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Schiitzenberger’s monoidal factorization [9] has been introduced and plays a central role in the renormalization [7]
of associators which are formal power series in non commutative variables'. The coefficients of these power series are
polynomial at positive integral multi-indices of Riemann’s zéta function? [5, 10] and they satisfy quadratic relations
[1] which can be explained through Lyndon words. These relations can be obtained by identification of the local
coordinates on a bridge equation connecting the Cauchy and Hadamard algebras of polylogarithmic functions and
use the factorizations of the non commutative generating series of polylogarithms [6] and of harmonic sums [7]. This
equation is mainly a consequence of the double isomorphy between these structures to respectively the shuffle [6] and
stuffle [3] algebras both admitting the Lyndon words as a transcendence basis.

Symbolic computation allows us to introduce a formal variable ¢ in order to better understand the mechanisms of
the shuffle and to obtain algorithms on stuffles. We will then examine the g-stuffle interpolating between the shuffle
[9], stuffle [8] and minus-stuffle [3]. In particular, we will give an effective construction of pair of bases in duality. It
uses essentially an adapted version of the Eulerian projector in order to obtain the primitive elements of the g-stuffle
Hopf algebra and they are obtained thanks to the computation of the logarithm of the diagonal series. This study
completes the treatment for the stuffle [7] and boils down to the shuffle [9].

More precisely, let Y = {ys}s>1 be an alphabet with the total order y3 > y» > ---. Let also k be a unitary
Q-algebra containing q. One defines the ¢-stuffle, or its dual co-product, as follows, for any ys,y; € Y and u,v € Y*,

wissglys = lyewgu =1 and  yous g = gy (u i o) + yo(ysu s o) + gyeso(uw ), (1)
Atﬂq(lY*):lY*(@lY* and Atﬂq(ys):ys®1Y*+1Y*®ys+q Z Ysy ®y32- (2)
S1+S2=s

This product is commutative, associative and unital. With the co-unit defined by, e(P) = (P | 1y«), for P € k(Y'), one
gets ", = (k(Y),conc, ly«, A, €) and vaq = (k(Y), = ¢, Ly~, Aconc, €) which are mutually dual bialgebras
and, in fact, Hopf algebras because they are N-graded by the weight.

Group-like elements, redefined below, form a group for which the log-exp correspondence is explained by as follows

Lemma 1 (¢-extended Friedrichs criterium) Let S € k(YY) (for 2., we suppose in addition that (S | 1ly~) = 1).
1. S is primitive, i.e. Ay S =S® 1y 4+ 1y- ® S, if and only if, for any u,v € YT, (S | uw qv) =0.
2. S is group-like, i.e. Ay S =5S®S, if and only if, for any u,v € YT, (S |uwqv) = (S| u)(S | v).
3. S is group-like if and only if log S is primitive.

Proposition 1 Let Dy =} .y.w ®w be the diagonal series over Y. Then

-1 k—1
1. log Dy = Z w® 7 (w), wherem(w):w—l—z% Z (W] ug @ g. .. qup)ug .. U,
weY+ k>2 Up,y.. U EY T

1
2. For any w € Y*, we havewzzﬂ Z (W] wgwg. .. wqug)m(ur)...m(ug).
k>0 wp,.,up €Y

1 These associators were introduced in quantum field theory by Drinfel’d and the universal associator, i.e. ® 7, was obtained with
explicit coeflicients which are polyzétas and regularized polyzétas [5].
2These values are usually abbreviated MZV’s by Zagier [10] and are also called polyzétas by Cartier [1].
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Let P = {P € QYY) | Aw,P = P®1+41® P} be the set of primitive polynomials. Since, in virtue of
Aw,m(w) =7 (w) ®14+1® 7 (w), Im(mry) € P, we can state the following

Theorem 1 ([2]) 1. Let {Il;}icryny be defined by, for any yr € Y,II,, = mi(yx) and for any | € LynX of
standard factorization | = (s,r),1I; = [l IL.]. Then {II;}iccyny forms a basis of P.

2. Let {11, }wey~ be defined by, for any w € Y* such that w = lil ...lfc’“,ll > ... > I,y € LynY,
I, =10} ... IGF. Then {Il, ey« forms a basis of k(Y').

3. Let {Xy }wey+ be the family of the quasi-shuffle algebra obtained by duality with {IL,}wey+. Then {Ey}wey -
generates freely the quasi-shuffle algebra.

4. The family {3 }iecyny forms a transcendence basis of (k(Y), w1 ,).
We now give formulas which permit to compute the basis {3, },,cy+ without inverting a huge Gram matrix.

Theorem 2 (g-extended Schiitzenberger’s factorization, [2]) 1. ForanyyeY, ¥, =vy.

i—1

q
2. For any ys, ...ys, € LynX, Xy, 4, = g Tysfﬁ...ﬂile...l".
(] 8]}t s hl1 2 2Un€LynY
(ysy '“ysk)<*=(ysll st 1 sln)
lttl qil " " lttl qlk
) ) , P E
3. For any w =17" ... I;F, with ly,...,l € LynY and l; > ... >, ¥,y = — P k
10 !
\
4 Dy=> Sy®l,= [] exp(Z ®I).
weEY * leLynY

Theorems 1.1 and 2.2 are based mainly on respectively the logarithm of the diagonal series Dy and the standard
sequences [9, 2] and lead to simplified algorithms getting bases in duality as shown in the following

Example 1
_ q,2
My, = v2— 5U7,
Hysy; =  Y2¥1 — ¥1¥2, ) .
Hygy1ys = w3vivz — $v3v? — avavive + Yvavt — vivsve + vivsvd + $vfvd — G vivav? — vovsn
+ %ygy%+y2y1y3+%y§y3y1 - %y{’y3+%yi‘y2,
Mysyiyoyr =  Y3Y1Y2V1 — ¥3¥2v2 — Sy2uivoyl — v1vsvayl +v1vzvive + 2v5v3vr — Sudvavive — vovivsvr
+  Zvovivav? +vavivs +vivavsvr — Svivdvi — vivovivs + Lyivaviva.
Sy = y2, .
Zygyy = Y2yl t 3vs, )
Syzysyr = vsvivz +y3voyl + avd + Svave + Lve + Susua,
2 2 3q,2 q q q P 2 P > Phd
Sy3y1y2v1 = 2y3y2¥7] +ay3ys +y3v1v2y1 + S v3v1 + 5¥3v1¥3 + 5 y3v4 + gyavav1 + g v4ay3 +avsyi + 5 ysy2 + 5 vev1 + g y7-

In conclusion, since the pioneering works of Schiitzenberger and Reutenauer [9], the question of computing bases
in duality (maybe at the cost of a more involved procedure, but without inverting a Gram matrix) remained open
in the case of cocommutative deformations of the shuffle product. We have given such a procedure allowing a
great simplification for an interpolation between shuffle and stuffle. In the next framework, this product will be
continuously deformed, in the most general way while remaining commutative [4].
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