation of the
SVD, but the algorithm converges quadratically even when less precise rank-approximation techniques are
used. Also, we plan to compare our method and implementation with other algorithms for SLRA (see e.g.
[2] and references therein) and for computing approximate GCDs (see e.g [4], which relies on the Structured
Total Least Norm approach). The main challenge is to extend theorem 1 by relaxing the restrictions on
dim(E) and dim(Vr).
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In this poster, we present an overview of our ongoing work and results on the development of a verifi-
cation framework for programs written in a (substantial) subset of the language of the computer algebra
system Maple, which we call MiniMaple. The main goal here is to detect behavioral errors in such programs
w.r.t. their specifications by static analysis. However, the task of the formal specification and verification
of MiniMaple programs is complex as Maple supports various non-standard types of objects such as un-
evaluated expressions and also requires abstract data types to formalize computer algebra concepts and
notions. To approach our goal, we have defined and formalized the syntax, semantics, type system and
specification language for MiniMaple. For the verification, we translate an annotated MiniMaple program
into the language Why3ML of the intermediate verification tool Why3 [1] developed at LRI, France. We
generate verifi! cation conditions by the corresponding component of Why3 and then prove the correct-
ness of these conditions by various automatic and interactive theorem provers supported by the Why3
back-end. The main test for our verification framework is the Maple package DifferenceDifferential [2]
developed at our institute to compute bivariate difference-differential polynomials using relative Gröbner
bases. All software (lexer, parser, type checker and translator) is open source and freely available from
http://www.risc.jku.at/people/mtkhan/dk10/.

As a general overview of our verification framework, first any MiniMaple program is parsed to generate
an abstract syntax tree (AST). Then the AST is type checked and annotated by type information and
translated into a (presumably) semantically equivalent Why3ML program. From this program, Why3
generates verification conditions to be proved correct by its various back-end supported provers. All
components of the framework may generate errors and information messages.

The syntax of MiniMaple [3] covers all the syntactic domains of Maple but supports fewer alternatives in
each domain than Maple; in particular, Maple has many built-in expressions which are not supported in our
language. We use the type annotations which Maple introduced for runtime checking for the purpose of the
static type checking of MiniMaple programs; indeed we have defined a formal type system for MiniMaple
as a decidable logic with various typing judgments. The type system requires that procedure parameters,
procedure results and local variables are type annotated. However, global variables in Maple cannot be type
annotated, such that values of arbitrary types can be assigned to them. To handle the correct semantics of
such variables inside and outside of the body of procedures, we introduced global and local contexts. In the
former, variables can be introduced by assignments and their types can change arbitrarily, while i! n the
latter, variables can only be introduced by declarations and their types can only be specialized [3]. Another
issue is the handling of dynamic type tests by the MiniMaple expression type(E,T ). The use of a type
test in a conditional may result in different type information for the same variable in different branches of
the conditional; we use the type information introduced by the corresponding conditional branches to infer

∗The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK10.
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the possible type of a variable. We have applied the type checker to the package DifferenceDifferential ;
no crucial errors were found but some bad code parts, e.g. duplicate declaration of variables and global
variables that are declared but not used.

Furthermore, we have defined a specification language for MiniMaple to formally describe mathe-
matical theories (types, functions, axioms), behavior of procedures (pre- and post-conditions and other
constraints), loops (invariants and termination terms) and commands (assertions). In addition to basic
formulas, our specification language supports various forms of quantifiers, i.e. logical quantifiers (forall
and exists), numerical quantifiers (add, mul, max and min) and sequential quantifiers (seq) to represent
truth values, numeric values and sequences of values respectively. The language slightly extends the Maple
syntax, e.g. logical quantifiers use typed variables and numerical quantifiers use logical conditions that
filter values from the specified range of a variable. The language supports abstract data types to specify
abstract mathematical concepts, e.g. polynomial rings. As an example, we have f! ormally specified a
substantial part of the package DifferenceDifferential, e.g. difference-differential operators are formalized
by a corresponding abstract data type.

To verify a MiniMaple program annotated with types and specifications, we translate this program
to the language Why3ML of the intermediate verification tool Why3. We use the Why3 verification
conditions generator to produce a set of verification conditions: the pre-conditions of called procedures,
the post-conditions of defined procedures, the initial establishing of loop invariants, the preservation of loop
invariants after every iteration and the decreasing of termination terms. We then prove their correctness by
automated provers (e.g. Z3 and CVC3) and proof assistants (e.g. Coq) supported by the Why3 back-end.
The wide range of proof support was one the reasons why we chose Why3, as we are, e.g., dealing with
non-linear arithmetic which requires in general an interactive prover. For verification, we have defined the
translation of MiniMaple into semantically equivalent constructs of Why3ML, e.g. the MiniMaple return
statement is translated using t! he Why3 exception-handling mechanism, union types are translated
to algebraic types and the corresponding type tests are translated using pattern matching. Using this
approach, we have already verified most of the low level procedures of the package DifferenceDifferential,
e.g. “gleicheterme” (comparing two difference-differential terms), “sigmamax” (computing a differential
term with given constraints) and “ddsub” (subtraction of differential operators).

Currently, we are in the process of verifying higher level procedures with abstract (data type based)
specifications: based on an example we experiment with appropriate proof strategies for such specifications
using our verification framework. As a next step, a proof of the soundness of translation for selected Mini-
Maple constructs is planned. One of the reason for choosing Why3 was that it provides a formal (originally
weakest precondition based, later also operational) semantics. We have correspondingly defined a formal
denotational semantics of MiniMaple programs [3], e.g. the semantics of command execution is defined
as a state relationship between pre- and post-states, i.e. the MiniMaple command semantics [[C]](e)(s, s′)
states that in an environment e the execution of a command C in a pre-state s may result in a post-state
s′. Based on these definitions, we plan to prove that our translation preserves the programs’ semantics.
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The computation of an order basis (also called sigma basis in [3]) is a fundamental tool for linear algebra with
polynomial coefficients. Such a computation is one of the key ingredients to provide algorithms which reduce to
polynomial matrices multiplication. This has been the case for column reduction [3] or minimal nullspace basis [11]
of polynomial matrix over a field. In this poster, we are interested in the application of order basis to compute
minimal matrix generators of a linear matrix sequence (see [9]). In particular, we focus on the linear matrix sequence
used in the Block Wiedemann algorithm [1].

As of today, the fast order basis algorithm PM-Basis from [3] suffers from two issues. In our applications, the
bound σ on its degree may be pessimistic and therefore we need to use early termination. However the recursive
aspect of PM-Basis is unhelpful to implement such an early termination. Also PM-Basis may require to know more
coefficients of F than necessary. This can hinder the complexity when the cost of computing coefficients of the entry
is dominant. This is the case for instance for the block Wiedemann algorithm which motivates this work.

Main results In this work we propose a relaxed variant of the PM-Basis algorithm. The property of relaxed
algorithms is that they do not require more knowledge on the input than necessary while keeping a quasi-optimal
complexity in the order σ.
We first propose an iterative variant Iterative-PM-Basis of PM-Basis which is more suited to the relaxed model and
also to early termination. Then we show how to relax Iterative-PM-Basis via the use of a relaxed polynomial matrix
multiplication algorithm. Thus we obtain our relaxed order basis computation within the complexity of PM-Basis with
only an extra logarithmic factor in σ. Finally, we show the benefit of this algorithm to gain a constant factor on
average on the block Wiedemann algorithm.

Order basis algorithms Let K be a field, F =
∑
i>0 Fix

i ∈ K[[x]]m×n a matrix of power series, σ a positive

integer and (F, σ) be the K[x]-module defined by the set of v ∈ K[x]1×m such that vF ≡ 0 mod xσ. A polynomial
matrix P is a (left) order basis of F of order σ and shift ~s if the rows of P form a basis of (F, σ) and P is ~s-row
reduced (see [10] for details). Without loss of generality we only consider in this poster the case n = O(m) with a
balanced shift ~s as in [3]. Indeed the techniques of [10] allow to reduce the general case to our particular case.

Two different algorithms presented in [3] compute an order basis P of F . The M-Basis algorithm works iteratively
on the order σ to compute the order basis P . It is a lazy algorithm that costs O(mωσ2) arithmetic operations in K,

Algorithm 1: Iterative-PM-Basis

Input: F ∈ K[[x]]m×n, σ > 0, ~s ∈ Nm
Output: P ∈ K[x]m×n such that P is a ~s-row reduced order basis of (F, σ)

1: P0, ~u := M-Basis(F mod x, 1, ~s ); P := [P0]; S := [0, . . . , 0, F ] with dlog2(σ)e zeros
2: for k = 1 to σ − 1 do

3: ` := ν2(k); `′ :=

{
dlog2(σ)e if k = 2`

ν2(k − 2`) otherwise

4: Update P by merging its first `+ 1 elements by multiplication //Product tree of step 4)

5: S[`+ 1] := MiddleProduct(P [1], S[`′ + 1], 2`) //Update of the series of step 2)
6: Pk, ~u := M-Basis(S[`+ 1] mod x, 1, ~u ) //Recursive calls on leafs of steps 1) and 3)
7: Insert Pk at the beginning of P

8: return
∏
i P [i]
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i.e. it only requires the coefficients Fj of F for 0 6 j 6 (i− 1) for computing the intermediate order basis of order i.
The PM-Basis algorithm uses a divide-and-conquer approach on the order σ to reduce the arithmetic complexity to
O(mωM(σ) log(σ)) = O (̃mωσ), where M denotes the arithmetic complexity of polynomial multiplication. Roughly
speaking, the algorithm is made of four steps: 1) a recursive call to compute an order basis Plow of F of order σ/2,
2) an update of the problem via the middle product F ′ := (x−σ/2PlowF ) mod xσ/2, 3) a recursive call to compute
an order basis Phigh of F ′ of order σ/2 and 4) return the order basis PhighPlow of F of order σ. Step 2) implies that
one may need at most twice as much coefficients of the input series than necessary to go from an intermediate order
basis of order i to i+ 1.

Fast iterative order basis Let us give an iterative version of PM-Basis. Our algorithm performs exactly the same
operations on matrices as PM-Basis when σ is a power of two. This iterative presentation of PM-Basis is original.
Let us denote ν2(k) the valuation in 2 of any integer k and index our lists from 1.

Relaxing order basis algorithm In algorithm PM-Basis, we have noticed that only the middle product of step 5
reads more entries of F than necessary at step k. Let us perform this step differently so that it reads at most

a

b

Figure 1: Relaxed middle product

the coefficients F0, . . . , Fk−1 of F at step k. This property is called a relaxed
(or on-line) algorithm w.r.t. F .

A naive approach would be to compute a full 2n × n product using a re-
laxed multiplication algorithm on polynomial of matrices ([2, 5, 6, 4, 8]) in time
R(n) = O(M(n) log(n)) [2]. We propose another relaxed algorithm that gains
asymptotically a factor 2 compared to the full 2n × n relaxed product. We
decompose the relaxed middle product in a normal high product (in black) fol-
lowed by a multiplication (in white and gray) relaxed w.r.t. only b using [4] in
this example (see Figure 1).

Using this relaxed middle product algorithm within Iterative-PM-Basis we
obtain an order basis algorithm Relaxed-PM-Basis relaxed w.r.t. F . This relaxed
order basis algorithm costs O(kωR(σ) log(σ)) = O(kωM(σ) log2(σ)).

Application to block Wiedemann algorithm Let A ∈ GLN (K) with O(N) non-zero elements. Block Wiede-
mann approach uses a minimal matrix generator of the matrix series S =

∑
i∈N UA

iV xi for any random U, V T ∈
Km×N in order to solve a linear system Ax = b ∈ KN . As described in [9], this matrix generator can be obtained
from an order basis of F = [S | Im]T ∈ K[[x]]2m×m. We can derive a bound on the maximal degree δ of this order
basis using the stopping criteria of [7, Th. 4.19]. Since this bound may be loose, a constant factor in the complexity
can often be saved using an early termination in the order basis algorithm.

We compare the complexity of Iterative-PM-Basis and Relaxed-PM-Basis in this setting. Computing S at precision
σ costs O(kω−1Nσ). In practice k � N so that the cost of computing S always dominates the cost of (relaxed) order
basis algorithm.

Assume that δ is uniformely distributed between 2p + 1 and 2p+1 for p ∈ N. Iterative-PM-Basis requires the
coefficients F0, . . . , F2p+1−1 whereas Relaxed-PM-Basis only asks for F0, . . . , Fδ−1. Therefore our relaxed approach
improves the dominant cost of computing F in block Wiedemann by a factor 2 at most and 4/3 on average.
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Solving a linear system with large sparse matrices is a computational kernel used in a wide range of applications,
e.g. cryptography, Gröbner basis . . . Classical methods such as Gaussian elimination are not well suited because they
tend to fill the matrix. In [7] Wiedemann proposed a blackbox algorithm which takes advantage of the sparsity to
reduce the complexity. The main operations of this approach are sparse matrix vector products and the computation
of the minimal generator of a scalar sequence. Despite a better complexity than classical methods, this algorithm
is not efficient in the context of parallel computation as it needs a good repartition of the non-zero elements in the
matrix. The block version of Wiedemann’s algorithm proposed in [2] avoids this problem by using blocks instead of
vectors. Therefore it offers parallelism outside the scope of the matrix.

Let K be a field, A ∈ Mn×n(K), U, V ∈ Mn×k(K) random matrices with k ≤ n. We denote by γ the number of
non-zero elements in A and we assume that γ = O(n log n). Block Wiedemann algorithm follows three steps:

1. Compute the first O( 2n
k ) elements of S = [UTAiV ]i∈N using O(nγ + n2kω−2) operations in K.

2. Find the minimal matrix polynomial generator of the sequence S using O (̃kω−1n) operations in K.

3. Compute the solution using the polynomial found in step 2 using O(nγ + n2) operations in K.

In practice the cost of the first step is dominant, therefore its parallelization is crucial. The capacity to parallelize
the first step heavily relies on the dimension k of the blocks.

A classical approach is to take a block size equal to the number of cores. The parallel complexity of the first step
becomes O(nγk + n2) operations in K. We notice that the O(n2) part does not benefit from parallelism. In order to
take advantage of parallelism everywhere in step 1, we must proceed otherwise.

Our approach We naturally extend the use of sparse blocks proposed by Eberly et al. in [3] to our context of
block Wiedemann algorithm. Hence, instead of using random dense block for U , we use blocks of the form

U =
[
δ1Ik · · · δsIk δs+1I

′]T ∈Mn×k(K)

where s = bn/kc, δ1, · · · , δs+1 ∈ K chosen at random, Ik the identity matrix of size k, and I ′ = Diag(1, · · · , 1) ∈
Mk×r(K) the matrix with only ones on the diagonal with r = n mod k. Using these new block projections, the
sequential complexity of step 1 drops down to O(nγ + n2) operations in K, eliminating the influence of the block
size. In this work we study how these new block projections perform in practice and we show that they improve the
performance of the first step of block Wiedemann algorithm.

Implementation and Benchmarks For the benchmarks, we have in mind matrices arising from NFS algorithm
[6], which are very sparse. As γ is cheaper, the part of step 1 of complexity O(n2) has more importance. Therefore
the block size has more influence on the sequence computation as γ is cheaper. In this case, we use a sparse matrix
of size 105 × 105 over F65537 with ∼ 15 non-zero elements per row uniformly dispatched.

The parallel complexity of step 1 using sparse blocks with k cores becomes O(nγ+n
2

k ), hence offering perfect
parallelism. So we want to see the influence of the block size on the computation of step 1.

First, we determine the most efficient block size depending on the number of cores. Let c be the number of
cores, we benchmark the computation of the sequence starting with blocks of size c to 128c on 12 cores. As expected
by the complexity analysis, a block size of c offers better performance for dense blocks. For sparse projections the
theoretical study shows no influence of the blocks size. In practice we observe that a block size of ' 32c is better,
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which could be caused by memory management issues. However, this sparse block size is related to the number
of non-zero elements of the matrix, so these values stand just for our test matrix. Despite their good complexity,
sparse blocks have two flaws impacting the performance. The choice of matrix representation is important: first we
choose to store blocks in column major representation to avoid concurrent writing, as suggested in [1]. Secondly,
sparse blocks induce cache defaults as their size increase with the number of cores. To circumvent this problem, we
permute block elements to obtain a cache friendly sparse blocks following ideas from [5]. For our tests we use an
NUMA with four intel XEON E4620 with 8 cores at 2.2Ghz and 384GB of RAM. To obtain good performance on
an NUMA, we design an hybrid MPI/tbb implementation that create one MPI process by node which use tbb to
compute a part of the sequence. Each nodes own a copy of the sparse matrix and the block is split by column over
the nodes, the results are gather at the end of the computation. All the libraries used are in the latest version from
their svn directory. In table 1 we compare dense block which used LinBox’s dense blocks implementation and our
implementation using sparse blocks. For computing of dense block, LinBox relies on a BLAS library, in this case we
use OpenBLAS wich is well optimized for intel XEON. The timings are in seconds and in parenthesis we indicate
the block size used.

Dense blocks (LinBox) Sparse blocks
time in s speed-up time in s speed-up

1 core 2205(1) 1 2165(32) 1
8 cores 540(8) 4 308(256) 7
16 cores 623(16) 3,5 154(512) 14
24 cores 798(24) 2,7 102(768) 21,2
32 cores 960(32) 2,2 77(1024) 28,1

Table 1: Times of sequence computation.

The time for dense blocks on one core is just for benchmark purposes. As predicted, sparse blocks perform better
than dense blocks. However, the reasons that LinBox implementation does not perform well are that LinBox use an
external library to compute dense block which as to create and destroy is own pool of threads for each computed
element. Secondly, the LinBox implementation is not designed for a NUMA architecture as all the data is store in
the first node memory.

This is a first step in an efficient implementation of block Wiedemann algorithm on multicore architectures. The
next step will be an efficient implementation of σ−basis [4].
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We consider the problem of interpolating a sparse univariate polynomial f over an arbitrary ring, given
by a straight-line program. In this problem we are given a straight-line program that computes f , as well
as bounds D and T on the degree and sparsity (i.e., the number of nonzero terms) of f respectively. We
build on ideas developed in Garg and Schost (2009) and Giesbrecht and Roche (2011) towards algorithms
for this specific problem. We present a Monte Carlo algorithm that improves on the best previously-known
algorithm for this specific problem by a factor (softly) on the order of T/ logD. Thus this new algorithm
is favourable for “moderate” values of T .

Our algorithm is recursive. At a recursive step of the algorithm we have a straight-line program for
f , an approximation f∗ of f , and respective bounds T and D on the sparsity and degree of the difference
g = f − f∗. We initialize f∗ to zero. We will construct an approximation f∗∗ to g such that, with high
probability, g − f∗∗ has at most T/2 terms. We then recurse with f∗ + f∗∗ as our refined approximation
for f .

The algorithms in Garg and Schost (2009) and Giesbrecht and Roche (2011), as well as the algorithm we
will present, interpolate f by using its straight-line program to evaluate f at a symbolic k-th root of unity,
for appropriate choices of k. This effectively gives the image f mod (zk − 1). We call such an evaluation a
probe of degree k. The cost of a degree-k probe to a length-L straight-line program is quasi-linear in kL.
We use the number of probes, multiplied by a bound on the probe degree, as a rough measure of the cost
of an interpolation algorithm.

The image f mod (zk − 1) in practise gives a large amount of useful information about the polynomial
f . Namely, a term cze of f will appear as cze mod k in the image f mod (zk − 1), so the image should give
us f ’s vector of exponents modulo k. However, there are potential obstacles. We may not be able to match
images of the same term in multiple images of f . In addition, terms can collide modulo zk− 1 if they have
the same degree modulo k. Collisions are problematic because it is difficult to detect if a term in an image
f mod (zk − 1) is in fact the image of a sum of colliding terms. Alternatively, colliding terms may sum to
zero modulo zk − 1, which also may be difficult to detect.

Previous Las Vegas interpolation algorithms require a “good” prime, a prime p for which the terms of
f remain distinct modulo zp − 1. If p is a good prime, f mod (zp − 1) has the same number of terms as f .
Thus, once we have a good prime with high probability, we can detect the presence of collisions in other
images of f . In order to guarantee one can find such a prime with high probability, one chooses primes at
random on the order of T 2 logD as probe degrees.

In order to reduce this probe degree, we relax the condition that p separates all the terms of the
difference g. We instead look for an “ok” prime: a prime which separates most of the terms of g. This
allows instead to search over primes p of size O(T logD).

Once we have an “ok” prime, we make probes of degree pqi for a set of co-prime qi, each of size O(logD).
Our probe degree thus becomes O(T log2D). If a term of g does not collide with another term modulo
zp − 1 then it will not collide modulo (zpqi − 1). These probes will allow us to construct a polynomial
f∗∗ containing the non-colliding terms of g, plus potentially a small proportion of deceptive terms: terms
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constructed from garbage information due to collisions in the images f mod (zpqi − 1). Fortunately, if p is
an ok prime we can give an upper bound on the number of such deceptive terms that can appear in f∗∗.

After we construct f∗∗ we then recursively interpolate the new difference g − f∗∗, with a new sparsity
bound T/2. We continue in this fashion blog T c+1 times until the sparsity bound reaches 0. An advantage
of the recursive nature of the algorithm is that, when we reach a threshold where logD begins to dominate
T , we can plug in a better-suited algorithm to interpolate what remains.
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Fast Fourier Transforms (FFTs) are at the core of many operations in scientific computing. In computer
algebra, FFTs are used for fast polynomial and integer arithmetic and other modular methods. FFT-based
polynomial multiplication outperforms multiplication based on classical and Karatsuba-based algorithms.
Computer algebra libraries, such as modpn [3], provide hand-optimized low-level routines implementing fast
algorithms for multivariate polynomial computations over finite fields, in support of higher-level code. Such
libraries do not fully utilize the underlying hardware, and in order to take advantage of platform-dependent
optimizations, automated performance tuning that supports general input sizes should be incorporated.

Recently, we extended [2] the use of Spiral from fixed-size code generation to general input size library
generation to produce a modular FFT [1] library. By incorporating and extending the new library genera-
tion mechanism in Spiral [4], the generated library provides similar speedup as the fixed-size code, which
is an order of magnitude faster over the original implementations in modpn, and allows arbitrary input
sizes. Additional parallelism exploiting multi-core architecture leading to further speedup also has been
implemented. This addition required adding new rules and a new transform definition and parameteriza-
tion in the library generation framework in order to generate recursive function closure in the resulting
library. The backend was also extended to enable the generation of scalar and vectorized code for modular
arithmetic.

Let the n-point modular DFT matrix be ModDFTn,p,ω =
[
ωk`
n

]
0≤k,`<n

, where ωn is a primitive nth
root of unity in Zp. Let n = rs, then the divide and conquer step in the Cooley-Tukey algorithm can be
represented as the parameterized matrix factorization:

ModDFTn,p,ω = (ModDFTr,p,ωr ⊗ Is) Tn
s (Ir ⊗ModDFTs,p,ωs) Ln

r ,

where Tn
s is a diagonal matrix containing twiddle factors; the stride permutation matrix Ln

r permutes the
input vector as is+ j 7→ jr + i, 0 ≤ i < r, 0 ≤ j < s ; Is is the s× s identity matrix; and the tensor product
is defined as A⊗B = [ak,lB] , A = [ak,l] .

The tensor product serves as the key construct in Spiral and its many fast algorithms, in that it
captures loops, data independence, and parallelism concisely. For instance, Fig. 1 shows that it produces
substructures that can be interpreted as vector and parallel operations. Furthermore, the formulae can be
transformed to adapt to a given vector length and number of cores; and permutations can be manipulated
to obtain desired data access patterns. Rewriting systems and hardware tags have been developed in
Spiral to fully exploit two levels of parallelism: vector parallelism and thread parallelism.

We report experimental data comparing the performance of hand-optimized FFTs from the modpn

library, fixed-size FFTs and general size parallel FFT library generated by Spiral. Performance is reported
in Gops (giga-ops) or billions of operations per second (higher is better). As shown in Fig. 2, all Spiral
generated codes are faster than the hand-optimized implementation in modpn by an order of magnitude. The
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Figure 1: Representation of the matrix factorization based on the Cooley-Tukey algorithm.
Shades of gray represent values that belong to the same tensor substructure

performance of general size library’s scalar and vector codes are within 81% to 91% of that of corresponding
fixed-size codes. For large sizes, the library code is up to 1.5 time faster than the fixed-size code, due to
the use of thread level parallelism.

Figure 2: Performance comparison

To eventually generate an optimized parallel library for polynomial multiplication, we are developing
additional algorithms for modular FFT, including Prime-factor algorithm and Rader’s algorithm. We
have also developed a Cooley-Tukey type algorithm for the Truncated Fourier Transform and its inverse
(TFT/ITFT) for non-contiguous and non-power-of-two input/output. We have proved block symmetry
of the ITFT matrices and derived direct generation formulae that can be used during library generation.
Convolutions by definition and the Convolution Theorem have also been implemented in Spiral, whose
performance relies on the auto-tuned underlying transforms, such as modular DFT and TFT, and the
exploration of hybrid algorithms and automatic tuning of threshold parameters.
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Extended Abstract

Efficient algorithms for computing greatest common divisors (GCD) of multivariate polynomials have
been developed over the last 40 years. Many of the general purpose computer algebra systems are using
either Zippel’s GCD Algorithm [5] or the EEZ-GCD [4] Algorithm or both. Both algorithms sequentially
interpolate variables one at a time which limits parallel speedup. Since multi-core processors are now
widely available, parallel algorithms are desirable. In this poster, we present a first multivariate GCD
computation algorithm over Z which is based on the Ben-Or/Tiwari interpolation [1]. By using Ben-
Or/Tiwari interpolation, we reduce the number of points needed to interpolate the GCD and improve
parallelism.

Our algorithm considers multivariate GCD problems with at least three variables. The structure of the
algorithm is similar to Zippel’s GCD Algorithm except the way we determine the first modular image which
determines all the monomials. Once this correct form is obtained with those monomials, we use Zippel’s
sparse interpolation with this form to compute more modular images and apply Chinese remaindering to
reconstruct the true GCD over Z.

Our algorithm determines the first modular image as follows: Suppose a, b ∈ Z[x1, . . . , xn] are the
input polynomials and let

g = gcd(a, b) =
l∑

i=1

ciMi(x1, x2)

where l is the number of terms of g(x1, x2) and Mi is the ith monomial of g(x1, x2) and ci ∈ Z[x3, ..., xn]
is the ith coefficient of g(x1, x2). The algorithm projects a and b down to bivariate polynomials by
evaluating {x3, . . . , xn} at specific point {ek3, . . . , ekn} which satisfies the requirement of the Ben-Or/Tiwari
interpolation. Then we compute bivariate

gk = gcd(a(x1, x2, e
k
3, . . . , e

k
n), b(x1, x2, e

k
3, . . . , e

k
n)) ∈ Zp[x1, x2],

where p is a carefully chosen prime. We redo this for k = 0, 1, 2, . . . ,m until m is large enough. Now all
bivariate GCDs should have the same monomials but different coefficients. For each monomial Mi(x1, x2)
in the gk, we form an integer sequence by collecting Mi’s coefficient in gk (0 ≤ k ≤ m). Then the Ben-
Or/Tiwari algorithm is applied to this sequence to interpolate the coefficient ci ∈ Zp[x3, . . . , xn]. For this to
work we require m ≥ 2t where t = maxl

i=1(# terms ci). Obviously all polynomial coefficients ci(x3, ..., xn)
can be recovered in parallel. Moreover, the bivariate GCDs can be computed in parallel as well. In general,
this approach is easy to parallelize.
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Compared with Zippel’s algorithm, our algorithm uses fewer evaluation points – O(t) instead of O((n−
2)dt) and fewer trial divisions – O(1) instead of O(n). One disadvantage of our algorithm is that we do
not know t. We must try t = 2, 4, 8, 16, . . . stopping when we have redundancy.

A problem with the original Ben-Or/Tiwari algorithm is the intermediate expression swell that occurs
using ek3, e

k
3, e

k
4, ... = 2k, 3k, 5k, ... and computing over Q. A modular version of the algorithm was first

developed by Kaltofen, Lakshman and Wiley in [3]. Their algorithm uses a small prime q with a lifting
technique to determine the monomials in the ci. One lifts until qk > pdn−2 where pn denotes the n’th prime
and d ≥ max(deg ci). Instead, we adapt Giesbrecht, Labahn and Lee’s method in [2]. We construct a
smooth prime p so that we can efficiently compute discrete logarithms in Zp. The prime p is slightly larger
than

∏n
i=3 di where di = degxi

g thus of size O(n log d). To determine the di accurately we compute one
univariate image of g in each variable (in parallel).

A further problem is that all underlying bivariate GCDs are monic over Zp. The leading coefficient
of the true GCD is required to scale all bivariate GCDs consistently. We use Wang’s leading coefficient
algorithm [4] to solve this problem. We compute and factor the gcd h of the leading coefficients of
a, b ∈ Z[x3, . . . , xn][x1, x2]. This creates another sequential step in our algorithm. This is the main reason
why we reduce to bivariate GCDs instead of univariate – we likely reduce the size of h. We also likely
reduce t and hence the number of bivariate GCDs needed. If a(x1, x2) and b(x1, x2) are dense (which they
often are in practice) we lose nothing by doing this.

We have implemented our algorithm in Maple. For most large problems, it outperforms Maple’s
default multivariate GCD procedure, which is a Zippel based algorithm and almost entirely coded in C.
For example, for input polynomials having 5 variables and 500 terms, our algorithm is almost 2 times
faster than Maple’s default procedure; with input polynomials having 40 variables and 4000 terms, our
algorithm is almost 20 times faster. We have not yet attempted a parallel implmentation but plan to do
so using Cilk. We expect that such an implementation will be much faster.
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For given n univariate polynomials with n ≥ 3, we present a Symbolic-Numeric method for calculating
approximate greatest common divisor (GCD) of them by calculating approximate Syzygies. This kind of
GCD calculation can be used in application such as blind image deconvolution [1]. In such a case, it is
especially effective when we try to restore the original image from several number of blurred images.

In our previous research, we have developed a method for calculating approximate GCD, called GPGCD
[4]. Furthermore, we have extended the original method for n polynomial inputs [3] based on Rupprecht’s
first algorithm [2, Sect. 4]. However, this method is inefficient for large number and/or degree of input
polynomials because, in such cases, the dimension of a generalized Sylvester matrix becomes large and
sparse. While Rupprecht’s second algorithm [2, Sect. 5] seems more efficient by using Syzygies with
another generalization of Sylvester matrix whose dimension is much smaller than those used in the first
algorithm, as for our GPGCD method, we have difficulty applying the method directly (we will explain
the reason in detail below). We present a method to overcome the difficulty.

For i = 1, . . . , n, let Pi(x) be real univariate polynomial of degree d1 ≤ · · · ≤ dn, respectively, with

d1 > 0, given as Pi(x) = p
(i)
di
xdi + · · · p(i)1 x + p

(i)
0 . At first we assume that P1, . . . , Pn have a GCD. Let

H = gcd(P1, . . . , Pn) and d = deg(H) with d ≤ d1.
For a real univariate polynomial P (x) represented as P (x) = pnx

n + · · ·+p0x
0, let Ck(P ) be a real (n+

k, k + 1) matrix (called “convolution matrix”) defined as Ck(P ) =
(
t(pn, . . . , p0, 0, . . . , 0),

t(0, pn, . . . , p0, 0, . . . , 0), . . . , t(0, . . . , 0, pn, . . . , p0)
)

and let p be the coefficient vector of P (x) defined as
p = (pn, . . . , p0), and vice versa.

As a generalized Sylvester matrix, we use the second definition by Rupprecht [2, Sect. 5]. For k > d1, de-
fine the k-th Sylvester matrix of P1, . . . , Pn asNk(P1, . . . , Pn) =

(
Ck−d1(P1) Ck−d2(P2) · · · Ck−dn(Pn)

)
,

where Ck−di(Pi) has empty element for k < di.
If a vector v = t

(
r1 r2 · · · rn

)
with dim(ri) = k − di + 1 satisfies Nkv = 0, then we see that the

polynomials R1, . . . , Rn whose coefficient vectors are r1, r2, . . . , rn, respectively, satisfy R1P1+· · ·+RnPn =
0. In such a case, we call a tuple of polynomials (R1, . . . , Rn) a Syzygy of P1, . . . , Pn of degree k.

In Rupprecht’s second method, we first calculate Syzygies of P1, . . . , Pn, then calculate cofactors of
P1, . . . , Pn by using calculated Syzygies, as follows.

1. Calculate n− 1 “independent” (as elements in a module over polynomial ring R[x]) Syzygies which

satisfy the following condition on the degrees. For j = 1, . . . , n− 1, let Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ) be

a Syzygy of P1, . . . , Pn of degree rj . Then, we have

d = d1 + · · ·+ dn − (r1 + · · ·+ rn−1) (1)

[2, Lemma 5.3]. With numerical computation on coefficients, we calculate a Syzygy by the Singular
Value Decomposition (SVD) on Sylvester matrix Nk by increasing the degree k by 1 from the initial
value d1, until we obtain n− 1 Syzygies satisfying condition (1).
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2. For calculated Syzygies Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ), j = 1, . . . , n − 1, define a matrix U = (uij) as

uij = U
(i)
j , and let ∆i be the minor of U by deleting the i-th column (note that we must define U

satisfying that ∆i 6= 0 for all i). Then, ∆i is the cofactor of Pi satisfying Pi = H ·∆i [2, Lemma 5.2].
Thus, by calculating U and ∆i, we obtain desired GCD H.

In our GPGCD method, we accept polynomials P1, . . . , Pn that are pairwise relatively prime in general,
then find “perturbation terms” ∆Pi, i = 1, . . . , n, satisfying that “perturbed polynomials” P̃i = Pi +∆Pi

have a nontrivial GCD H. With the original method by Rupprecht, we may encounter the following issue
in Step 1. In our GPGCD method, we set up constrained optimization problem with constraints on the
coefficients in input polynomials and their Syzygies that need coefficients in all input polynomials at once.
On the other hand, Step 1 in the above may not involve all input polynomials from the beginning step(s),
thus it is not clear if we can calculate appropriate perturbed terms incrementally to make all the perturbed
polynomials satisfy the Syzygy relations in the final phase. Therefore, we modify the method so that we
use Syzygy relations that involve all input polynomials from the beginning step, as follows.

1. Let l be greater than or equal to dn satisfying (1). For given polynomials P1, . . . , Pn, calculate

perturbed polynomials P̃1, . . . , P̃n along with Syzygies Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ) of degree l sat-

isfying U
(j)
1 P̃1 + · · · + U

(j)
n P̃n = 0, as follows. Let v1, . . . ,vm be the right singular vectors of

Nl(P1, . . . , Pn) calculated with the SVD. By optimization method (in our case we use so-called
the modified Newton method; see our literature [4] for reference), we obtain P̃1, . . . , P̃n by per-
turbing coefficients in P1, . . . , Pn, and ṽ1, . . . , ṽm by perturbing v1, . . . ,vm, respectively, satisfying

Nl(P̃1, . . . , P̃n)ṽj = 0. From vector ṽj =
(
r
(j)
1 r

(j)
2 · · · r

(j)
n

)
, we extract coefficients of a Syzygy

Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ).

2. Using Syzygies Rj calculated in the above step, select and/or calculate Syzygies of appropriate degree
satisfying (1) to make up matrix U with the following strategies.

(a) If we need to calculate Syzygies of degree k smaller than l, make appropriate linear combination
of the right singular vectors ṽ1, . . . , ṽm to eliminate coefficients of degrees greater than k in the
corresponding Syzygy, as follows. Let M be a submatrix of

(
ṽ1 · · · ṽm

)
consisting of the

rows corresponding the coefficients of U
(j)
i of degree greater than k. Then, calculate the SVD

on M to find basis of the null space of M . Repeat this step until we find appropriate Syzygies
satisfying (1) along with ∆i 6= 0 for all i.

(b) If we could not find all of n− 1 independent Syzygies satisfying (1) with the above procedure,
then, for degree k 6= l satisfying (1), calculate new Syzygies from Nk(P̃1, . . . , P̃n) until we find
all of n− 1 independent Syzygies satisfying (1) along with ∆i 6= 0.
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1. Introduction. A vector m = (m1, . . . ,mn) ∈ Zn \ {0} is called an integer relation for x =
(x1, . . . , xn) ∈ Rn if

∑n
i=1mixi = 0. In literature, the HJLS algorithm [3, Sec. 3] and the PSLQ al-

gorithm [2] solve the problem of finding integer relation polynomially. Although it has been theoretically
proved that PSLQ is to some extent equivalent to HJLS, under the exact real arithmetic computational
model (see, e.g., [7, 1]), the PSLQ algorithm seems more practical.

The problem of finding the minimal polynomial from an approximation α of a d0 degree algebraic
number α, equivalent to finding an integer relation for the vector (1, α, . . . , αd0), was first solved in [5] by
using the celebrated LLL algorithm [6]. This routine has been recently improved in [4]. Naturally, the
PSLQ algorithm applies to the algebraic number reconstruction problem as well [8].

Given an approximation to an unknown algebraic number α, a degree bound d and an upper bound
M on its height, if the exact degree d0 of α is also unknown, then no matter whether one uses PSLQ or
LLL, one has to search an integer relation for the vector (1, α, . . . , αi) from i = 2, 3, . . . until d0 (≤ d).
Hence, if the complexity of a polynomial algorithm for finding an integer relation is O(P (n,M)) for an
n-dimensional vector, then the complexity of the minimal polynomial algorithm, based on the integer
relation finding algorithm, is O(d0 · P (d0,M)). Our main contribution in the present work is to give an
incremental version of PSLQ, which leads to an efficient algebraic number reconstruction algorithm with
complexity only O(P (d0,M)), even though the exact degree of the algebraic number is unknown.

Algorithm 1 (IPSLQ).

Input: A vector x = (x1, · · · , xn) ∈ Rn with xi 6= 0 for i = 1, . . . , n and a positive number M .
Output: Either return an integer relation for x, or return “no relation with length smaller than M”.

1. Construct Hx ∈ Rn×(n−1). Set H := Hx, A := In and B := In. Size-reduce H and update A and B.
2. For k from n− 1 to 1 do

(a) While hn−1,n−1 6= 0 do
i. Choose r such that γr |hr,r| = maxj∈{k,··· ,n−1}

{
γj |hj,j |

}
.

ii. Swap the r-th and the (r + 1)-th rows of H and update A and B.
iii. If r < n− 1 then update H to L-factor of H.
iv. Size-reduce H and update A and B.
v. If maxj∈{k,··· ,n−1} |hj,j | < 1/M then do the following: If k > 1 then go to Step 2; Else return “no relation with length

smaller than M”.
(b) Return the last column of B.

2. The Incremental PSLQ Algorithm. The main difference between IPSLQ (Algorithm 1) and PSLQ
is that PSLQ considers x1, . . . , xn directly, while IPSLQ considers xi, . . . , xn gradually, i.e., if the vector
(xi, . . . , xn) has no relation with 2-norm less than M then add xi−1 to the left; see Step 2(a)v.

The application of IPSLQ to efficient reconstructing minimal polynomial depends on the following two
key points: (1) We use (x1, . . . , xn) = (αn−1, . . . , α, 1), which is the reverse order of the traditional version,
to construct the matrix Hx (see [2, Def. 2] for the construction). (2) The important observation is that

∗This work was partially supported by NKBRPC (2011CB302400) and NSFC (11001040, 11171053, 91118001).
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the matrix Hx for (xi, . . . , xn) is exactly the right-bottom most submatrix of Hx for (xi−1, xi, . . . , xn).
Thus, the results produced by the previous iterations are still valid for the new matrix H. However, the
traditional methods can not reuse those previous information. Therefore, the complexity of IPSLQ for
minimal polynomial without knowing degree is only O(P (d0,M)), which is the same as PSLQ for minimal
polynomial with knowing degree.

3. Experiments. The following experiments are preliminary and to compare the performance between
traditional PSLQ and IPSLQ for minimal polynomial reconstruction. Consider approximations of α =
31/s + 21/t with 500 decimal digits. Running these experiments in Maple 15 with Digits :=500 gives a
preliminary experimental results in Table 1. Note that here Digits :=500 may not be necessary (see [8]
for the a detailed error control). In Table 1, the input degree bound and height bound in these tests are d
and M + 1; the exact degree and height of α are d− 1 and M , respectively. All these experimental results
are obtained by using a Windows 7 (32 bits mode) PC with AMD Athlon II X4 645 processor (3.10 GHz)
and 4 GB memory. Note that there exists a built-in function IntegerRelations:-PSLQ in Maple 15, but
for the comparison in Table 1, we implement the PSLQ algorithm by ourselves. The reasons we do not
use the built-in function is that there does not exist a height parameter in the built-in function. This may
cause that the built-in function will go on the iterations even if the height has been greater than M . In our
implementations of PSLQ and IPSLQ, the same function uses the same technique for fairness. According
to Table 1, the IPSLQ algorithm is faster than the PSLQ algorithm. Meanwhile the ratio between TPSLQ
and TIPSLQ seems to get larger and larger with increasing d, but always smaller than d.

No. s t d M TIPSLQ TPSLQ
TPSLQ

TIPSLQ

1 2 2 5 10 0.08 0.16 2.00
2 2 3 7 36 0.16 0.64 4.00
3 3 3 10 125 0.89 5.34 6.00
4 3 4 13 540 3.14 21.34 6.79
5 2 7 15 5103 6.91 45.91 6.64
6 3 6 19 10278 23.37 144.11 6.17
7 4 5 21 11160 32.73 249.54 7.62
8 5 5 26 57500 78.95 838.99 10.63
9 5 6 31 538380 186.28 2089.87 11.22
10 6 6 37 4281690 421.94 4313.99 10.22

Table 1: IPSLQ VS PSLQ for minimal polynomial
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Introduction

Some truly innovative series for 1/π, first discovered by Ramanujan and elucidated in [1], take the form

∞∑

n=0

(s)n(12)n(1− s)n
n!3

(a+ bn)zn0 =
1

π
. (1)

In other words, the constant 1/π can be written as a suitable linear combination of a hypergeometric
function (in this case a 3F2) and its derivative at some z0. Such series have both theoretical and practical
applications. In a recent preprint [3], some double sums are conjectured to also evaluate to 1/π; we aim
to prove them using the theory behind (1). Examples of these sums include

∞∑

n=0

n∑

k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)
140n+ 19

26k

( 2

17

)2n
=

289

3π
, (2)

∞∑

n=0

n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
12n+ 1

62k

( 3

20

)2n
=

75

8π
. (3)

Method

Instead of 3F2’s, these conjectural series in [3] all contain functions of the form

G(x, z) =
∞∑

n=0

n∑

k=0

F (n, k)xnzk,

where F is a product of four or more binomial coefficients. It is routine to find a differential equation
in x satisfied by G; however such ODEs have degrees ≥ 4 and current CAS struggle to find or rule out
hypergeometric solutions implicitly required in (1). Our approach is to guess, based on numerical evidence,
that x and z are connected by a simple algebraic relation r. For instance, we may guess that

G(x, ra,b(x)) =
∞∑

n=0

n∑

k=0

F (n, k)
xk+n

(a+ bx)2n+1
or

∞∑

n=0

n∑

k=0

F (n, k)
(−1)nxk+n

(a+ bx)n+1/2
, (4)

for some a and b. We compute sufficiently many coefficients in the x-expansion of (4), and attempt to find
a, b such that they satisfy a three-term recurrence (with polynomials of bounded degrees as coefficients).
Such a recurrence corresponds to a degree 3 ODE satisfied by G. The key step then comes down to an
easy problem in linear algebra of checking if a certain determinant is zero for some a and b.
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Once suitable a and b are found, we need to solve the 3rd order ODE satisfied by G(x, ra,b(x)); for
this we have a more complete theory. E. g. in the case corresponding to (2), Maple 13 is able to give the
solution which can be rearranged into a 3F2. In the case of (3), the ODE is of Heun type, and can be
solved using [2, eqn. (3.5b)] followed by a transform due to E. Goursat; we obtain

∞∑

n=0

n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
xk+n

(1 + 4x)2n+1
=

∞∑

n=0

(13)n(12)n(23)n

n!3
(
108x2(1− 4x)

)n
. (5)

In either case the 3F2 is of the type in (1), and the extensive theory for producing formulas of this type
can be used to prove equations (2) and (3).

Some details

When we take the x-derivative of (5) (as is required in (1)), linear dependence on k appears on the left
hand side, which is not found in (3). To cancel this k term, a vanishing, k-dependent identify (known as
a ‘satellite identity’, coined in [4]) is required. For (5), the satellite identity is

∞∑

n=0

n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
xk+n

(1 + 4x)2n
(
4x+ 2k(4x+ 1) + n(4x− 1)

)
= 0. (6)

Identity (6) was guessed as follows: pick a small, irrational x and compute a0 =
∑

n,k A(n, k, x), a1 =∑
n,k A(n, k, x)k, and a2 =

∑
n,k A(n, k, x)n (A being the summand), then use PSLQ to find a null integer

linear combination among the elements of {a0, a1, a2, a0x, a1x, a2x, a0x2, a1x2, a2x2, . . .}. Once found, the
satellite identity can be proven by the multiple WZ algorithm. Similarly, (5) itself can be rigorously proven
(as the 3rd order recursion was only a guess): write the coefficients of x on the LHS as a double sum,
apply the multiple WZ algorithm to obtain a recursion, convert it to an ODE for the LHS, and finally
check that the ODE annihilates the RHS. Many conjectures from [3] have been settled using our method,
via the discovery of generating functions like (5).

Future work

Some conjectures in [3] do not fall into the type (4); perhaps more elaborate algebraic relations are needed –
this could also anticipate more exotic generating functions. It would be illuminating to be able to find
suitable a and b in (4) analytically (without extensive computer searches), and also to prove the existence
of satellite identities whenever F is a hypergeometric term.
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Abstract

The integro-differential Weyl algebra provides an algebraic model for differential and integral opera-
tors with polynomial coefficients. It has a natural action on the ring of polynomials. We are interested in
computing the annihilator of a given polynomial with respect to this action. This contribution contains
a first step towards that goal—namely we give a description of the annihilator of a monomial.

1 The integro-differential Weyl algebra

The (univariate) integro-differential Weyl was introduced for the first time in [1]. It arose from the algebra of
integro-differential operators first discussed in [2] and refined in [3, 4] with the goal of solving boundary value
problems using purely algebraic methods. While the aforementioned papers construct integro-differential
operators with arbitrary coefficients using a Gröbner basis approach, in [1] the authors chose to model
operators with polynomial coefficients using Ore polynomials.

A way to construct the integro-differential Weyl algebra as a generalised Weyl algebra has been discussed
in [5].

In this abstract we briefly recall the basic properties of the integro-differential Weyl algebra and refer
to [1] for details. Let K be a field of characteristic 0. The integro-differential Weyl algebra—denoted
A1(∂,

∫
)—is the K-algebra generated by the symbols x, ∂ and

∫
and defined by the equations

∂x = x∂ + 1,
∫ ∫

= x
∫
−
∫
x, and ∂

∫
= 1. (1)

One can prove that A1(D,
∫

) is neither simple nor left or right Noetherian; it even contains zero divisors.
Also, the integro-differential operators from [2, 3, 4] are isomorphic to A1(∂,

∫
)/(ex−ce) where e = 1−

∫
∂

and c is a constant depending on the integral operator—cf again [1].

Interpreting ∂ as derivation and
∫

as an integral, the integro-differential Weyl algebra has a natural
action on the polynomial ring K[x]. More precisely, the action ∗ : A1(∂,

∫
)×K[x]→ K[x] is defined by

x ∗ xn = xn+1, ∂ ∗ xn =
dxn

dx
= nxn−1, and

∫
∗ xn =

∫ x

0
xndx =

1

n + 1
xn+1

where n ≥ 0. With this action, the relations in (1) model the Leibniz rule, partial integration and the
fundamental theorem of calculus, respectively. Moreover, e corresponds to the evaluation at 0.
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2 Annihilators

We want to compute annihilators of polynomials, i. e., the set of all operators in A1(∂,
∫

) whose action
sends a given polynomial to zero. It is well-known that annihilators are left ideals in A1(∂,

∫
). As a first

step towards computing them, we give the following theorem:

Theorem 1 For any n ≥ 1, the annihilator of xn within the integro-differential Weyl algebra A1(∂,
∫

) is
generated as a left ideal by

∂n+1, (x−
∫

)∂n, e∂n−1, . . . , e∂, e

for n ≥ 0 and the annihilator of 1 is generated by ∂ and x −
∫

. In particular, all these annihilators are
finitely generated.

As a next step, we intend to generalise this result to annihilate arbitrary polynomials. Also, we shall
add more evaluation operators to our algebra in order to model boundary conditions instead of only initial
value problems. Moreover, a theorem in [6] states that all finitely generated left ideals in A1(∂,

∫
) can be

generated by only two elements. Therefore, another path of research is to attempt to compute these two
generators for the annihilators.
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Blackbox algorithms for linear algebra problems start with one sided (Lanczos) or two sided (Wiede-
mann) projection of the sequence of powers of a matrix to a sequence of scalars or a sequence of smaller
matrices. Such algorithms usually require that the minimal polynomial of the resulting sequence should be
that of the given matrix. Exact formulas are given for the probability that this occurs based on the Jordan
structure of a matrix, and from these formulas sharp bounds follow. The bounds are valid for all finite
field sizes and show that a small blocking factor can give high probability of success for all cardinalities
and matrix dimensions.

Let K be a finite field with cardinality q. Given A ∈ Kn×n, and Ā be the linearly generated sequence
{I, A,A2, . . .}. Given U, V ∈ Kn×b whose elements are selected uniformly randomly from K, UT ĀV
is a linearly generated sequence of smaller matrices, and with high probability, the minimal generating
polynomial of UT ĀV = {UTV,UTAV,UTA2V, . . .} is the minimal polynomial of the matrix A. All square
matrices are similar to a generalized Jordan form matrix, A = PJP−1, where J, P ∈ Kn×n. If U and V
are selected uniformly randomly, then X = P TU and Y = P−1V are also uniformly random. UĀV =
XT J̄Y = {XTY,XTJY,XTJ2Y, . . .}, and XJ̄Y has the same probability as UĀV of having its minimal
generating polynomial match the minimal polynomial of A and J . We call this probability Probq,b(A).

Let Cf ∈ Kd×d represent the companion matrix for the polynomial f(x) = f0 + f1x+ . . .+ fd−1xd−1 +
xd with coefficients in K. Let Jfe be the generalized Jordan block of an irreducible f occurring with
multiplicity e. Since Probq,b(Jf ⊕ Jg) = Probq,b(Jf )Probq,b(Jg) when gcd(f, g) = 1, unique irreducibles
can be treated separately, and for each irreducible only its highest multiplicity affects the probability that
the projection preserves the minimal polynomial. Furthermore we show Probq,b(Jf ) = Probq,b(Jfe) for
any e. Therefore, letting T = {(f1, e1, t1), (f2, e2, t2), . . .}, where the polynomials fi are the irreducibles
occuring in the invariant factors of A, ei is the highest multiplicity of fi, and ti is the number of occurrences
of fei

i , it follows that

Probq,b(J) =

|T |∏

k=1

Probq,b

(⊕

tk

Jfk

)
.

For an irreducible polynomial f of degree d, the probability that UT C̄fV has minimal polynomial f is
easy to determine. The minimal polynomial of the projection is always a factor of f , which for irreducible
f is 1 or f . It is 1 only if the sequence is a sequence of zero matrices, which is to say that one of U, V is
zero. Thus

Probq,b(Cf ) = (1− q−db)2.

If J =
⊕

tCf , then for U, V ∈ Kdt×b, with blocking conformal to the diagonal blocks of J , we have

UT J̄V =
t∑

k=1

UT
k C̄fVk. We show Probq,b(Cf ) ≤ Probq,b (

⊕
t J).
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field cardinality

block size 2 3 10007 231 − 1

1 0.000467 0.00112 0.0499 0.911

2 0.25 0.444 1− 2× 10−4 1− 4.3× 10−11

4 0.766 0.927 1− 2× 10−12 1− 9.4× 10−30

8 0.984 1− 9.1× 10−4 1− 2× 10−28 1− 4.4× 10−67

16 1− 6× 10−5 1− 1.4× 10−7 1− 2× 10−60 1− 9.8× 10−142

32 1− 9.3× 10−10 1− 3.2× 10−15 1− 2× 10−124 1− 4.8× 10−291

Table 1: Bounds for worst case probability of success to preserve minimum polynomial,
matrix size 108 × 108

It is evident that the probability of success increases with d as well as with b. The worst case is a matrix
whose minimal polynomial is a distinct product of the smallest possible irreducibles. This yields an exact
lower bound formula for the probability that a projection UT ĀV of A has the same minimal polynomial.
Let Lq(d, n) be the number of degree d irreducible factors over the finite field of cardinality q that fit in a
matrix of dimension n after all smaller degree irreducibles have been inserted. Then, for an n× n matrix
A,

Probq,b(A) ≥
∞∏

d=1

(
1− 2qdb − 1

q2db

)Lq(d,n)

We compare this bound to previously given lower bounds in the case when field cardinality and matrix
dimension are of similar size. For small primes, Wiedemann (proposition 3) treats the case b = 1 and he
fixes the projection on one side because he is interested in linear system solving and thus in the sequence
Āb [2] . For small q, his formula, 1/(6 logq(N)), computed with some approximation, is nonetheless quite
close to our exact formula. However as q approaches N the discrepancy with our exact formula increases.
At the large/small crossover, q = N , Kaltofen/Pan’s lower bound is 0, Wiedemann’s is 1/6, and ours is
1/e. The Kaltofen/Pan probability bound improves as q grows larger from N [1] . The Wiedemann bound
becomes more accurate as q goes down from N . But the area q ≈ N is of some practical importance.
In integer matrix algorithms where the finite field used is a choice of the algorithm, sometimes practical
considerations of efficient field arithmetic encourages the use of primes in the vicinity of N . For instance,
exact arithmetic in double precision and using BLAS works well with q ∈ 106..107. Sparse matrices of
order N in that range are tractable. Our bound may help justify the use of such primes.

But the primary value we see in our analysis here is the understanding it gives of the value of blocking,
b > 1. Table 1 shows the bounds for the worst case probability that a random projection will preserve the
minimal polynomial of a matrix A ∈ K108×108 for various fields and projection block sizes. It shows that
the probability of finding the minimal polynomial correctly under projection converges rapidly to 1 as the
projected block size increases. Even over GF (2), with block size b = 16 the probability is very good.
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Abstract

We present an efficient implementation of the solution to the conjugacy problem in Thompson’s
group F . This algorithm checks for conjugacy by constructing and comparing directed graphs called
strand diagrams. We provide a description of our solution algorithm, including the data structure that
represents strand diagrams and supports simplifications.

1 Thompson’s Group F and Strand Diagrams

The elements of Thompson’s Group F [3] are piecewise, linear homeomorphisms of the interval [0, 1] such
that each piece has slope that is a power of 2 and, furthermore, the breakpoints between pieces take
place at dyadic rational coordinates. The group operation is simply function composition. In a group,
the conjugacy problem is the problem of determining whether any two elements are conjugate. The
conjugacy problem is not solvable in general [5], but is solvable in certain cases.

A strand diagram [2] is a finite acyclic digraph embedded on the unit square. The digraph has a
source along the top edge of the square and a sink along the bottom edge. Any internal vertex is either a
merge or a split (Figure 1). Elements of Thompson’s Group F can be translated to strand diagrams. Each
element in a generating set corresponds to a particular strand diagram. A composition of such elements is
represented by a concatenation of the associated strand diagrams.

output

left
input

right
input

input

left
output

right
output

Figure 1: A strand diagram, a merge, and a split (image taken from [2]).

2 Algorithm for the Conjugacy Problem in F

The algorithm to determine whether two strand diagrams inhabit the same conjugacy class proceeds as
follows. First, we convert the strand diagrams to annular strand diagrams. This is achieved by a
process called closing, in which sources are identified with sinks. Next, the annular strand diagrams are
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reduced using a graphical rewriting system that is both confluent, terminating, and respects conjugacy
[1]. Furthermore, any two connected and reduced annular strand diagrams s1 and s2 can be encoded
into two planar graphs g1 and g2 respectively such that s1 and s2 represent conjugate elements if and
only if g1 and g2 are isomorphic. Hence the problem reduces to checking whether two simplified planar
graphs are isomorphic. Moreover, this enterprise can be carried out in linear time given a linear time
planar-graph-isomorphism checker [4].

w1 w2 

Strand Diagram 
Creator 

Annular Strand Diagram 
Creator  (i.e. Closing) 

Reduce Connected Component Labeling 

Encoding to Planar Graph 

Sw1 Sw2 

Aw1 Aw2 

Rw1 Rw2 

Cw1 Cw2 

Pw1 Pw2 

Return True if conjugate, 
otherwise return False 

Isomorphism 
Checker 

Figure 2: Algorithm Flowchart
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Sparse linear algebraic systems can be of different nature. A well known class are systems, we
call them “numerical”, that result in the discretization of partial differential equations (PDEs). A
very different class of systems, we call them “selective”, arises from integrability investigations of
differential equations. Both types of systems behave very differently during the solution process and
give results of different nature and therefore are also solved most efficiently with different methods.

The Linear Selective Systems Solver LSSS, described on the poster, was developed to solve
“selective” systems that result when the aim is to find discrete mathematical objects of symbolic
nature like Lie symmetries or first integrals if they exist. Table 1 compares both types of problems.

type “numerical” systems “selective” systems
examples systems resulting from a systems resulting from a sym-

discretization of PDEs metry investigation of PDEs
value of free parameters any floating 0 or 1
when applying the solution point numbers (to isolate the individual
of the linear system (boundary values of PDE) symmetries)
number of zero-valued essentially none most variables
variables in solution
initial sparsity yes yes
sparsity throughout
exact solution yes yes
overdetermination no yes
usability of iteration
schemes for large problems useful not useful
of that type

Table 1: Characterization of two different types of sparse linear systems

The special nature of selective systems allows a dedicated computer program LSSS (Linear
Sparse Systems Solver) running in the computer algebra system REDUCE to be much more efficient
than conventional computer programs for solving these systems [1]. Reasons are:
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• Because of the existence of many variables that take the value of zero in the solution the
systems involve 1-term equations which are utilized first to simplify the remaining system and
generate more 1-term equations.

• The simplification of a system due to the vanishing of variables can be accomplished much
faster than the simplification due to other substitutions.

• From the mathematical problem it is clear whether the type of a system is numerical or
selective and thus to apply the most suitable technique from the start.

• Selective linear systems are typically formulated by separation of larger expressions. The
complete separation and up-front formulation of the whole linear system can be avoided
through a repeatedly selective splitting and thus formulation and solution of 1-term equations.

• Increasing the complexity of the mathematical problem (e.g. by a increased degree of the
ansatz for symmetries or first integrals) the overdetermination and sparseness increases com-
pensating partially the exploding size of the initial linear system if 1-term equations are used
rigorously.

The package LSSS was developed in the course of investigating the integrability of the Kontsevich
system ([3])

ut = uv − uv−1 − v−1, vt = −vu + vu−1 + u−1 (1)

where u, v are non-commutative variables (in particular, square matrices of arbitrary size). This
is the first non-abelian system with non-polynomial right hand sides for which integrability could
be shown, in this case by computing a Lax pair with spectral parameter [2]. Essential ingredients
were the computation of Lie-symmetries, first integrals, a pre-Hamiltonian operator and a recursion
operator of (1), all of them requiring the solution of selective linear systems. With the program
LSSS it was possible to compute Lie-symmtries of degree up to 16. The complete linear system
that had been solved includes over 109 equations for 172 Mio variables. Despite of the majority of
them being zero, the general solution is not trivial as it has 32 free parameters and its formulation
requires already several mega byte.

Current applications of LSSS include the integrability investigation of generalizations of the
form

ut = uv + P (u, v, u−1, v−1), vt = −vu + Q(u, v, u−1, v−1). (2)
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Matrix multiplication is a major cornerstone in exact linear algebra: its study can concern algorith-
mic, complexity, design, reduction, etc. problems. We are interested in the few following aspects.

We first expose, in this thesis, efficient exact matrix multiplication techniques, developed for
both multiplication (A = B×C) and product with accumulation (A = A+B×C). We set up new
schedules that allow us to minimize the extra memory requirements during a Strassen–style matrix
multiplication, while keeping the complexity competitive with Winograd’s multiplication algorithm.
In order to obtain them, we develop external tools (pebble games), tight complexity computations
and new hybrid algorithms.

We then use parallel technologies (multicore CPU and GPU) in order to efficiently accelerate
the sparse matrix–dense vector multiplication (SpMV) or sparse–matrix dense matrix multiplication
(SpMM), crucial to blackbox (block) algorithms. We also set up new hybrid, environment dependant,
sparse matrix formats that help yield large speed-ups. We exemplify these results by speeding up
the block Winograd rank algorithm in the LinBox library.

Finally, we establish generic design methods focusing on efficiency, especially via building block
conceptions or self-optimization. We also propose tools for improving and standardizing code quality
in order to make it more sustainable and more robust. This is applied in particular to the LinBox
computer algebra library.
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Committee Members: Tomas Recio, Marie-Françoise Roy, Bert Jüttler
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This thesis has three main parts: computation of the bisectors of two curves or a point and a
curve in the plane, of the bisector of two surfaces in R3, and of the Voronoi diagram of a finite
family of parallel half lines in R3, with the same orientation. These subjects are closely related,
and have applications in CAD/CAGD and Computational Geometry. In each of the three parts,
we present algorithmic methods for computing certain representations of the geometric object of
interest: the bisector curve, the bisector surface, or the Voronoi diagram.

We present a new approach to determine an algebraic parametrization (rational or non rational)
of the bisector curve of two given planar rational curves. The method uses Cramer’s rule and
algebraic elimination steps. The method is applied, in particular, to obtain parametrizations of the
bisector of two rational plane curves, when one of them is a circle or a straight line. Then, this
approach is generalized to determine an algebraic parametrization of the bisector surface of two
low degree rational surfaces. We show how to easily obtain parametrizations of the bisector of the
following pairs of surfaces: plane-quadric, plane-torus, circular cylinder-non developable quadric,
circular cylinder-torus, cylinder-cylinder, cylinder-cone and cone-cone. These parametrizations are
rational in most cases. In the remaining cases, the parametrization involves one square root which
is well-suited to determine a good approximation of the bisector.

In addition, we present a different approach for the bisector curve problem. This new method
uses dynamic color in GeoGebra (a dynamical geometry software) for the geometric and numerical
characterizations of the bisector of two curves, or a curve and a point, in the plane. Even if it
does not provide an algebraic representation, the method could lead to the computation of an
approximate representation of the bisector curve.

The Voronöı diagram (VD) is a fundamental data structure in computational geometry with
various applications in theoretical and practical areas. We consider the VD of a set of parallel
half-lines, with the same orientation, constrained to a compact domain D0 ⊂ R3, with respect to
the Euclidean distance. This new kind of VD can be used to provide an efficient solution to some
problems in the drilling industry. We present an efficient algorithm for computing an approximate
VD, using a box subdivision process, which produces a mesh representing the topology of the VD
in D0. The concept of minimization diagram plays an important role in the method.
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