ACM Communications in Computer Algebra, Vol. 47, No. 3, Issue 185, September 2013

Message from the SIGSAM Chair

Ilias S. Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

Dear SIGSAM Members,

It is a great honor to serve as Chair of ACM SIGSAM, a historical organization with numerous and
long-lasting contributions to Computer Algebra and Symbolic Computation. I would like to take this op-
portunity to thank all candidates at the recent elections. Everyone is a valuable member of the community
and T would encourage them to take part in the next election as well and/or to continue to be actively
involved in SIGSAM activities and projects. SIGSAM is a volunteer-based organization and therefore it
is important to involve as many volunteers as possible. I would also like to welcome the three elected
members of the new SIGSAM executive, namely:

e Vice Chair: Jean-Guillaume Dumas (Université Joseph Fourier, France), VC_SIGSAM@acm. org
e Secretary: Ziming Li (Institute of Systems Science, China), Secretary_SIGSAM@acm.org
e Treasurer: Agnes Szanto (North Carolina State University, USA), Treasurer_SIGSAM@acm.org

I am looking forward to working with all three of them. I am also looking forward to work with those of
you that would be willing to take some time off your busy schedules to work on some projects that I plan
to pursue. To be more specific, I plan to intensify work on the following projects:

e Update and re-organize the SIGSAM webpage http://wuw.sigsam.org/

e Design and implement a campaign to increase SIGSAM membership. This will include reviewing all
benefits of SIGSAM membership and discussing ways to increase the value of membership for all of
those interested in computer algebra and related fields

e Enlarge and maintain coverage of CCA in on-line publication databases, i.e. DBLP, MathSciNet

The annual SIGSAM business meeting was held during the ISSAC 2013 conference in Boston and it
was reported that:

1. SIGSAM is financially healthy with a balance of more than $60, 000.

2. SIGSAM sponsorship of ISSAC paper prizes and Jenks award funded by endowed accounts which
also remain healthy

3. Item 1 enabled SIGSAM to reduce the fee from ACM for ISSAC sponsorship from 16% to 10% which
was the same as when ISSAC was sponsored by INRIA at Grenoble.

4. ACM has revised its publishing policies. This includes authorizer which allows authors to post
official copies of their ACM publications. It also allows ACM published proceedings to be available
to everyone for one year. I.LE. we can post the table of contents of ISSAC proceedings with links to
all papers for one year on the ISSAC or SIGSAM website.

5. Past SIGSAM Chair, Prof. Jeremy Johnson, Drexel University, presented the SIGSAM Program
Review on March 14, 2013. SIGSAM received renewed viability from ACM SGB for another 3 years.
The official ACM statement is:

SIGSAM
The SGB EC congratulates SIGSAM on their continuing importance to the community, but has

73

Message from the Chair

concerns about submissions and attendance at the ISSAC conference and finds SIGSAM viable to
continue its status for the next 3 years.

The preparations for the ISSAC 2014 conference are well underway, under the leadership of general
co-chairs Kosaku Nagasaka (Kobe) and Franz Winkler (RISC-Linz). The conference will be held July
23-25 in Kobe, Japan. Please consult the website http://www.issac-symposium.org/2014/ for more
information. ISSAC 2014 is in cooperation with ACM. It is worthwhile to note that ISSAC 2014 is a
satellite conference of the International Congress of Mathematicians (ICM 2014) that will be held August
13-21 in Seoul, Korea, http://www.icm2014.org/ .

The venue for the ISSAC 2015 conference was selected during the business meeting at ISSAC 2013
in Boston. There were four candidate cities and the winning city was Bath, UK. The representative of
one of the four candidate cities expressed concerns over the preparation and the logistics of the bidding
presentations. I witnessed some aspects of the entire process first hand and I believe the concerns were
justified and valid. In order to address these concerns, I believe that SIGSAM and the ISSAC steering
committee should investigate the entire bidding process and possibly offer recommendations on how to
systematize it and streamline it, so as to hopefully avoid this type of concerns at future bids for ISSAC
conferences.

SIGSAM sponsored the following ISSAC 2013 awards:

e Distinguished Student Author Awards: Pierre Lairez for Creative Telescoping for Rational Functions
Using the Griffiths-Dwork Method (with Alin Bostan and Bruno Salvy) and Qingdong Guo for
Computing Rational Solutions of Linear Matrix Inequalities (with Mohab Safey El Din and Lihong
Zhi).

e Distinguished Paper Award: Jingguo Bi, Qi Cheng, and J. Maurice Rojas. Sub-Linear Root Detection
and New Hardness Results for Sparse Polynomials Over Finite Fields.

e Distinguished Poster Awards: Jeremy Johnson and Lingchuan Meng. Towards Parallel General-
Size Library Generation for Polynomial Multiplication. James Wan. Hypergeometric Generating
Functions and Series for %

e Distinguished Software Presentation Award: Fredrik Johansson. Arb: a C Library for Ball Arith-
metic.

e The 2013 Richard Dimick Jenks Memorial Prize for Excellence in Software Engineering applied to
Computer Algebra was awarded to the William Stein for the Sage Project.

I would like to thank CCA editor Manuel Kauers (RISC-Linz, Austria) and Information Director William
J. Turner (Wabash College, USA) along with the editorial board for making sure that the four yearly issues
of CCA are published in a timely manner on-line and in the printed version. Timely publication of CCA
is an important aspect of the periodic viability review for SIGSAM. I would also like to thank Clément
Pernet (Université Jopseph Fourier, Grenoble, France) for serving as the SIGSAM representative on the
Editorial Board of ACM Transactions on Mathematical Software (TOMS) http://toms.acm.org/ .

Finally I would like to thank the extremely efficient ACM staff for their help and support during my
past ten years as Editor of CCA and on other occasions such as conference organization. Special thanks
go to Irene Frawley, Program Coordinator, SIG Activities, for her enthusiasm and dedication. I hope to
continue to work with all of them and be productive in my new role as SIGSAM Chair.

Ilias S. Kotsireas

SIGSAM Chair chair_SIGSAM@acm.org
Wilfrid Laurier University

Waterloo, ON, Canada

74

ACM Communications in Computer Algebra, Vol. 47, No. 3, Issue 185, September 2013

Asymptotic series of Generalized Lambert W Function

Tony C. Scott!2, Greg Fee? and Johannes Grotendorst?

! Institut fiir Physikalische Chemie, RWTH Aachen University, 52056 Aachen, Germany

email: scott@pc.rwth-aachen.de

2 Zephyr Health Inc, 589 Howard Street, 3rd floor, San Francisco CA 94105, USA

email: tony@zephyrhealthinc.com

3 Centre for Experimental and Constructive Mathematics (CECM), Simon-Fraser University, Burnaby, BC V5A 156 Canada

email: gjfee@cecm.ca

4 Institute for Advanced Simulation, Jiilich Supercomputing Centre, Forschungszentrum Jiilich, 52425 Jiilich, Germany

email: j.grotendorst@fz-juelich.de

Abstract

Herein, we present a sequel to earlier work on a generalization of the Lambert W function. In particular,
we examine series expansions of the generalized version providing computational means for evaluating
this function in various regimes and further confirming the notion that this generalization is a natural
extension of the standard Lambert W function.

AMS Numbers: 33E30, 01-01, 01-02
Also related to: 70B05, 81Q05, 83C47, 11A99

1 Introduction

The Lambert W function satisfying W(t)eW(t) =t provides an exact solution to:
e % =aqa, (x—r1) (1)

with ¢ = ry + %W(c e~ /a,). The Lambert W function appears in a myriad number of applications. In
particular, it appears in the “lineal” gravity two-body problem [1,2] as a solution to the Einstein Field
equations in (1 + 1) dimensions. The Lambert W function appears as a solution for the case when the
two-bodies have exactly the same mass. However, the case of unequal masses required a Generalization of
Lambert’s function [1, eq.(81)].

e =a, (x—r1)(z—12) (2)
This generalization originally appeared from the (quantum-mechanical) Double Well Dirac Delta Potential
model [3], a one-dimensional version of a special case of the quantum-mechanical three-body system known

()

Asymptotic series of Generalized Lambert W Function

as the Hydrogen Molecular Ton (and also appears in quantum gravity [2]). For this problem, specifically
rr =1, rg = A, ¢ = 2 R where R is the internuclear distance. a, = % and A was treated formally as real
perturbative parameter (the case at A = 1 allows eq. (2) to factor into (1) which is solvable in terms of
the standard Lambert W function). In its original form, this equation was written in a more complicated
form, namely a pseudo-quadratic: with two solutions for x [3—6]:

ex(3) = 30+ D £ {1407 - axp - e}

where FL = —x1/2 are the quantum state energies (for respectively the two distinct solutions x4). All
these quantities including the energies were real though we do not rule out a generalization to the complex
plane.

A difficulty encountered by Byers-Brown and Scott et al. is that Physical Chemists followed a conventional
practice of starting with the case A = 0 whose solution is zp = 1 as a starting point and considering a series
expansion about xg of eq. (1) in powers of A. This was called the “polarization expansion” for the range
0 < XA < 1 and proves very difficult to sum, necessitating the use of Padé-Hermite Approximants [3]. This
slow convergence became aggravated for larger but similar molecular systems like the Hydrogen Molecular
Ton requiring much discussion (and calculation) to sort out the convergence of the eigenstates and related
quantities once and for all [7,8].

Subsequently, it was realized that eq. (2) could be further generalized to the case of a rational polynomial [9]:

—ex _ Pn(2)
Qum ()

where ¢ > 0 is a constant as before and Py (x) and Qps(z) are polynomials in x of respectively orders N
and M. Eq. (3) expresses the solution for the energy eigenvalues of the three-dimensional (and realistic)
version of the Hydrogen molecular ion. These generalizations were found to express solutions to a huge class
of fundamental problems and were found to be natural extensions of the standard W function requiring
merely a formal nesting of the standard Lambert W function [10] and thus economical conceptually in terms
of mathematical resources. Some exact solutions were even found for some special cases for eq. (2) [10].

3)

e

Herein, we examine the more pragmatic matter of obtaining series expansions for eq. (2) for analytical and
computational purposes. In the process, we will show how closely they relate to the series expansions of
the standard W function. We will examine three series expansions which apply to three different regimes.
Though eq. (2) is not the full generalization in eq (3) it already embodies a link between gravity theory
and quantum mechanics albeit in lower dimensions [2] and is therefore instructive as a special case beyond
the standard W function. Finally, some concluding remarks are made at the end. Since we are dealing
with applications in Physics, the input parameters ¢, a, and the polynomial roots r; where ¢ = 1,2, ... are
assumed to be real.

2 Series Expansions

2.1 Taylor series in ry

By a series of manipulations, eq. (1) can be brought in the familiar standard form:

W ce
z0 = W(xo)eV@) where zp = (4)
Qo

76

Scott, Fee, Grotendorst

Using very similar manipulations and defining respectively the mean and difference of the roots r1 and rs:

Tm = 7’1J2r7"2 and rq = 7”1;7"2’ (5)

and by completing the square for the quadratic on the right of eq. (2):
(x—r)(z—712) = (x—1rp)?—712
and defining W(ry) = — r, eq. (2) can be rewritten as:
emeWlratrm) 4 ay 15 = a, W(rg)® . (6)

The above can be viewed as the intersection between an exponential of the form Ae™“* and a “simple
harmonic oscillator” of the form Bz?. Potentially, there can be two and as much as three intersections (in
the real plane), in some cases, roots of the same sign. To obtain real solutions, we constrain a, > 0. It
is very similar to eq. (1) the equation governing the standard Lambert W function with the mean of the
roots r,, playing the role of the r1 in the monomial on the right side of eq. (1), the difference in the roots
rq representing a departure from the form of eq. (1). This makes perfect since because when r4 = 0, then
r1 = and eq. (2) can be factored into the form of eq. (1) bringing us back to the standard W function.
We define:

2
20 = 1 ie—crm/Q _ 1 c e—crm/2 (7)

2\ ao 2./a,

where it is understood that W (0) is/are the solution(s) when ry = 0:
2 2
wW(0) = - W(tz) = - Wo (8)

and where W (£zp) on the right side of eq. (8) is the standard Lambert W function. For real results, in
particular for the parameters mentioned for the Double Well Dirac potential mentioned just below eq. (2),
we are interested in real results and make use of the main branch of the standard W function. In this
case, ¢ > 0 helps ensure |zp| < 1/e (although W (—z2p) could have a real result on a different branch for ¢
sufficiently small). Implicit differentiation on both sides of eq. (6) yields:

8W(7’d) _ 2Td _ 27“d (9)
Irq ceWOdtm) oy e W(rg)? —cri+2 W(ra)

Qo

Naturally successive derivatives with respect to r4 yields the Taylor series in r4. Its radius of convergence
will be obtained from the disk about the point of expansion ry = 0 (assuming it is regular at the point
of expansion) bounded by the closest singularity or branch point in the complex plane namely when the
denominator of this derivative and all successive derivatives is zero, with W (ry) simultaneously satisfying
eq. (6). Note that the expression on the right most side of eq. (9), obtained by virtue of eq. (6), does not
formally depend on a, nor r,, but only on ¢ and 4. Even though this is a quadratic in W (ry), only one

solution satisfies eq. (6), namely:
—1+ /14 a2y (10)

C

W(Td crit) =

The critical radius in the complex plane is:

1
oy = & E\/2 W (=2 22) + W (-2 22)2 . (11)

T

Asymptotic series of Generalized Lambert W Function

Here Wy = W(+z2p) is the standard W function and the radius is |rq .| Note that when zy = 0,
W(z) = W(-22%) = 0 (on the main branch) and the radius of convergence is also zero even though
2o = 0 is analytic on the main branch for the (standard) Lambert W function. The series in rg is thus:
Wo 1 2 L Srwi-1
Wre) = 204> T4 4 - ¢ ng()
c 4 Wo(WO + 1) 64 WO (WO + 1)3
L A8 (8W — 12W2 + 3 — 4Wg)

(12)

+

1536 W (Wo +1)5
1" rd (48W§ — 132W + 90WE — 15 — 64W§ + 40W¢) o)
49152 Wi (Wo +1)7 d

which is a series in 72 for = W(ry) + rp, with = governed by eq. (2) and the radius of convergence
is provided by the magnitude of (11). Within its radius of convergence, it converges rapidly. Note that
when argument of zy is such that Wy = 0 (which happens when e.g. zp = 0 on the main branch) or
Wy + 1 = 0 (which happens when zy = —e~! which is a branch point on the main branch), the individual
series coefficients are confronted with divisions by zero, a result consistent, for the case Wy = 0, with a
radius of convergence of zero as given by eq.(11).

The validity of this series is demonstrated with some numerical tests. To reiterate the earlier problem, for
a relatively high value of A = 0.8 and an internuclear distance near the bond length R = 2, we have:

5 1 9
G = 7 ¢ =4 T4 =15 Tm =
The solution of eq. (2) is = 1.0485 obtained to within 4 decimals using the series in eq. (12) to within
and including order O(r}?) using Wy = W (zp) as the lead term. Similarly, the other solution z = 0.6248 is
obtained using Wy = W (—zp) as the lead term. The convergence of this series is much more rapid than the
original “polarization expansion” mentioned in the introduction. Furthermore, this series is not limited to

the real plane. For A = 1% — Ly

10
o = ﬁ—i-i c =4, rq = i—i-i Tm = 1 iz
o= g T T TdT 5T T T 907 9

The series to (and including) order O(r}?) yields x = 1.0651408 — 0.02817424 to within 7 decimals for
Wo = W(zp) and similarly = = 0.72818558 — 0.0876039 i for Wy = W (—zg) This series expansion is valid
for small differences in the roots r4, so clearly an asymptotic expansion valid for large r4 is also needed.

It would seem that in the case of three real roots, that we would only recover at most two out of three
solutions. However, when two roots appear for e.g. = > 0 and the third root appears for z < 0, the latter
can be recovered by reflection symmetry on the parameters. Let ©+ — —x, ¢ = —¢, r; — —7r; and these
same formula can be used to recover that third solution.

2.2 Reversion of Power Series

To get an asymptotic series valid for large ry, we further transform eq. (6) with the following variable

transformations:
92\ 2
weat = (2) @)
d = crg/2 (13)

78

Scott, Fee, Grotendorst

and x = W (rq) + rp, as before. Following the procedure for the standard W function [11], we start from:

—crm /2

f(U) — Uei\/m lce

where zp = =

2 Ja,
where the sign + takes into account that the negative square root is also possible. When d = 0, eq. (14)
reduces to the form of the standard W function. Eq. (14) has the form:

z=f(U)

and we seek to reverse the power series to obtain:

2y = (14)

U =g(2);

Defining ¢(U) = U/f(U) = eFVU*+4* and noting that $(0) # 0, we use a specialized version of the
Lagrange-Biirmann [12] formula:

ZkJrl ak¢(U)k+1

U(z) = z¢(0) + Z

(15)
— (k+1)! oUk U—0
Implicit differentiation of eq. (14) w.r.t. z yields:
oU(z) _ JU(R)?+d? eFVUR+E (16)

0z UQR2+VUQE? TP

We can see that the square root term dominates the functional form of the derivatives and the branch
structure U(z) in the complex plane much in accordance with the findings of Byers-Brown [5,6]. Note that
eq. (16) has no explicit dependence on z and thus there is no need to verify its consistency with (14). To
get the radius of convergence, we need to consider both the branch structure of the square root term in the
denominator of (16) and values of U(z) in the complex plane about the region z = 0 which would make
this denominator zero. Thus the radius of convergence is limited by either:

|Uc7‘it‘ < ‘d|

or

2+ 2/1 + 4d2| (17)

1
‘Ucm't| < §|
whichever is smaller. We obtain:

1 28eF3 L1 25(£5d + 1)eTe

U(z) = zeT F 54 g pE + O("e*™) (18)
1 3 5
lee 29+ 1¢2 e 2% 1% e 2% (45 2 7
= ;= F it i/z e 5(/2 crat?) + O(e72™) (19)
2 \/% 8 Ao Tq 64 Qo rf’l

where ry = ry, r— = r9, = 1y + (2/¢)VU? + d? as x given in eq. (2). This series would have growing
exponential terms of the form exp(—k * d) unless k > 0 and consequenly this necessitates the requirement
that ¢ r+ > 0. Thus, we obtain a valid asymptotic expansion valid for large d or equivalently large r.

As in the previous section, we also get two kinds of solutions, respectively for positive and negative d, but
they do not necessarily relate at all to the solutions of the previous section. The first section involved a

79

Asymptotic series of Generalized Lambert W Function

series expansion in r3 where ry = (2/c)d and invariant with respect to the sign of d. Here we are dealing
with a situation where the difference between the roots rg is very large and thus quite possibly only one
intersection between the exponential term on the left side of eq. (2) and its right side namely a quadratic
in z, and thus only one solution.

As a numerical check and departing from the earlier physical chemistry problem in the earlier section,
consider these particular values:

a, =1, ¢ =2, r = 2, ro =1 = d=1r3 == T™h = —-.

The asymptotic series in eq. (19) with only the first 3 terms up to and including O(1/d?) yields the solution
x = 2.01739 to within 4 decimals. Another test case, this time with some complex values:
1 1 2—1 1+i = d 1 oy) 3
a, = c = rno = 2—1 ro = 1 =———i, Tg=-—1 Tm==
(o} bl) 1 bl 2 4 2 bl d 2] m 2
This same series with only 3 terms gives us x = 1.9703 — 0.9430¢ to within 4 decimals. Thus, though
initially motivated for the case of real numbers, these expansions can be used in the complex plane within
certain restrictions.

2.3 Asymptotic series for large argument

The question arises what happens if we decide the left side zg of eq. (14) is large? For the principal branch
when z > 0, taking logs of both sides of the equation governing the standard Lambert W function i.e.
WeW = z yields:

In[W(z)] = In(z) — W(z) (20)

Recursive substitution yields successively:

In(z)
In(z) — In(In(z))
In(z) — In(In(z) — In(In(2)))

By taking logs on both sides of eq. (14) for the positive square root case only:

In(z) —In(U) = VU2 +d or (In(z) — In(U))? = U? + d? (21)

Thus, we consider two types of recursion.
U — /(In(z) —In(U))2 — d2 (22)
U - i(—Zln(z) +In(U?) — 2d)(—21n(2) 4+ In(U?) 4 2d) (23)

The second recursion avoids the square root (and its messy consequences for recursion) and looks like a
factored form involving a combination of asymptotic formulae for the standard W function. By successive
substitution, we obtain:

2

Ux ||[I(z) - \j <1n(z) I <\/ ..In (m(z) —In (\/(ln(z) “In(0))2 — d2)>2 - d2)> - d2) (24)

80

Scott, Fee, Grotendorst

Table 1: Non-Linear transformations applied to Taylor series of eq.(12) for r4 = 0.8

no. of terms || W(ry) Taylor Series | Shanks | Levint |

1 -0.9999999996 -0.9999999996 | -0.9999999996
2 -1.6400000000 -1.6400000000 | -2.7777777780
3 -1.4352000000 -1.4848484850 | -1.5213977230
4 -1.6099626670 -1.5294964030 | -1.5192810810
) -1.4421905070 -1.5246574640 | -1.5243445560
6 -1.6265161880 -1.5271424650 | -1.5267037510
7 -1.4108133840 -1.5280997520 | -1.5277557490

-1.528554071 -1.528554071 | -1.528554071

and:
) 1 1
Us =~ 1 —21In(z) +1n 1(—2ln(2)+ln(... (25)

+ In <i (—2In(2) + In(U?) — 2d)(—21In(z) + In(U?) + 2d)) +...+ 2d>> + 2d>

However, we find from experience that the argument z has to be very large indeed for these asympotic
formulations to converge. This exercise is more to demonstrate the resemblence with the counterpart
expansion for the standard W function, namely eq. (21). For computational value, sections 2.1 and 2.2 are
more useful. Nonetheless, the very large zy argument is tractable.

2.4 Summation techniques

Finally, the series summation can be accelerated even beyond the radii of convergence using non-linear
transformations as mentioned in the introduction. These transformations are applied to the sequence of
partial sums and are capable of accelerating the convergence of a series and even sum divergent series (e.g.
see the work of [13,14]). We take the point of view that a Taylor or asymptotic series has all the desired
“information”, getting numbers from the series is a matter of a summation technique. For the series in 74
of the first section for both W (+zg), it was found that the series, when oscillating in r4, could indeed be
extended beyond their radius of convergence. This is demonstrated for the test case:

a =1, ¢ =1, rp = 1.

Here, the asymptotic solution of eq. (19) matches the extrapolated Taylor series of solution about Wy(zp)
of (12) in 4 decimal places. Here 74 ..y =~ 0.64 and we consider the regime when ry > 74 .4, the
alternating Taylor series is divergent. This Taylor series to order O(r}?) (6 terms in powers of r3) is
used for the ¢ transformation of Levin [15] and the Shanks transformation [16]. To demonstrate agreement
between the Taylor series and the outcome of the non-linear transformations, tables 1 and 2 compares
the Taylor series of eq. (12) and the outcome of the Shanks and Levin ¢ transformations for respectively
rq = 0.8 and 7y = 1.5. At the bottom of each table is listed what exact solution to the number of digits
shown. The Taylor series of eq. (12) diverges violently when r4 = 1.5 but the non-linear transformations

81

Asymptotic series of Generalized Lambert W Function

Table 2: Non-Linear transformations applied to Taylor series of eq.(12) for rq4 = 1.5

no. of terms H W (ry) Taylor Series \ Shanks \ Levin t ‘

1 0.38889448 0.3888944774 | 0.3888944774
2 2.81078092 2.8107809190 | -0.0743922833
3 -3.02541152 1.0991727410 | -5.1438626370
4 24.71693722 1.7964086140 | 1.7380384290
) -139.85949420 1.3876539200 | 1.5296581130
6 953.20098980 1.5894954440 | 1.5167708910
7 -6823.99405600 1.4791930140 | 1.5165517370

1.516240428 1.516240428 1.516240428

converge nicely. Three terms of the asymptotic expansion in eq. (19) for r4 = 1.5, yield z = 1.516240673
which agrees with the exact solution starting from Wy(zp) to within 7 decimals. This demonstrates that
the solutions of section 2.2 can match one of the solutions of section 2.1.

3 Conclusions

Previously [10] we had inferred a canonical form for a generalization as expressed by (2) and (3) and given
both mathematical and physical justifications for it. Herein, we formulated Taylor series and asymptotic
series useful for analysis and computation. We find that the results are similar to those governing the
standard W function and represent a natural extension though the branch structure in the complex plane
may differ.

This approach could be extended to higher order polynomials fitting the pattern of eq. (3). For example,
when the right side of eq. (3) we can complete the cube in some special cases, i.e. for

1?3 1 3 a?
x3+am2+bx+c:<x+3)—(27a3—c> Whenb:§

which can allow a special case of eq.(3) and create a cubic relation counterpart of eq. (14):

6—crm _ Y3 60 (Y3+d3)1/3 (26)
Qo
where (z — ;)% = Y?+d3and d3 = g—; —c and 7, = —a/3. However, for larger order polynomials

and rational polynomials, this approach is quickly exhausted and one has to rely on numerical techniques
which is very feasible.

Finally, the Taylor series summation can be accelerated even beyond the radii of convergence using non-
linear transformations known as the Levin or Shanks transformations allowing a matching between the
Taylor series and the asymptotic series. The resulting series can be converted into FORTRAN or C code
using the interface between Maple and these languages [18].

82

Scott, Fee, Grotendorst

References
[1] R. B. Mann and T. Ohta, Ezact solution for the metric and the motion of two bodies in (1 + 1)-
dimensional gravity, Phys. Rev. D. 55, (1997), 4723-4747.
[2] P. S. Farrugia, R. B. Mann, and T. C. Scott, N-body Gravity and the Schridinger Equation, Class.
Quantum Grav. 24, (2007), 4647-4659.
[3] T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan III, The Calculation of Exchange Forces:
General Results and Specific Models, J. Chem. Phys. 99, (1993), 2841-2854.
[4] A. A. Frost, Delta-Function Model. I. FElectronic Energies of Hydrogen-Like Atoms and Diatomic
Molecules, J. Chem. Phys. 25, (1956), 1150-1154.
[5] P. R. Certain and W. Byers Brown, Branch Point Singularities in the Energy of the Delta-Function
Model of One-Electron Diatoms, Intern. J. Quantum Chem. 6, (1972), 131-142.
[6] W.N. Whitton and W. Byers Brown, The Relationship Between the Rayleigh-Schrédinger and Asymp-
totic Perturbation Theories of Intermolecular Forces, Int. J. Quantum Chem. 10, (1976), 71-86.
[7] T. C. Scott, A. Dalgarno, and J. D. Morgan III, Ezchange Energy of H;' Calculated from Polarization
Perturbation Theory and the Holstein-Herring Method, Phys. Rev. Lett. 67, pp. 1419-1422 (1991).
[8] T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan II1, Resolution of a Paradox in the Calculation
of Exchange Forces for Hy, Chem. Phys. Lett. 203, pp. 175-183 (1993).
[9] T. C. Scott, M. Aubert-Frécon and J. Grotendorst, New approach for the electronic energies of the
hydrogen molecular ion, Chem. Phys. 324, (2006), 323-338.
[10] T. C. Scott, R. B. Mann and R. E. Martinez I, General Relativity and Quantum Mechanics: Towards
a Generalization of the Lambert W Function, AAECC, 17, (2006) 41-47.
[11] (a) R. Corless, G. Gonnet, D. E. G. Hare and D. Jeffrey, Lambert’s W Function in Maple, MapleTech
9,ed. T. C. Scott, (Spring 1993); (b) R. Corless, G. Gonnet, D. E. G. Hare, D. Jeffrey and D. Knuth,
On the Lambert W Function, Advances in Computational Mathematics, 5, (1996), 329-359.
[12] A. C. Dixon, On Burmann’s Theorem, Proc. London Math. Soc. 34, pp. 151-153, (1902).
[13] J. Grotendorst, A Maple Package for Transforming Series, Sequences and Functions, Comput. Phys.
Commun. 67, (1991), 325-342.
[14] E. J. Weniger, Nonlinear Sequence Transformations for the Acceleration of Convergence and the Sum-
mation of Divergent Series, Comput. Phys. Rep. 10, (1989), 189-371.
[15] D. Levin, Development of non-linear transformations of improving convergence of sequences, Internat.
J. Comput. Math. B 3, (1973), 371-388.
[16] D. Shanks, Nonlinear Transformations of Divergent and Slowly Convergent Sequences, J. Math. and
Phys. (Cambridge, Mass.) 34, (1955), 1-42.
[17] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt, First Leaves:
A Tutorial Introduction to Maple V, Springer-Verlag, New York, (1992).
[18] C. Gomez and T. C. Scott, Maple programs for generating efficient FORTRAN code for serial and vec-

torised machines, Comput. Phys. Commun., Thematic issue: Computer Algebra in Physics Research,
115, pp. 548-562 (1998).

83

ACM Communications in Computer Algebra, Vol. 47, No. 3, Issue 185, September 2013

NSF Funding Opportunities for Symbolic Computation

Communicated by Erich Kaltofen and Alexey Ovchinnikov

The NSF CCF Core Programs, Algorithmic Foundation, is to fund as one of its areas research
symbolic computation. Please, note the change of deadlines of this major funding opportunity this
year:

e Medium projects: September 24, 2013 — October 15, 2013
e Large projects: November 4, 2013 — November 19, 2013

e Small projects: January 2, 2014 — January 17, 2014

For further information, please, refer to the program web page:
http://www.nsf.gov/funding/pgm_summ. jsp?pims_id=503299&org=CISE
and (new) solicitation:
http://www.nsf.gov/funding/pgm_summ. jsp?pims_id=503220&org=CISE

where you can find further details, NSF contact information for further questions, and what has
been recently funded under the Core Programs.

84

ACM Communications in Computer Algebra, Vol. 47, No. 3, Issue 185, September 2013

The Computational Geometry Algorithms Library CGAL*

Efi Fogelf Monique Teillaud?

Abstract

The Computational Geometry Algorithms Library (CGAL) is an open source software library that
provides industrial and academic users with easy access to reliable implementations of efficient geometric
algorithms.

Usage. CGAL is used in a diverse range of domains requiring geometric computation such as computer
graphics, scientific visualization, computer aided design and modeling, geographic information systems,
molecular biology, medical imaging, and many more. Since CGAL provides a wide range of components,
we restrict ourselves to mentioning just a few here.

As an example application of CGAL, a series of packages are provided which are useful in robotics and
automation: Minkowski sums, offset polygons, Boolean operations on curved regions. The high precision
of CGAL allows users to solve geometric problems involving motion in restricted environments, such as
those arising in assembly planning.

The robustness and efficiency of components such as the Delaunay triangulation and mesh construction
and manipulation packages makes CGAL attractive for simulations, in particular those involving proteins,
particle physics, fluid dynamics, medical modeling, biophysics, geophysics, and astronomy. Indeed, the
aforementioned components are largely used in these areas.

Some support for manipulations of polynomials and for solving univariate polynomial equations and
bivariate polynomial systems is also provided, as well as handling for convex quadratic programs.

History of the CGAL Open Source Project. Several European research groups started to develop
their own small geometry libraries in the early 90’s. In 1996, a consortium of eight sites was created to
gather the work of these groups into a single software library, namely CGAL. Their main goal was to
promote research in computational geometry and to translate the results into robust software suitable for
industrial applications.

Around this time the Computational Geometry Impact Task Force Report [CT96, C*t99] made a series
of recommendations. Amongst these recommendations, the production and distribution of usable (and
useful) geometric software, and the need to establish a reward structure for software implementations in
academia, were key.

On November 2003, when version 3.0 was released, CGAL officially became an Open Source project,
allowing new contributors to join the project.

License. CGAL is distributed under the GPL license (apart from a few basic parts, which are distributed
under the LGPL license). In particular, it is publicly and freely available for academic use. Commercial
licenses are offered by GEOMETRY FACTORY, a company founded in 2003 mainly for this purpose.

“http://www.cgal.org
TTel-Aviv University http://acg.cs.tau.ac.il/people/efifogel
*INRIA Sophia Antipolis-Méditerranée http://www-sop.inria.fr/members/Monique.Teillaud/

85

cgal

Editorial board. The CGAL editorial board was created in 2001. It currently consists of thirteen
members. The main task of the editorial board is to assure the quality of CGAL. It is also responsible for
making decisions about technical matters and coordinating communication and promotion of CGAL.

All new packages must be submitted to the Editorial Board to be reviewed before they can be accepted
and integrated into the library, in a process that is very similar to the standard review process for papers
published in conference proceedings or journals. More information about the submission process is available
at http://www.cgal.org/review_process_rules.html.

Style and Techniques. CGAL is a unique library both in general and within the field of computational
geometry in particular, as it consists of a large number of components with a homogeneous API (Application
Programming Interface). Careful choices in design and programming style have made CGAL the de facto
standard in the field of applied computational geometry. Its development started whilst the standardization
process of C++ and the STL (Standard Template Library) was taking place. Indeed, the programming
style is very close to the programming style of STL; it rigorously adheres to the generic programming
paradigm—a discipline that consists of the gradual lifting of concrete algorithms abstracting over details,
while retaining the algorithm semantics and efficiency. The programming style of CGAL also facilitates
the process of interfacing with third party software.

Each package comes with header files consisting not only of the interface, but also the generic imple-
mentation of the package code, comprehensive and didactic on-line documentation, a set of non-interactive
standalone example programs, and an optional interactive demo with a graphical user interface.

Robustness. CGAL follows the exact geometric-computation paradigm, which simply amounts to en-
suring that errors in predicate evaluations do not occur; it guarantees robustness of the applied algorithms.

We additionally remark that every package also includes a collection of function and regression test. !
The tests provided by each package are combined into one place to form the CGAL test suite. This test
suite is run daily and its results are automatically assembled, analyzed, and reported.

Impact. Measuring the impact of software is a difficult task, especially in the Open Source software
community. Even if some hard numbers can be found, they can be difficult to interpret. The following
facts may shed some light on the impact of CGAL:

e There are roughly 1000 downloads per month from http://gforge.inria.fr/

e CGAL is included in various software distribution channels, such as Fedora, Debian/Ubuntu, and
Macports.

e The range of uses of CGAL is very broad, as shown by the sample list of projects using CGAL,
which is available at http://www.cgal.org/projects.html. In addition, many projects shown in
http://acg.cs.tau.ac.il/projects use CGAL or even describe the development of a CGAL
component.

e The CGAL triangulation packages were integrated in Matlab 2009a.2

e Springer has published a book entitled “CGAL Arrangements and Their Applications” authored by
some of the developers of the 2D Arrangements package and its derivatives.

e Concerning the public mailing lists, there are currently

"However these are not distributed as part of the public releases.
2Watch the video at http://www.mathworks.com/products/demos/shipping/matlab/
New-MATLAB-Mathematics-Features-in-R2009a.html

86

Fogel, Teillaud

— 4000 subscribers to the announcement list cgal-announce@lists-sop.inria.fr

— 1500 to the public discussion list cgal-discuss@lists-sop.inria.fr, with high traffic: users
are free to ask questions, which are often rapidly answered by the developers or other users.

Acknowledgments
We thank Ross Hemsley for helping us distilling the text.

References

[CT96] Bernard Chazelle et al. Application challenges to computational geometry: CG impact task force
report. Technical Report TR-521-96, Princeton Univ., April 1996.

[C199] Bernard Chazelle et al. Application challenges to computational geometry: CG impact task force
report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Com-
putational Geometry, volume 223 of Contemporary Mathematics, pages 407-463. American Math-
ematical Society, Providence, 1999.

87

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

ISSAC 2013 Poster Abstracts

Communicated by Alin Bostan

Revisiting QRGCD and Comparison with ExQRGCD*

Kosaku Nagasaka'and Takaaki Masuit
fKobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501 JAPAN
{Kobe-Takatsuka High School, 9-1 Mikatadai, Nishi-ku, Kobe 651-2277 JAPAN
f nagasaka@main.h.kobe-u.ac. jp, 'masui .takaaki@gmail.com

1 Introduction

In this poster, we are interested in computing “approximate polynomial GCD”: for the input polynomials
f(z), g(x) € R[z], we call the polynomial d(z) € R[z] “approximate polynomial GCD” of tolerance ¢ € R>g
if it satisfies

f@) + Ap(z) = fi(z)d(z), g(x) + Ay(z) = g1(z)d(x)

for some polynomials Ay (x), Ag(x), fi(x),g1(x) € Rz] such that deg(Ay) < deg(f), deg(Ay) < deg(g),
|Afllo< e || fll2 and [|Ag|l2< € ||g|l2 where [|-]|2 denotes the 2-norm. Although there are many studies,
we revisit the QRGCD algorithm[2] which is one of algorithms based on matrix decompositions and is also
implemented as a part of the SNAP package of Maple. It is notable that the QRGCD algorithm is very
simple and has been used as the benchmark algorithm for newly proposed algorithms. The framework of
the QRGCD algorithm is as follows. For details, please refer the original paper|[2].

1. Compute the QR decomposition of Syl(f,g): Syl(f,g) = QR.

2. Find the gap between the k-th and (k4 1)-th row vectors 7, #;4+1 of R and form the polynomial with
coefficients 7, which is an approximate polynomial GCD (or its factor).

3. Apply the same procedures to the reversal polynomials of cofactors since R may not have the ap-
proximate common divisor whose roots are outside the unit circle in the complex plane.

However, since QRGCD was proposed in the early stage of approximate GCD, its theoretical background is
not enough analyzed from the current theoretical point of view and the official implementation is different
from the paper. For example, Bini and Boito[1] reported that QRGCD failed to recognize the correct
degree of GCD for polynomials with small leading coefficients. This result is caused by the preconditioning
routine in the official implementation hence QRGCD works well for such polynomials. Therefore, our aim
consists of two parts: 1) verifying the efficiency of QRGCD with much theoretical considerations, and 2)
improving the framework and algorithm to be more accurate and able to satisfy the given tolerance.

2 Notable Facts on QRGCD and its Implementation in SNAP

Recently, the concept of “structured perturbation” is important in the theory of approximate GCD. How-
ever, at the time of QRGCD proposed, this concept is not widely discussed hence there are unclear state-
ments in the original paper from this point of view. Analyzing their theory from this concept could be
interesting. For example, any relationship between the QR factoring and structured perturbation, the
reason that the QR factoring can not detect the roots outside the unit circle and so on.

*This work was supported in part by JSPS KAKENHI Grant Number 22700011.
88

ISSAC poster abstracts

Moreover, we found the 4 significant differences between the original algorithm and the SNAP imple-
mentation. According to our personal conversations, some of them are implemented by the original authors
and others may be by H. Kai, the person implemented it in the SNAP package. The differences are 1) the
preconditioning routine “find non-zero terms”, 2) the matrix norm used, 3) the polynomials to be applied
to the algorithm “Split”, and 4) the fail-safe retry loop. The first one may be the cause that many people
think QRGCD is weak for polynomials with small leading coefficients. Without this, QRGCD works well
for such polynomials. Other differences seem to be some techniques to make QRGCD working well.

3 Improved QRGCD Algorithm (ExQRGCD)

We refine the framework of QRGCD from the different approach with recent theoretical results of ap-
proximate polynomial GCD and propose the improved algorithm called “ExQRGCD”. The most notable
difference is that our algorithm detects a row vector of R by estimating relative distance from the expected
approximate GCD while QRGCD detects by estimating absolute distance. As a result, ExQRGCD works
more accurately. For example, it works for the following polynomials (QRGCD does not work well for this
kind of polynomials unfortunately). For ¢ = 1,...,10, we have generated 100 pairs of (f,g) such that

21 21 21

2
fl@) =d@) [J(x = wpy) [[(@ = @rs), 9(z) = d(@) [[(& = wg) [[(= — @)
j=1

j=1 j=1 7=1

where d(z) = H;’;l(ac —Wd,j) H?Ll(x — Q4;), w.j = O0(107%),&. ; = O(10%) is randomly chosen, f(z),g(z)
are normalized (i.e. || f(x)|2=|/g(x)|]2= 1) and rounded with Digits := 10. We computed with tolerance
107°. Figure 1 shows the result that ExQRGCD is explicitly better than QRGCD though as for computing
time, ExQRGCD is 39.8 times slower than QRGCD (note that QRGCD outputs failure for 62% pairs so
computing time is very fast for the rest easy cases). The average of resulting perturbations of ExQRGCD
is also better. For other random generated examples, ExQRGCD is almost 2 times slower than QRGCD
since ExQRGCD is more conservative than QRGCD for detecting approximate GCD hence it computes
QR decompositions several times (this is more than that of QRGCD in general).

Y—axis: Sum of Detected Degrees Y—axis: Log,o(Resulting Perturbations)

~50 RIS — Number of fail events or wrong A, (QRGCD)
i=1]2[3[4[5[6[7[8]9[10] Ay [A,

10000

ExQRGCD

8000

6000 =55 29 [63[68|71|64|60|66|66]69|68| 110 | 119
-6.0 Number of fail events or wrong A, (ExQRGCD)

00 65 =1]2[3[4[5[6[7[8[9][10] A; | A,

2000 : 0/0jojof0[0]0]0][0]0] O 0
-7.0

12345678910

Figure 1: Sum of Detected Degrees and Resulting Perturbations (failure is not counted)

We note that our preliminary implementations on Maple and written in C, and generated polynomial
data are available: “http://wwwmain.h.kobe-u.ac.jp/~nagasaka/research/snap/issac2013/”.
References

[1] D. A. Bini and P. Boito. A fast algorithm for approximate polynomial GCD based on structured
matrix computations. In Numerical methods for structured matrices and applications, volume 199 of
Oper. Theory Adv. Appl., pages 155-173. Birkhauser Verlag, Basel, 2010.

[2] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring to compute the GCD of univariate approximate
polynomials. IEEE Trans. Signal Process., 52(12):3394-3402, 2004.

89

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Schiitzenberger’s factorization on g—stuffle Hopf algebra

C. Bui’, G. H. E. Duchamp?, Hoang Ngoc Minh®*
"Hué University - College of sciences, 77 - Nguyen Hue street - Hué city, Viét Nam
fInstitut Galilée, LIPN - UMR 7030, CNRS - Université Paris 13, F-93430 Villetaneuse, France,
OUniversité Lille II, 1, Place Déliot, 59024 Lille, France

Schiitzenberger’s monoidal factorization [9] has been introduced and plays a central role in the renormalization [7]
of associators which are formal power series in non commutative variables!. The coefficients of these power series are
polynomial at positive integral multi-indices of Riemann’s zéta function? [5, 10] and they satisfy quadratic relations
[1] which can be explained through Lyndon words. These relations can be obtained by identification of the local
coordinates on a bridge equation connecting the Cauchy and Hadamard algebras of polylogarithmic functions and
use the factorizations of the non commutative generating series of polylogarithms [6] and of harmonic sums [7]. This
equation is mainly a consequence of the double isomorphy between these structures to respectively the shuffle [6] and
stuffle [3] algebras both admitting the Lyndon words as a transcendence basis.

Symbolic computation allows us to introduce a formal variable ¢ in order to better understand the mechanisms of
the shuffle and to obtain algorithms on stuffles. We will then examine the g-stuffle interpolating between the shuffle
[9], stuffle [8] and minus-stuffle [3]. In particular, we will give an effective construction of pair of bases in duality. It
uses essentially an adapted version of the Eulerian projector in order to obtain the primitive elements of the ¢-stuffle
Hopf algebra and they are obtained thanks to the computation of the logarithm of the diagonal series. This study
completes the treatment for the stuffle [7] and boils down to the shuffle [9].

More precisely, let Y = {ys}s>1 be an alphabet with the total order y; > yo > ---. Let also k be a unitary
Q-algebra containing g. One defines the ¢-stuffle, or its dual co-product, as follows, for any ys,y; € Y and u,v € Y*,

(A qlY* =1y« 1= quU =u and YsU B qYtU = ys(u L qytv) + Yt (ysu L= qv) + qys+t(u Lt q”)v (1)
Aw, (ly-)=1ys @1y. and Aw, () = @ ly- +1y- @Us+q Y Ys, @ Ysy- (2)
s1+82=s

This product is commutative, associative and unital. With the co-unit defined by, e(P) = (P | 1y}, for P € k(Y), one
gets Hu, = (k(Y), conc, 1y~ Ay, €) and Hiy = (k(Y), w4, 1y+, Aconc, €) Which are mutually dual bialgebras
and, in fact, Hopf algebras because they are N-graded by the weight.

Group-like elements, redefined below, form a group for which the log-exp correspondence is explained by as follows

Lemma 1 (¢-extended Friedrichs criterium) Let S € k(Y)) (for 2., we suppose in addition that (S | 1y+) =1).
1. S is primitive, i.e. Ay, S =S® ly- 4+ 1y- ® S, if and only if, for any u,v € Y, (S| uw qv) = 0.
2. S is group-like, i.e. A S =S®S, if and only if, for any u,v € YT, (S| uw qv) = (S| u)(S | v).
3. S is group-like if and only if log S is primitive.

Proposition 1 Let Dy =), .y.w ®w be the diagonal series over Y. Then

-1 k—1
1. logDy = Z w @ (W), wherem(w):erZ% Z (W ug g s Uy . U
weyY+ k>2 ULy U €Y T

. 1
2. For any w € Y™, we havewzzﬁ Z (] ug e g. .. wgug)m(ur) .. .om(ug).
k>0 UL, U €Y T

1 These associators were introduced in quantum field theory by Drinfel’d and the universal associator, i.e. ®f », was obtained with
explicit coeflicients which are polyzétas and regularized polyzétas [5].
2These values are usually abbreviated MZV’s by Zagier [10] and are also called polyzétas by Cartier [1].

90

ISSAC poster abstracts

Let P ={P € QY) | Aw,P = P®1+1® P} be the set of primitive polynomials. Since, in virtue of
A, m(w) =m(w) ®1+1®m(w), Im(7;) € P, we can state the following

Theorem 1 ([2]) 1. Let {IL;}icoyny be defined by, for any yr € Y1, = mi(yx) and for any I € LynX of
standard factorization | = (s,r),II; = [, I1,.]. Then {IL;}iccyny forms a basis of P.

2. Let {Ily}wey+ be defined by, for any w € Y* such that w = %! ...lz"',ll > 0> gyl € LynY,
I, =10} ... IG*. Then {Ily }wey~ forms a basis of k(Y').

3. Let {X, bwey+ be the family of the quasi-shuffle algebra obtained by duality with {1, }wey+. Then {E, twey=
generates freely the quasi-shuffle algebra.

4. The family {E;}iecyny forms a transcendence basis of (k(Y), = 4).
We now give formulas which permit to compute the basis {¥,, } ey~ without inverting a huge Gram matrix.

Theorem 2 (¢g-extended Schiitzenberger’s factorization, [2]) 1. ForanyyeY, X, =y.

i—1

q
2. For any ys, ...ys, € LynX, By, 4., = Z Tys/ﬁ...JrS;Ell...ln,
{sh, s} C st s bl > 2In €LynY :
<y51---ysk>2‘:<ysll,---.ysln,ll.---,zn)
ttjqil) " L gik

. . . g Haiy,

3. For anyw =1 .. 1%, with 1y, ...l € LynY and 1y > ... > I, B, = —2 P L
102t
Y
4' Dy = Z Y @ IL, = H eXp(El ®Hl)
weyY* leLynY

Theorems 1.1 and 2.2 are based mainly on respectively the logarithm of the diagonal series Dy and the standard
sequences [9, 2] and lead to simplified algorithms getting bases in duality as shown in the following

Example 1
— q,2
My, = vy2 - 397,
Myoyq = Y291 — Y1Y2, 5 5
— q 3 2 q 4 q 2 q9,2,2 q 2 2
Hysyqvs = Y3¥Y1Y2 — 3¥Y3Y7] — 9¥2¥1Y2 + T y2¥1 — ¥Y1Y3y2 + 9V1¥Y3YT T JYTYS — "3 ¥TY291 — Y2¥3Y1
2,22 a,2 _a,3 2 4
+ 2Y3Y1 T Y2¥1¥3 + 5Y1Y3Y 3Y1Y3 + T Yiv2,
2 2,2 2
Mysyiyoyr = Y3V1V2¥1 — ¥Y3¥iv2 — 4Y2Uiv2v1 — REEF +y1v3y1v2 +(%yly2y1 — dyTvavive — vavivzv1
+ Zvovivoui +vaviva +vivavsvi — $vi1v3vi — viveviva + dvivaviva.
Syy = v2, .
Syoyq = Y2y1 + 53, R
2, g g
Syzyoyr = Y3viv2 +v3vav1 +av3 + Svave + Hve + dusvr,) Y R R 5
3
Syzyiyeyr = 2y3v29? + auzv3 + vzvivavy + %y%m + dvzviva + Gvzva + dvavovs + Yvavs + ays vy + ysva + GHvev1 + Hvr.

In conclusion, since the pioneering works of Schiitzenberger and Reutenauer [9], the question of computing bases
in duality (maybe at the cost of a more involved procedure, but without inverting a Gram matrix) remained open
in the case of cocommutative deformations of the shuffle product. We have given such a procedure allowing a
great simplification for an interpolation between shuffle and stuffle. In the next framework, this product will be
continuously deformed, in the most general way while remaining commutative [4].

References

[1] P. Cartier.— Fonctions polylogarithmes, nombres polyzétas et groupes pre tents, Sém BOURBAKI, 53°M€ 2000-2001, n°885.

[2] C. Bui, G. H. E. Duchamp, V. Hoang Ngoc Minh.— Schiitzenberger’s factorization on the (completed) Hopf algebra of q—stuffle product. arXiv:1305.4450

[3] C. Costermans and Hoang Ngoc Minh.— N algebra,

harmonic sums and applications in discrete probability, J. of Sym. Comp. (2009), pp. 801-817.
[4] J-Y. Enjalbert, Hoang Ngoc Minh.— Combinatorial study of Hurwitz colored polyzétas, Discrete Mathematics, 1. 24 no. 312 (2012), p. 3489-3497.

[5] T.Q.T.Lé and J. Murakami.— Kontsevich’s integral for Kauffman polynomial, Nagoya Math., pp 39-65, 1996.

[6] Hoang Ngoc Minh, M. Petitot and J. Van der Hoeven.— Computation of the monodromy of generalized polylogarithms, ISSAC’98, Rostock, Allemagne, Aug. 1998.

[7] Hoang Ngoc Minh.— On a conjecture by Pierre Cartier about a group of associators, to appear (2013).

[8] M. Hoffman.— Quasi-shuffle products, J. of Alg. Cominatorics, 11 (2000), pages 49-68.

[9] C. Reutenauer.— Free Lic Algebras, Lon. Math. Soc. Mono, New Series-7, Oxford Sc. Pub., 1993.

[10] D. Zagier.— Values of zeta functions and their applications, in “First Buropean Congress of Mathematics”, vol. 2, Birkhiuser (1994), pp. 497-512.

91

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Fast parallel GCD algorithm of many integers

Sidi M. SEDJELMACI
LIPN, CNRS UMR 7030
University of Paris-Nord
Av. J.-B. Clément, 93430 Villetaneuse, France
sms@lipn.univ-parisl3.fr

Abstract: We present a new parallel algorithm which computes the GCD of n integers of O(n) bits in
O(n/logn) time with O(n?*€) processors, for any € > 0 on CRCW PRAM model.

The computation of the GCD of two integers is not known to be in the NC parallel class, nor it is known
to be P-complete [1]. The best parallel performance was first obtained by Chor and Goldreich [2], then
by Sorenson [7] and Sedjelmaci [5] since they propose, with different approaches, parallel integer GCD
algorithms which can be achieved in O(n/logn) time with O(n!'*¢) number of processors, for any € > 0,
in PRAM CRCW model. A naive approach, using a binary tree computation to compute the GCD of
n integers of O(n) bits would require O(n) parallel time with O(n?*¢) processors. One may also use the
existing parallel GCD algorithms of two integers and try to adapt them to design a GCD for many integers.
However, it is not obvious how to find a parallel GCD for n integers which conserve the same O(n/logn)
time, with O(n?*€) processors, which is roughly the bit-size of all the n input integers. In this paper, we
prove that we can compute the GCD of n integers of O(n) bits, in only O(n/logn) parallel time with
O(n?T€) processors, for any € > 0 on CRCW PRAM model, in the worst case. Another probabilistic
approach is given in [3]. To our knowledge, it is the first deterministic algorithm which computes the GCD
of many integers with this parallel performance and polynomial work. Our algorithm, called A-GCD is
the following:

Input: A set A= {ag,a1, - ,an—1 } of n distinct positive integers, a; < 2", with n > 4.
Output: ged(ag, a1, ,an-1).

a:=ag; I:=0; p:=n;
While (a > 1) Do
For (i =0) to (n — 1) ParDo
If(0<a; <2"/p) Then { a:=a;; I :=1i;}
Endfor
If (o > 27 /n) Then /* Compute in parallel I, J and o */
a:=min{|a;—a;j| >0} =ar—ay ; ar:=a;
Endif
For (i = 0) to (n — 1) ParDo /* Reduce all the a;’s */
If (i # I) Then a; := a; mod « ;
Endfor /*Vi, 0<a;<a*/
If (Vi#1,a;,=0) Then Return « ; /* Here a = ged(ag, -+ ,an—1) */
p:=np;
Endwhile

Return «.

92

ISSAC poster abstracts

We use a weak version of the function min based the pigeonhole principle, where only the O(logn) leading
bits of the integers are considered. The integer « is, at each while iteration, O(logn) bits less. More details
for the computations of I, J and « are given in [6], as well as a first C program checking the correctness of
the A-GCD algorithm.

Theorem : The A — GCD algorithm computes in parallel the GCD of n integers of O(n) bits in length,
in O(n/logn) time using O(n?*¢) processors on CRCW PRAM model, with € > 0.

Proof: (Sketch, see [6]). The algorithm terminates after O(n/logn) loop iterations. Let ¢; be the time
cost at iteration i, 1 < i < N, with N = O(n/logn). Let k; be the maximum bit length of all the quotients
¢; = laj/a], with le\il k; < n. We prove that t; = O(min { kgin ,logn}). The total number of proces-

lo

sors is n x O(n'*€) = O(n?*"¢) and the parallel time is then t(n) = Zfil t; = Ef\il min ({ lokﬁ , logn}) =
k; —
Zk¢<logn I+ Zlogn<ki<log2 n logn + Zki>log2 n log n= O(Tl/ log n) o

A Blankinship-like algorithm can be easily designed to compute Extended GCD, and an upper bound of
the multipliers [4] could be considered as well. A slightly modified Rosser’s algorithm (pivoting with «)
can be used to solve linear Diophantine equations. Moreover, a O(n?/logn) sequential version of A-GCD
should be considered with precomputed lookup tables for arithmetic operations on O(logn) bit integers.

References

[1] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations, Infor-
mation and Control, 52, 3, 1982, 241-256

[2] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica, 5, 1990,
1-10

[3] G. Cooperman, S. Feisel, J. von zur Gathen and G. Havas, GCD of many integers, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin, 1627 (1999), 310-317

[4] G. Havas, S. Majewski, Extended ged calculation, Congressus Numerantium, 111, 1627 (1998), 104-
114

[6] S.M. Sedjelmaci, On A Parallel Lehmer-Euclid GCD Algorithm, in Proc. of the International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’2001), 2001, 303-308

[6] S.M. Sedjelmaci, Fast Parallel GCD algorithm of many integers, lipn.univ-parisl3.fr/~sedjelmaci,
Rapport interne, LIPN, April, 2013

[7] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

93

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Gelfand-Kirillov dimensions of differential difference modules via
Grobner bases

Xiangui Zhao
Department of Mathematics, University of Manitoba
Winnipeg, Canada, R3T 2N2
umzha4930@cc.umanitoba.ca

Introduction. Differential-difference algebras were defined by Mansfield and Szanto in [5], which arose
from the calculation of symmetries of discrete systems (c.f., [2]). Mansfield and Szanto developed the
Grobner basis theory of differential difference algebras over a field by using a special kind of left admissible
orderings (which they called differential difference orderings). We generalize the main results of [5] to any
left admissible ordering, and apply the generalized results to compute the Gelfand-Kirillov dimensions of
cyclic differential difference modules.

Definition of differential difference algebras. Let k be a field, R be a k-algebra and integers m,n > 1.
Suppose that R[D;id,d] = R[Ds;id, 1] - [Dy;id, 6,] and R[S;0,0] = R[S1;01,0] - [Sm; om,0] are two
Ore algebras ([5]) such that o; 0d; = 6;00; for 1 <i < m,1 < j < n. Furthermore, suppose that each
o;: R— R, 1 <i<m, can be extended to a k-algebra automorphism o; : R[D;id,d] — R[D;id,] such

that o;(D;) = ZaiﬂDl, a;ji € R. Let F' be the free R-R bi-module with basis {S1,...,Sn, D1,..., Dy},

T be the tensér 1algebra on F over R, and K be the two-sided ideal in T generated by the set of the
following elements of T

(1) Dir —rD; — 6;(r),1 <i<n,reR; (2) Sir—oi(r)S;,1 <i<m,r €R;

(3) SiSj—SjSi,l SZ,] Sm; (4) DiDj—DjDi,l SZ,] STL;

(5) DiSj — Sj()’j(Di)7 1<i<n,1 <5< m.

Then the R-algebra T/K, denoted by R[D;id,d][S;,0], is called a differential difference algebra of type
(m,n), or DD-algebras for short.

DD-algebras are generalizations of commutative polynomial algebras, Ore extensions, skew polynomials
of derivation (or automorphism) type, and quantum planes. Since elements in S do not commute with those
in D in general, DD-algebras are different from difference-differential rings (see, e.g., [6]). The following
example distinguishes DD-algebras from algebras of solvable type [3], or PBW extensions [1], or G-algebras
[4].

Example. Let A = k[D;id, 0][S; o, 0] be a DD-algebra of type (1,2) with o1(D1) = Dy and o1(D2) = Ds.
Then D151 = S1D2 and DyS; = S1D;. Hence A is not an algebra of solvable type (or a PBW extension,
or a G-algebra).

Grobner bases of DD-algebras. We only consider the special case when R = k. From now on,
let A = k[D;id, d][S;0,0] be a DD-algebra. Then, it is easy to see that 6 = 0 and o] = id. Thus
A = k[D;id,0][S;0,0] and o] = id. One can prove that the set M = {S*D? : a € N8 € N"} is a
k-basis of A. Let u = S°D° € M, a = (ay,...,ay,) € N™ and B = (B1,...,3,) € N*. Then the (total)
degree of u is defined as deg(u) = a1 + -+ + m + B1 + -+ + Bn, and the degree of u with respect to .S;
(Dj, respectively) is defined as degg, = ; (deg p; = Bjs respectively).

94

ISSAC poster abstracts

For any given well ordering on M and f =cjug + -+ cqu € A (0 £ ¢; € k, u; € M, 1 <i <) with
ug > -+ > uy, the leading monomial of f is denoted by Im(f) = uy. A DD-monomial ordering on M is a
well ordering > on M such that if S*D? > §¢ D and f € A\ k, then lm(fS*D?) > Im(fS* D?"). Note
that DD-monomial orderings are more general than differential difference orderings defined in [5].

Let f,g € A. If there exists h € A such that f = hg, we say that f is right divisible by g.

Let > be a DD-monomial ordering on M and I be a left ideal of A. A finite set G C A is called a
(finite) left Grobner basis of I with respect to > if G satisfies: (i) G generates I as a left ideal of A; and
(ii) For any 0 # f € I, there exists g € G such that lm(f) is right divisible by Im(g).

Similarly as in [5], we can define reductions and S-polynomials. Then the reduction algorithm and the
left Grobner basis algorithm still work under a DD-monomial ordering. We have

Theorem 1 Let G C A be a finite set and I be the left ideal of A generated by G. Then G is a left Grobner
basis of I if and only if Spoly(g1,92) —¢ 0 for any g1,92 € G.

It can be proved that the Hilbert basis theorem is valid for DD-algebras: every left ideal of A is finitely
generated. Thus we have

Theorem 2 Every left ideal of a DD-algebra k[D;id, 8][S;0,0] has a (finite) left Grobner basis.

Gelfand-Kirillov dimension of cyclic A-modules. For convenience, let x; = S;,&my; = Dj for
1<i<m1<j<nandlet!=m+n. Denote X* = {252 -2 for a = (av1,...,;) € N'. Then
M={X*:a N} Foru=X*c Mandp e N, define top,(u) = {i : 1 < i < l,a; > p} and
shy(u) = X?, where 8; = min{p, ;},1 <i <.

Then we have the following theorem which computes the Gelfand-Kirillov dimension of a cyclic DD-
module.

Theorem 3 Let I be a left ideal of A and G be a left Grébner basis of I with respect to a total degree
DD-monomial ordering. Set p = max{deg, (Im(g)):g € G,1 <i <I}. Then

GKdim(M) = max{| top,(u)| : shy(u) = u}.

References

[1] A.D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt
extensions. Pacific J. Math, 131(1):13-37, 1988.

[2] P. E. Hydon. Symmetries and first integrals of ordinary difference equations. Proceedings of the Royal
Society of London (series A), 456:2835-2855, 2000.

[3] A. Kandri-Rody and V. Weispfenning. Non-commutative Grébner bases in algebras of solvable type.
Journal of Symbolic Computation, 9(1):1-26, 1990.

[4] V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Grébner bases, appli-
cations and implementation. PhD thesis, University of Kaiserslautern, 2005.

[5] E. L. Mansfield and A. Szanto. Elimination theory for differential difference polynomials. In Proceedings
of the 2003 international symposium on symbolic and algebraic computation, pages 191-198. ACM, 2003.

[6] Meng Zhou and Franz Winkler. Grobner bases in difference-differential modules. In Proceedings of the
2006 international symposium on Symbolic and algebraic computation, pages 353-360. ACM, 2006.

95

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Newton-like Iteration for Determinantal Systems
and Structured Low Rank Approximation

Eric Schost and Pierre-Jean Spaenlehauer
Western University, Department of Computer Science
London, Ontario, Canada
eschost@uwo.ca, pierre—jean.spaenlehauer@mé4x.org

Problem statement. Let M, ,(R) be the space of p X ¢ matrices with real entries, 7 € N be an
integer, V. C M, 4(R) be the determinantal variety of matrices of rank at most r and E be a linear (or
affine) subspace of M, ,(R) (e.g. Toeplitz, Hankel, Sylvester matrices). Given a matrix M € E, the
goal is to compute a close matrix in £ N V,.. More precisely, we want a numerical algorithm computing a
function ¢ : F — FE such that, if M is close enough to £ N V,., then the sequence defined by My = M,
M;+1 = p(M;) converges quadratically towards a matrix My, € ENV,.. Asshown in [5], this problem which
is also known as Structured Low-Rank Approximation (SLRA) is central in data fitting or in numerical
analysis. It is also underlying classical symbolic-numeric problems.

Main results. We propose a Newton-like algorithm (NewtonSLRA) which answers the above specifi-
cation and appears to converge quadratically. The main principle of this algorithm is close to Cadzow’s
algorithm [1] which proceeds by a sequence of Singular Value Decompositions (SVD) and orthogonal pro-
jections on E. However, we choose a direction of projection which is tangent to the determinantal variety
in order to ensure quadratic convergence. Each iteration of the algorithm NewtonSLRA computes a function
©(M) in three main steps: (1) compute a rank r approximation M of M; (2) from the left and right
kernels of M. , compute a set of generators of the tangent space T7;Vi; (3) compute the point in EN Ty Ve

which minimizes the distance to M (this is achieved by solving a linear least squares problem). Com-
puting the best rank r approximation with respect to the Frobenius norm is achieved by the SVD. It
also provides an orthonormal basis (for the scalar product (M, Ms) = tr(My - T My)) of the normal space
NyVe = KerL(M)® KerR(M) which is used for computing the projection on E. The most expensive step
is the SVD which is achieved in O(pgmin(p, q)) operations in fixed precision. The main theoretical result
lies in the following theorem which ensures the local quadratic convergence towards a matrix My, € V,NE
near the optimal solution, under conditions on the dimensions of dim(F) and dim(V;). To the best of our
knowledge, this is the first proof of quadratic convergence of an iterative method for the SLRA problem:

Theorem 1. If dim(E) = dim(V;) and dim(E)+dim(V;) > pq, then the algorithm NewtonSLRA computes a
function ¢ : E — E verifying the following property: for all p > 1 and for all M € V,NE such that V, and
E verify mild transversality conditions at M, there exists € > 0 such that for all My with | Moy — M|| <€,
the sequence M;11 = p(M;) converges towards a matriz Mo € V., N E and

1 2'—1 ~
||Mi—MOO||§<2) |Mo — M| and [|Mo — M| < gl Mo — .

The proof relies on tools from Smale’s a-theory, slightly modified to take into account the properties
of this Newton-like iteration.

Application to univariate approximate GCD. Approximate GCD computation is a symbolic-
numeric example of SLRA problem: a degree condition on the GCD of univariate polynomials amounts to

96

ISSAC poster abstracts

a rank condition on their Sylvester matrix. In this setting, the algorithm takes as input two floating-point
polynomials f, g of degrees m and n, and an integer d € N; it outputs three floating-point polynomials
a, b, h of respective degrees m — d, n — d, d such that ||f — ah|?> + ||g — bh||?> is small. Here, E is
the linear space of truncated Sylvester matrices (see e.g. [6]) and V, is the variety of rank deficient
matrices of sizes (m+n—d+1) x (m+n —2d+2). We compare in Table 1 our Maple implementation of
NewtonSLRA with the Maple implementation of GPGCD [6], which is a state-of-the art algorithm dedicated to
the computation of approximate GCDs. Instances are constructed by generating two random polynomials
f, g such that deg(GCD(f,q)) = d and by adding a random error polynomial f, g such that the relative

noise \/[[felZ + 19e2/\/ | 712 + 113112 is equal to a fixed parameter e. The column “perturbation” gives the
relative distance between the output and the input of the algorithms. Notice that NewtonSLRA performs
almost as well as GPGCD, which relies on optimization techniques to minimize the function || f —ahl||*+||g —
bh|?. In comparison, NewtonSLRA does not converge to the minimum of this function, but we see in Table 1
that the distance to the optimum is small. Also, experimental results indicate that NewtonSLRA converges
quadratically (although dim(F) and dim(V;) do not verify the assumptions of theorem 1), whereas GPGCD
converges linearly (see the right part of table 1 for an example). We also tried to use directly the QRGCD
routine from the package SNAP in Maple [3] but it failed to find an approximate GCD in our examples
because of the high level of noise in the coefficients of the input polynomials.

NowtonSLEA GPGCD sizes of iteration steps

(m,n,d,€) time |perturbation| time [perturbation| 1terzit10n New;;nleRA ngGC]l)

(100, 100, 50, 0.001) | 0.803s | 4.838¢-4 | 0.806s | 4.742e-4) 0'56' 5 0'59’ 5
(500, 500, 250, 0.001) | 37.5s | 5.127e-d | 45.4s | 4.923e-4 5 0 62'8 0 22'5
(1000, 1000, 500, 0.001) | 282s | 5.78le-4 | 317s | 5.15be-4 | 0117 0808
(2000, 2000, 1000, 0.0001)[1567s | 5.104e-5 | 1161s | 5.088e-5 . 0 10.36 01010

Table 1: Comparison between GPGCD [6] and NewtonSLRA for computing approximate GCDs

Other applications of SLRA in symbolic-numeric computations and future work. Several
other algebraic problems are characterized by rank conditions on structured matrices, for which these
techniques could lead to symbolic-numeric algorithms, e.g. solving bilinear systems, computing the minimal
polynomial of algebraic power series or computing low degree Pade approximants. Moreover, there is still
room for improvement: the most computationally-intensive step of this algorithm is the computation of the
SVD, but the algorithm converges quadratically even when less precise rank-approximation techniques are
used. Also, we plan to compare our method and implementation with other algorithms for SLRA (see e.g.
[2] and references therein) and for computing approximate GCDs (see e.g [4], which relies on the Structured
Total Least Norm approach). The main challenge is to extend theorem 1 by relaxing the restrictions on
dim(F) and dim(V}).

References
[1] J. A. Cadzow. Signal enhancement-a composite property mapping algorithm. Acoustics, Speech and Signal Processing,
IEEE Transactions on, 36(1):49-62, 1988.

[2] M. T. Chu, R. E. Funderlic, and R. J. Plemmons. Structured Low Rank Approximation. Linear algebra and its applications,
366:157-172, 2003.

[3] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring to compute the ged of univariate approximate polynomials. Signal
Processing, IEEE Transactions on, 52(12):3394-3402, 2004.

[4] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a Sylvester matrix. In Symbolic-numeric
computation, pages 69-83. Springer, 2007.

[5] I. Markovsky. Structured low-rank approximation and its applications. Automatica, 44(4):891-909, 2008.
[6] A. Terui. An iterative method for calculating approximate gcd of univariate polynomials. In ISSAC 2009, pp. 351-358.

97

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

A Verification Framework for MiniMaple Programs*

Muhammad Taimoor Khan and Wolfgang Schreiner
Dokotratskolleg Computational Mathematics (DK) and
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
muhammad .khan@dk-compmath. jku.at
Wolfgang.Schreiner@risc. jku.at

In this poster, we present an overview of our ongoing work and results on the development of a verifi-
cation framework for programs written in a (substantial) subset of the language of the computer algebra
system Maple, which we call MiniMaple. The main goal here is to detect behavioral errors in such programs
w.r.t. their specifications by static analysis. However, the task of the formal specification and verification
of MiniMaple programs is complex as Maple supports various non-standard types of objects such as un-
evaluated expressions and also requires abstract data types to formalize computer algebra concepts and
notions. To approach our goal, we have defined and formalized the syntax, semantics, type system and
specification language for MiniMaple. For the verification, we translate an annotated MiniMaple program
into the language Why3ML of the intermediate verification tool Why3 [1] developed at LRI, France. We
generate verifi! cation conditions by the corresponding component of Why3 and then prove the correct-
ness of these conditions by various automatic and interactive theorem provers supported by the Why3
back-end. The main test for our verification framework is the Maple package DifferenceDifferential [2]
developed at our institute to compute bivariate difference-differential polynomials using relative Grébner
bases. All software (lexer, parser, type checker and translator) is open source and freely available from
http://www.risc. jku.at/people/mtkhan/dk10/.

As a general overview of our verification framework, first any MiniMaple program is parsed to generate
an abstract syntax tree (AST). Then the AST is type checked and annotated by type information and
translated into a (presumably) semantically equivalent Why3ML program. From this program, Why3
generates verification conditions to be proved correct by its various back-end supported provers. All
components of the framework may generate errors and information messages.

The syntax of MiniMaple [3] covers all the syntactic domains of Maple but supports fewer alternatives in
each domain than Maple; in particular, Maple has many built-in expressions which are not supported in our
language. We use the type annotations which Maple introduced for runtime checking for the purpose of the
static type checking of MiniMaple programs; indeed we have defined a formal type system for MiniMaple
as a decidable logic with various typing judgments. The type system requires that procedure parameters,
procedure results and local variables are type annotated. However, global variables in Maple cannot be type
annotated, such that values of arbitrary types can be assigned to them. To handle the correct semantics of
such variables inside and outside of the body of procedures, we introduced global and local contexts. In the
former, variables can be introduced by assignments and their types can change arbitrarily, while i! n the
latter, variables can only be introduced by declarations and their types can only be specialized [3]. Another
issue is the handling of dynamic type tests by the MiniMaple expression type(E,T). The use of a type
test in a conditional may result in different type information for the same variable in different branches of
the conditional; we use the type information introduced by the corresponding conditional branches to infer

*The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK10.

98

ISSAC poster abstracts

the possible type of a variable. We have applied the type checker to the package DifferenceDifferential;
no crucial errors were found but some bad code parts, e.g. duplicate declaration of variables and global
variables that are declared but not used.

Furthermore, we have defined a specification language for MiniMaple to formally describe mathe-
matical theories (types, functions, axioms), behavior of procedures (pre- and post-conditions and other
constraints), loops (invariants and termination terms) and commands (assertions). In addition to basic
formulas, our specification language supports various forms of quantifiers, i.e. logical quantifiers (forall
and exists), numerical quantifiers (add, mul, max and min) and sequential quantifiers (seq) to represent
truth values, numeric values and sequences of values respectively. The language slightly extends the Maple
syntax, e.g. logical quantifiers use typed variables and numerical quantifiers use logical conditions that
filter values from the specified range of a variable. The language supports abstract data types to specify
abstract mathematical concepts, e.g. polynomial rings. As an example, we have f! ormally specified a
substantial part of the package DifferenceDifferential, e.g. difference-differential operators are formalized
by a corresponding abstract data type.

To verify a MiniMaple program annotated with types and specifications, we translate this program
to the language Why3ML of the intermediate verification tool Why3. We use the Why3 verification
conditions generator to produce a set of verification conditions: the pre-conditions of called procedures,
the post-conditions of defined procedures, the initial establishing of loop invariants, the preservation of loop
invariants after every iteration and the decreasing of termination terms. We then prove their correctness by
automated provers (e.g. Z3 and CVC3) and proof assistants (e.g. Coq) supported by the Why3 back-end.
The wide range of proof support was one the reasons why we chose Why3, as we are, e.g., dealing with
non-linear arithmetic which requires in general an interactive prover. For verification, we have defined the
translation of MiniMaple into semantically equivalent constructs of Why3ML, e.g. the MiniMaple return
statement is translated using t! he Why3 exception-handling mechanism, union types are translated
to algebraic types and the corresponding type tests are translated using pattern matching. Using this
approach, we have already verified most of the low level procedures of the package DifferenceDifferential,
e.g. “gleicheterme” (comparing two difference-differential terms), “sigmamax” (computing a differential
term with given constraints) and “ddsub” (subtraction of differential operators).

Currently, we are in the process of verifying higher level procedures with abstract (data type based)
specifications: based on an example we experiment with appropriate proof strategies for such specifications
using our verification framework. As a next step, a proof of the soundness of translation for selected Mini-
Maple constructs is planned. One of the reason for choosing Why3 was that it provides a formal (originally
weakest precondition based, later also operational) semantics. We have correspondingly defined a formal
denotational semantics of MiniMaple programs [3], e.g. the semantics of command execution is defined
as a state relationship between pre- and post-states, i.e. the MiniMaple command semantics [[C]](e)(s, s")
states that in an environment e the execution of a command C' in a pre-state s may result in a post-state
s'. Based on these definitions, we plan to prove that our translation preserves the programs’ semantics.

References

[1] F. Bobot and et al. Why3: Shepherd Your Herd of Provers. In Boogie 2011: First International
Workshop on Intermediate Verification Languages, Wroctaw, Poland, August 2011.

[2] Christian Dénch. Bivariate Difference-Differential Dimension Polynomials and Their Computation in
Maple. Technical report, Research Institute for Symbolic Computation, University of Linz, 2009.

[3] M. T. Khan and W. Schreiner. Towards the Formal Specification and Verification of Maple Programs.
In J. Jeuring and et al., editors, Intelligent Computer Mathematics, volume 7362 of LNCS, pages
931-247. Springer, 2012.

99

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Relaxing Order Basis Computation

Pascal Giorgi and Romain Lebreton
LIRMM, CNRS-UM2 France
pascal.giorgi@lirmm.fr, romain.lebreton@lirmm.fr

The computation of an order basis (also called sigma basis in [3]) is a fundamental tool for linear algebra with
polynomial coefficients. Such a computation is one of the key ingredients to provide algorithms which reduce to
polynomial matrices multiplication. This has been the case for column reduction [3] or minimal nullspace basis [11]
of polynomial matrix over a field. In this poster, we are interested in the application of order basis to compute
minimal matrix generators of a linear matrix sequence (see [9]). In particular, we focus on the linear matrix sequence
used in the Block Wiedemann algorithm [1].

As of today, the fast order basis algorithm PM-Basis from [3] suffers from two issues. In our applications, the
bound o on its degree may be pessimistic and therefore we need to use early termination. However the recursive
aspect of PM-Basis is unhelpful to implement such an early termination. Also PM-Basis may require to know more
coefficients of F' than necessary. This can hinder the complexity when the cost of computing coefficients of the entry
is dominant. This is the case for instance for the block Wiedemann algorithm which motivates this work.

Main results In this work we propose a relaxed variant of the PM-Basis algorithm. The property of relaxed
algorithms is that they do not require more knowledge on the input than necessary while keeping a quasi-optimal
complexity in the order o.
We first propose an iterative variant Iterative-PM-Basis of PM-Basis which is more suited to the relaxed model and
also to early termination. Then we show how to relax lterative-PM-Basis via the use of a relaxed polynomial matrix
multiplication algorithm. Thus we obtain our relaxed order basis computation within the complexity of PM-Basis with
only an extra logarithmic factor in o. Finally, we show the benefit of this algorithm to gain a constant factor on
average on the block Wiedemann algorithm.
Order basis algorithms Let K be a field, F = >, Fiz’ € K[[z]]™*" a matrix of power series, o a positive
integer and (F, o) be the K[z]-module defined by the set of v € K[z]'*™ such that vF = 0 mod z°. A polynomial
matrix P is a (left) order basis of F of order o and shift § if the rows of P form a basis of (F,o) and P is §-row
reduced (see [10] for details). Without loss of generality we only consider in this poster the case n = O(m) with a
balanced shift § as in [3]. Indeed the techniques of [10] allow to reduce the general case to our particular case.

Two different algorithms presented in [3] compute an order basis P of F.. The M-Basis algorithm works iteratively
on the order o to compute the order basis P. It is a lazy algorithm that costs O(m“o?) arithmetic operations in K,

Algorithm 1: Iterative-PM-Basis
Input: F € K[[z]]"*", ¢ >0, §& N™
Output: P € K[z]™*" such that P is a §-row reduced order basis of (F, o)
1: Py, := M-Basis(Fmod z, 1, §); P:=[F); S:=[0,...,0,F] with [log,(c)] zeros
2: fork=1too—1do

3: 0= vy(k); 0 = {ﬂogg(a)] if k= 2f

vo(k — 2% otherwise

4 Update P by merging its first £ + 1 elements by multiplication //Product tree of step 4)
5: S[¢ 4 1] := MiddleProduct(P[1], S[¢’ + 1],2%) //Update of the series of step 2)
6: Py, @ := M-Basis(S[¢ + 1] mod z,1,4) //Recursive calls on leafs of steps 1) and 3)
7: Insert Py at the beginning of P

8: return [[, P[i]

100

ISSAC poster abstracts

i.e. it only requires the coefficients F; of F' for 0 < j < (i — 1) for computing the intermediate order basis of order i.
The PM-Basis algorithm uses a divide-and-conquer approach on the order o to reduce the arithmetic complexity to
O(m“M(o)log(c)) = O"(m¥c), where M denotes the arithmetic complexity of polynomial multiplication. Roughly
speaking, the algorithm is made of four steps: 1) a recursive call to compute an order basis Py of F' of order o/2,
2) an update of the problem via the middle product F’ := (z~7/2PyF) mod 2°/2, 3) a recursive call to compute
an order basis Ppign of F’ of order 0/2 and 4) return the order basis Ppigh Plow of F' of order o. Step 2) implies that
one may need at most twice as much coefficients of the input series than necessary to go from an intermediate order
basis of order i to i + 1.

Fast iterative order basis Let us give an iterative version of PM-Basis. Our algorithm performs exactly the same
operations on matrices as PM-Basis when o is a power of two. This iterative presentation of PM-Basis is original.
Let us denote v5(k) the valuation in 2 of any integer k& and index our lists from 1.

Relaxing order basis algorithm In algorithm PM-Basis, we have noticed that only the middle product of step 5
reads more entries of F' than necessary at step k. Let us perform this step differently so that it reads at most
the coefficients Fy,..., Fx_1 of F' at step k. This property is called a relaxed A
(or on-line) algorithm w.r.t. F.

A naive approach would be to compute a full 2n x n product using a re-
laxed multiplication algorithm on polynomial of matrices ([2, 5, 6, 4, 8]) in time
R(n) = O(M(n)log(n)) [2]. We propose another relaxed algorithm that gains
asymptotically a factor 2 compared to the full 2n x n relaxed product. We
decompose the relaxed middle product in a normal high product (in black) fol-
lowed by a multiplication (in white and gray) relaxed w.r.t. only b using [4] in
this example (see Figure 1).

Using this relaxed middle product algorithm within Iterative-PM-Basis we
obtain an order basis algorithm Relaxed-PM-Basis relaxed w.r.t. F. This relaxed
order basis algorithm costs O(k“R(c)log(c)) = O(k“M(c) log*(a)).
Application to block Wiedemann algorithm Let A € GLx(K) with O(N) non-zero elements. Block Wiede-
mann approach uses a minimal matrix generator of the matrix series S = >, UAWV 2! for any random U, VT €
K™*N in order to solve a linear system Az = b € KV. As described in [9], this matrix generator can be obtained
from an order basis of F =[S | I,,]T € K[[z]]?™*™. We can derive a bound on the maximal degree § of this order
basis using the stopping criteria of [7, Th. 4.19]. Since this bound may be loose, a constant factor in the complexity
can often be saved using an early termination in the order basis algorithm.

We compare the complexity of lterative-PM-Basis and Relaxed-PM-Basis in this setting. Computing S at precision
o costs O(k*~INo). In practice k < N so that the cost of computing S always dominates the cost of (relaxed) order
basis algorithm.

Assume that ¢ is uniformely distributed between 2P 4 1 and 2P*! for p € N. lIterative-PM-Basis requires the
coefficients Fy, ..., Fop+1_; whereas Relaxed-PM-Basis only asks for Fj,..., F5_;. Therefore our relaxed approach
improves the dominant cost of computing F' in block Wiedemann by a factor 2 at most and 4/3 on average.

b

y
a
Figure 1: Relaxed middle product

References
[1] D. Coppersmith. Solving Homogeneous Linear Equation Over GF(2) via Block Wiedemann Algorithm. Mathematics of
Computation, 62(205):333-350, 1994.
[2] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer multiplication. J. Comput. System Sci., 9:317-331, 1974.

[3] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix computations. In ISSAC’03, p.
135-142. ACM, 2003.

[4] J. v. d. Hoeven. Relaxed multiplication using the middle product. In ISSAC’03, p. 143-147, New York, 2003. ACM.

[5] J. v. d. Hoeven. New algorithms for relaxed multiplication. J. Symbolic Comput., 42(8):792-802, 2007.

[6] J. v.d. Hoeven. Faster relaxed multiplication. Technical report, HAL-00687479, 2012.

[7] E. Kaltofen and G. Yuhasz. On the matrix berlekamp-massey algorithm. ACM Trans. on Algorithms, 2013. To appear.

[8] R. Lebreton and E. Schost. Relaxed power series multiplication using middle and short product. In preparation.

[9] W. J. Turner. Black Box Linear Algebra with the LinBox Library. PhD thesis, North Carolina State University, 2002.
[10] W. Zhou and G. Labahn. Efficient algorithms for order basis computation. J. Symbolic Comput., 47(7):793 — 819, 2012.
[11] W. Zhou, G. Labahn, and A. Storjohann. Computing minimal nullspace bases. In ISSAC ’12, p. 366-373. ACM, 2012.

101

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Block Wiedemann algorithm on multicore architectures

Bastien Vialla
LIRMM, CNRS-UM2 France
bastien.vialla@lirmm.fr

Solving a linear system with large sparse matrices is a computational kernel used in a wide range of applications,
e.g. cryptography, Grobner basis . .. Classical methods such as Gaussian elimination are not well suited because they
tend to fill the matrix. In [7] Wiedemann proposed a blackbox algorithm which takes advantage of the sparsity to
reduce the complexity. The main operations of this approach are sparse matrix vector products and the computation
of the minimal generator of a scalar sequence. Despite a better complexity than classical methods, this algorithm
is not efficient in the context of parallel computation as it needs a good repartition of the non-zero elements in the
matrix. The block version of Wiedemann’s algorithm proposed in [2] avoids this problem by using blocks instead of
vectors. Therefore it offers parallelism outside the scope of the matrix.

Let K be a field, A € M, x,(K), U,V € M« (K) random matrices with k& < n. We denote by 7 the number of
non-zero elements in A and we assume that v = O(nlogn). Block Wiedemann algorithm follows three steps:

1. Compute the first O(22) elements of S = [UTA'V];cn using O(ny 4+ n?k“~?) operations in K.
2. Find the minimal matrix polynomial generator of the sequence S using O (k“~n) operations in K.
3. Compute the solution using the polynomial found in step 2 using O(n~y + n?) operations in K.

In practice the cost of the first step is dominant, therefore its parallelization is crucial. The capacity to parallelize
the first step heavily relies on the dimension & of the blocks.

A classical approach is to take a block size equal to the number of cores. The parallel complexity of the first step
becomes O(%Z + n?) operations in K. We notice that the O(n?) part does not benefit from parallelism. In order to
take advantage of parallelism everywhere in step 1, we must proceed otherwise.

Our approach We naturally extend the use of sparse blocks proposed by Eberly et al. in [3] to our context of
block Wiedemann algorithm. Hence, instead of using random dense block for U, we use blocks of the form

T

U= [511k te 5sIk 5s+11/] S Mnxk(K)

where s = |n/k|, 01, ,0s41 € K chosen at random, Ij the identity matrix of size k, and I’ = Diag(1,---,1) €
M« (K) the matrix with only ones on the diagonal with » = n mod k. Using these new block projections, the
sequential complexity of step 1 drops down to O(ny + n?) operations in K, eliminating the influence of the block
size. In this work we study how these new block projections perform in practice and we show that they improve the
performance of the first step of block Wiedemann algorithm.

Implementation and Benchmarks For the benchmarks, we have in mind matrices arising from NFS algorithm
[6], which are very sparse. As « is cheaper, the part of step 1 of complexity O(n?) has more importance. Therefore
the block size has more influence on the sequence computation as v is cheaper. In this case, we use a sparse matrix
of size 10° x 10° over Fg5537 with ~ 15 non-zero elements per row uniformly dispatched.

The parallel complexity of step 1 using sparse blocks with k cores becomes O(MTW), hence offering perfect
parallelism. So we want to see the influence of the block size on the computation of step 1.

First, we determine the most efficient block size depending on the number of cores. Let ¢ be the number of
cores, we benchmark the computation of the sequence starting with blocks of size ¢ to 128¢ on 12 cores. As expected
by the complexity analysis, a block size of ¢ offers better performance for dense blocks. For sparse projections the
theoretical study shows no influence of the blocks size. In practice we observe that a block size of ~ 32c is better,

102

ISSAC poster abstracts

which could be caused by memory management issues. However, this sparse block size is related to the number
of non-zero elements of the matrix, so these values stand just for our test matrix. Despite their good complexity,
sparse blocks have two flaws impacting the performance. The choice of matrix representation is important: first we
choose to store blocks in column major representation to avoid concurrent writing, as suggested in [1]. Secondly,
sparse blocks induce cache defaults as their size increase with the number of cores. To circumvent this problem, we
permute block elements to obtain a cache friendly sparse blocks following ideas from [5]. For our tests we use an
NUMA with four intel XEON E4620 with 8 cores at 2.2Ghz and 384GB of RAM. To obtain good performance on
an NUMA, we design an hybrid MPI/tbb implementation that create one MPI process by node which use tbb to
compute a part of the sequence. Each nodes own a copy of the sparse matrix and the block is split by column over
the nodes, the results are gather at the end of the computation. All the libraries used are in the latest version from
their svn directory. In table 1 we compare dense block which used LinBox’s dense blocks implementation and our
implementation using sparse blocks. For computing of dense block, LinBox relies on a BLAS library, in this case we
use OpenBLAS wich is well optimized for intel XEON. The timings are in seconds and in parenthesis we indicate
the block size used.

Dense blocks (LinBox) Sparse blocks
time in s speed-up time in s | speed-up
1 core 2205(1) 1 2165(32) 1
8 cores 540(8) 4 308(256) 7
16 cores | 623(16) 3,5 154(512) 14
24 cores | T798(24) 2,7 102(768) 21,2
32 cores | 960(32) 2,2 77(1024) 28,1

Table 1: Times of sequence computation.

The time for dense blocks on one core is just for benchmark purposes. As predicted, sparse blocks perform better
than dense blocks. However, the reasons that LinBox implementation does not perform well are that LinBox use an
external library to compute dense block which as to create and destroy is own pool of threads for each computed
element. Secondly, the LinBox implementation is not designed for a NUMA architecture as all the data is store in
the first node memory.

This is a first step in an efficient implementation of block Wiedemann algorithm on multicore architectures. The
next step will be an efficient implementation of c—basis [4].

References

[1] Brice Boyer, Jean-Guillaume Dumas, and Pascal Giorgi. Exact Sparse Matrix-Vector Multiplication on GPUs
and Multicore Architectures. Proc. PASCO’10: Parallel Symbolic Computation, 2010.

[2] Don Coppersmith. Solving Homogeneous Linear Equation Over GF(2) via Block Wiedemann Algorithm. Math-
ematics of Computation, 62(205):333-350, 1994.

[3] Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, and Gilles Villard. Faster inversion and other
black box matrix computations using efficient block projections. Proceedings of the 2007 international symposium
on Symbolic and algebraic computation - ISSAC "07, 3(1):143, 2007.

[4] Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the complexity of polynomial matrix compu-
tations. Proceedings of the 2003 international symposium on Symbolic and algebraic computation - ISSAC 03,
pages 135-142, 2003.

[5] Sardar A. Haque, Shahadat Hossain, and M. Moreno Maza. Cache friendly sparse matrix-vector multiplication.
Proceedings of the 4th International Workshop on Parallel and Symbolic Computation (PASCO’10), pages 175~
176, 2010.

[6] A. K. Lenstra and H. W. Lenstra. The development of the number field sieve. Springer-Verlag, 1993.

[7] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory,
32(1):54-62, January 1986.

103

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Recursive Sparse Interpolation

Andrew Arnold Mark Giesbrecht Dan Roche
Symbolic Computation Group United States Naval Academy, USA
University of Waterloo, Canada roche@usna.edu

{a4arnold,mwg}tQuwaterloo.ca

We consider the problem of interpolating a sparse univariate polynomial f over an arbitrary ring, given
by a straight-line program. In this problem we are given a straight-line program that computes f, as well
as bounds D and T on the degree and sparsity (i.e., the number of nonzero terms) of f respectively. We
build on ideas developed in Garg and Schost (2009) and Giesbrecht and Roche (2011) towards algorithms
for this specific problem. We present a Monte Carlo algorithm that improves on the best previously-known
algorithm for this specific problem by a factor (softly) on the order of T'/log D. Thus this new algorithm
is favourable for “moderate” values of T

Our algorithm is recursive. At a recursive step of the algorithm we have a straight-line program for
f, an approximation f* of f, and respective bounds 7" and D on the sparsity and degree of the difference
g = f— f*. We initialize f* to zero. We will construct an approximation f** to g such that, with high
probability, g — f** has at most T//2 terms. We then recurse with f* + f** as our refined approximation
for f.

The algorithms in Garg and Schost (2009) and Giesbrecht and Roche (2011), as well as the algorithm we
will present, interpolate f by using its straight-line program to evaluate f at a symbolic k-th root of unity,
for appropriate choices of k. This effectively gives the image f mod (z*¥ —1). We call such an evaluation a
probe of degree k. The cost of a degree-k probe to a length-L straight-line program is quasi-linear in kL.
We use the number of probes, multiplied by a bound on the probe degree, as a rough measure of the cost
of an interpolation algorithm.

The image f mod (zF — 1) in practise gives a large amount of useful information about the polynomial
f. Namely, a term cz¢ of f will appear as cz¢™°4¥ in the image f mod (¥ — 1), so the image should give
us f’s vector of exponents modulo k. However, there are potential obstacles. We may not be able to match
images of the same term in multiple images of f. In addition, terms can collide modulo z¥ — 1 if they have
the same degree modulo k. Collisions are problematic because it is difficult to detect if a term in an image
fmod (zF — 1) is in fact the image of a sum of colliding terms. Alternatively, colliding terms may sum to
zero modulo z* — 1, which also may be difficult to detect.

Previous Las Vegas interpolation algorithms require a “good” prime, a prime p for which the terms of
f remain distinct modulo 2P — 1. If p is a good prime, f mod (2P — 1) has the same number of terms as f.
Thus, once we have a good prime with high probability, we can detect the presence of collisions in other
images of f. In order to guarantee one can find such a prime with high probability, one chooses primes at
random on the order of T?log D as probe degrees.

In order to reduce this probe degree, we relax the condition that p separates all the terms of the
difference g. We instead look for an “ok” prime: a prime which separates most of the terms of g. This
allows instead to search over primes p of size O(T log D).

Once we have an “ok” prime, we make probes of degree pg; for a set of co-prime g;, each of size O(log D).
Our probe degree thus becomes O(T log? D). If a term of g does not collide with another term modulo
2P — 1 then it will not collide modulo (2% — 1). These probes will allow us to construct a polynomial
f** containing the non-colliding terms of g, plus potentially a small proportion of deceptive terms: terms

104

ISSAC poster abstracts

constructed from garbage information due to collisions in the images f mod (2P% — 1). Fortunately, if p is
an ok prime we can give an upper bound on the number of such deceptive terms that can appear in f**.

After we construct f** we then recursively interpolate the new difference g — f**, with a new sparsity
bound 7'/2. We continue in this fashion |log 7’| +1 times until the sparsity bound reaches 0. An advantage
of the recursive nature of the algorithm is that, when we reach a threshold where log D begins to dominate
T, we can plug in a better-suited algorithm to interpolate what remains.

References

Sanchit Garg and Eric Schost. Interpolation of polynomials given by straight-line programs. Theor.
Comput. Sci., 410(27-29):2659-2662, June 2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2009.03.030. URL
http://dx.doi.org/10.1016/j.tcs.2009.03.030.

M. Giesbrecht and D.S. Roche. Diversification improves interpolation. ISSAC ’11, pages 123-130, 2011.
doi: 10.1145/1993886.1993909. URL http://doi.acm.org/10.1145/1993886.1993909.

105

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Towards Parallel General-Size Library Generation for Polynomial
Multiplication

Lingchuan Meng and Jeremy Johnson
Department of Computer Science
Drexel University
Philadelphia, PA 19104
1m433@drexel .edu, jjohnson@drexel.edu

Fast Fourier Transforms (FFTs) are at the core of many operations in scientific computing. In computer
algebra, FFTs are used for fast polynomial and integer arithmetic and other modular methods. FFT-based
polynomial multiplication outperforms multiplication based on classical and Karatsuba-based algorithms.
Computer algebra libraries, such as modpn [3], provide hand-optimized low-level routines implementing fast
algorithms for multivariate polynomial computations over finite fields, in support of higher-level code. Such
libraries do not fully utilize the underlying hardware, and in order to take advantage of platform-dependent
optimizations, automated performance tuning that supports general input sizes should be incorporated.

Recently, we extended [2] the use of SPIRAL from fixed-size code generation to general input size library
generation to produce a modular FFT [1] library. By incorporating and extending the new library genera-
tion mechanism in SPIRAL [4], the generated library provides similar speedup as the fixed-size code, which
is an order of magnitude faster over the original implementations in modpn, and allows arbitrary input
sizes. Additional parallelism exploiting multi-core architecture leading to further speedup also has been
implemented. This addition required adding new rules and a new transform definition and parameteriza-
tion in the library generation framework in order to generate recursive function closure in the resulting
library. The backend was also extended to enable the generation of scalar and vectorized code for modular
arithmetic.

Let the n-point modular DFT matrix be ModDFT,, ,, ., = [wff] 0<kf<n’ where w, is a primitive nth
root of unity in Z,. Let n = rs, then the divide and conquer step in the Cooley-Tukey algorithm can be
represented as the parameterized matrix factorization:

ModDFT, ., = (ModDFT,,,, ®1,) T, © ModDFT,,.,.)L",

where T7 is a diagonal matrix containing twiddle factors; the stride permutation matrix L7 permutes the
input vector as is+j+— jr+1,0 <1 <7 0<j <s ;I is the s X s identity matrix; and the tensor product
is defined as A ® B = [ayB], A = [a] .

The tensor product serves as the key construct in SPIRAL and its many fast algorithms, in that it
captures loops, data independence, and parallelism concisely. For instance, Fig. 1 shows that it produces
substructures that can be interpreted as vector and parallel operations. Furthermore, the formulae can be
transformed to adapt to a given vector length and number of cores; and permutations can be manipulated
to obtain desired data access patterns. Rewriting systems and hardware tags have been developed in
SPIRAL to fully exploit two levels of parallelism: vector parallelism and thread parallelism.

We report experimental data comparing the performance of hand-optimized FFTs from the modpn
library, fixed-size FFTs and general size parallel FFT library generated by SPIRAL. Performance is reported
in Gops (giga-ops) or billions of operations per second (higher is better). As shown in Fig. 2, all SPIRAL
generated codes are faster than the hand-optimized implementation in modpn by an order of magnitude. The

106

ISSAC poster abstracts

ModDF T4 ®l4 T36 14® ModDF T 4 Li®

MOdDFTle =

Figure 1: Representation of the matrix factorization based on the Cooley-Tukey algorithm.
Shades of gray represent values that belong to the same tensor substructure

performance of general size library’s scalar and vector codes are within 81% to 91% of that of corresponding
fixed-size codes. For large sizes, the library code is up to 1.5 time faster than the fixed-size code, due to
the use of thread level parallelism.

Performance [Gop/s] Intel Core i7, 3.2Ghz
5.0

4.5

Spiral-gen parallel library

Spiral-gen fixed-size, vectorized
.pm' 9' "XO e z -\: A oIZ- deeoe

15x

4 5 6 7 8 9 10 11 12
DFT size (powers of two)

Figure 2: Performance comparison

To eventually generate an optimized parallel library for polynomial multiplication, we are developing
additional algorithms for modular FFT, including Prime-factor algorithm and Rader’s algorithm. We
have also developed a Cooley-Tukey type algorithm for the Truncated Fourier Transform and its inverse
(TFT/ITFT) for non-contiguous and non-power-of-two input/output. We have proved block symmetry
of the ITFT matrices and derived direct generation formulae that can be used during library generation.
Convolutions by definition and the Convolution Theorem have also been implemented in SPIRAL, whose
performance relies on the auto-tuned underlying transforms, such as modular DFT and TFT, and the
exploration of hybrid algorithms and automatic tuning of threshold parameters.

References

[1] L. Meng, J. Johnson. Automatic Parallel Library Generation for General-Size Modular FFT Algo-
rithms. To appear in Proc. of the CASC 2013, 2013

[2] L. Meng, J. Johnson, F. Franchetti, Y. Voronenko,M. Moreno Maza and Y. Xie. SPIRAL-Generated
Modular FFT Algorithms. In Proc. of PASCO 2010, p. 169-170, 2010.

[3] X. Li and M. Moreno Maza: Efficient implementation of polynomial arithmetic in a multiple-level
programming environment. In Proc. Intl. Congress of Mathematical Software, p. 12-23, Springer,
2006.

[4] Y. Voronenko. Library Generation for Linear Transforms. PhD. thesis, Electrical and Computer
Engineering, Carnegie Mellon University, 2008

107

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

A Parallel Algorithm to Compute the Greatest Common Divisor of
Sparse Multivariate Polynomials

Jiaxiong Hu and Michael Monagan
Department of Mathematics, Simon Fraser University
Burnaby, Canada, V5A 156
jhal107@sfu.ca and mmonagan@cecm.sfu.ca

Extended Abstract

Efficient algorithms for computing greatest common divisors (GCD) of multivariate polynomials have
been developed over the last 40 years. Many of the general purpose computer algebra systems are using
either Zippel’s GCD Algorithm [5] or the EEZ-GCD [4] Algorithm or both. Both algorithms sequentially
interpolate variables one at a time which limits parallel speedup. Since multi-core processors are now
widely available, parallel algorithms are desirable. In this poster, we present a first multivariate GCD
computation algorithm over Z which is based on the Ben-Or/Tiwari interpolation [1]. By using Ben-
Or/Tiwari interpolation, we reduce the number of points needed to interpolate the GCD and improve
parallelism.

Our algorithm considers multivariate GCD problems with at least three variables. The structure of the
algorithm is similar to Zippel’s GCD Algorithm except the way we determine the first modular image which
determines all the monomials. Once this correct form is obtained with those monomials, we use Zippel’s
sparse interpolation with this form to compute more modular images and apply Chinese remaindering to
reconstruct the true GCD over Z.

Our algorithm determines the first modular image as follows: Suppose a, b € Z[z1,...,x,] are the
input polynomials and let

!
g9 =ged(a,b) =Y eiMi(w1,xo)
i=1

where [is the number of terms of g(z1,x2) and M; is the ith monomial of g(z1,22) and ¢; € Z[zs, ..., 4]
is the ith coefficient of g(z1,x2). The algorithm projects a and b down to bivariate polynomials by
evaluating {z3,...,2,} at specific point {e§, ..., ek} which satisfies the requirement of the Ben-Or/Tiwari
interpolation. Then we compute bivariate

gL = gcd(a(xl,xg,elg, .. .,eﬁ),b(azl,xg,eg, . ,eﬁ)) € Zplx1, x2),

where p is a carefully chosen prime. We redo this for £ = 0,1,2,...,m until m is large enough. Now all
bivariate GCDs should have the same monomials but different coefficients. For each monomial M;(x1,x2)
in the g, we form an integer sequence by collecting M;’s coefficient in g (0 < k < m). Then the Ben-
Or/Tiwari algorithm is applied to this sequence to interpolate the coefficient ¢; € Zy[xs, ..., x,]. For this to
work we require m > 2t where ¢t = max}_, (# terms ¢;). Obviously all polynomial coefficients c;(x3, ..., z,)
can be recovered in parallel. Moreover, the bivariate GCDs can be computed in parallel as well. In general,
this approach is easy to parallelize.

108

ISSAC poster abstracts

Compared with Zippel’s algorithm, our algorithm uses fewer evaluation points — O(¢) instead of O((n —
2)dt) and fewer trial divisions — O(1) instead of O(n). One disadvantage of our algorithm is that we do
not know ¢. We must try ¢t = 2,4, 8,16, ... stopping when we have redundancy.

A problem with the original Ben-Or/Tiwari algorithm is the intermediate expression swell that occurs
using elg,e’g,e’j, ... = 2k 3k 5% and computing over Q. A modular version of the algorithm was first
developed by Kaltofen, Lakshman and Wiley in [3]. Their algorithm uses a small prime ¢ with a lifting
technique to determine the monomials in the ¢;. One lifts until ¢* > p‘ka where p,, denotes the n’th prime
and d > max(degc;). Instead, we adapt Giesbrecht, Labahn and Lee’s method in [2]. We construct a
smooth prime p so that we can efficiently compute discrete logarithms in Z,. The prime p is slightly larger
than]! ; d; where d; = deg,, g thus of size O(nlogd). To determine the d; accurately we compute one
univariate image of g in each variable (in parallel).

A further problem is that all underlying bivariate GCDs are monic over Z,. The leading coefficient
of the true GCD is required to scale all bivariate GCDs consistently. We use Wang’s leading coefficient
algorithm [4] to solve this problem. We compute and factor the ged h of the leading coefficients of
a,b € Z[zxs, ..., xy|[x1, z2]. This creates another sequential step in our algorithm. This is the main reason
why we reduce to bivariate GCDs instead of univariate — we likely reduce the size of h. We also likely
reduce ¢ and hence the number of bivariate GCDs needed. If a(z1,x2) and b(x;, x2) are dense (which they
often are in practice) we lose nothing by doing this.

We have implemented our algorithm in Maple. For most large problems, it outperforms Maple’s
default multivariate GCD procedure, which is a Zippel based algorithm and almost entirely coded in C.
For example, for input polynomials having 5 variables and 500 terms, our algorithm is almost 2 times
faster than Maple’s default procedure; with input polynomials having 40 variables and 4000 terms, our
algorithm is almost 20 times faster. We have not yet attempted a parallel implmentation but plan to do
so using Cilk. We expect that such an implementation will be much faster.

References

[1] M. BEN-OR, P. TIWARIL: A deterministic algorithm for sparse multivariate polynomial interpolate.
Proc. 20th annual ACM Symp Theory Comp, 1988, 301-309.

[2] M. GIESBRECHT, G. LABAHN, W-S. LEE: Symbolic-numeric sparse interpolation of multivariate
polynomials. ISSAC’06, 2006.

[3] E. KALTOFEN, Y.N. LAKSHMAN, J-M. WILEY: Modular rational sparse multivariate polynomial
interpolation. Watanabe and Nagata, 1990, 135-139.

[4] P. WANG: The EEZ-GCD Algorithm. SIGSAM Bulletin, 14, 1980, 50-60.

[5] R. E. Z1pPEL: Probabilistic algorithms for sparse polynomials. FUROSAM 79, Springer-Verlag
LNCS, 2, 1979, 216-226.

109

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Calculating Approximate GCD of Multiple Univariate Polynomials
using Approximate Syzygies

Akira Terui
Faculty of Pure and Applied Sciences, University of Tsukuba
Tsukuba, 305-8571, Japan
terui@math.tsukuba.ac. jp, http://researchmap. jp/aterui/

For given n univariate polynomials with n > 3, we present a Symbolic-Numeric method for calculating
approximate greatest common divisor (GCD) of them by calculating approximate Syzygies. This kind of
GCD calculation can be used in application such as blind image deconvolution [1]. In such a case, it is
especially effective when we try to restore the original image from several number of blurred images.

In our previous research, we have developed a method for calculating approximate GCD, called GPGCD
[4]. Furthermore, we have extended the original method for n polynomial inputs [3] based on Rupprecht’s
first algorithm [2, Sect. 4]. However, this method is inefficient for large number and/or degree of input
polynomials because, in such cases, the dimension of a generalized Sylvester matrix becomes large and
sparse. While Rupprecht’s second algorithm [2, Sect. 5] seems more efficient by using Syzygies with
another generalization of Sylvester matrix whose dimension is much smaller than those used in the first
algorithm, as for our GPGCD method, we have difficulty applying the method directly (we will explain
the reason in detail below). We present a method to overcome the difficulty.

For i = 1,...,n, let P;(x) be real univariate polynomial of degree d; < --- < d,, respectively, with
dy > 0, given as P;(x) = p((i?xdi + - (Z)a: + p(() . At first we assume that P,..., P, have a GCD. Let
H = gced(Py,...,P,) and d = deg(H) w1th d <d.

For a real univariate polynomial P(z) represented as P(z) = pp,a"™ +- - - +pox’, let Cyx(P) be a real (n+

k,k + 1) matrix (called “convolution matrix”) defined as Ci(P) = (t(pn, ey 00,0,...,0),
80, pny -5 00,0,...,0), ., 50,0, gy ,po)) and let p be the coefficient vector of P(z) defined as
P = (Pn,...,p0), and vice versa.

As a generalized Sylvester matrix, we use the second definition by Rupprecht [2, Sect. 5]. For k > dj, de-
fine the k-th Sylvester matrix of P, ..., P, as Ng(Py,...,P,) = (Ck—dl (P1) Ci_agy(P2) -+ Ci_q, (Pn)) ,
where Ck_g4,(P;) has empty element for k < d;.

If a vector v = ! (r1 Py - rn) with dim(r;) = k — d; + 1 satisfies Nyv = 0, then we see that the
polynomials Ry, ..., R, whose coefficient vectors are 1, s, ..., 7y, respectively, satisfy R P+ - -+ R, P, =
0. In such a case, we call a tuple of polynomials (R, ..., R,) a Syzygy of Py,..., P, of degree k.

In Rupprecht’s second method, we first calculate Syzygies of Pi,..., P,, then calculate cofactors of

P, ..., P, by using calculated Syzygies, as follows.

1. Calculate n — 1 “independent” (as elements in a module over polynomial ring R[z]) Syzygies which

satisfy the following condition on the degrees. For j =1,...,n—1,let R; = (Ul(]) Uz(), .. U(J)) be
a Syzygy of Pi,..., P, of degree r;. Then, we have

d:dl—i—"'—‘_dn_(rl—i_—i_?ﬂn*l) (1)

[2, Lemma 5.3]. With numerical computation on coefficients, we calculate a Syzygy by the Singular
Value Decomposition (SVD) on Sylvester matrix Ny by increasing the degree k by 1 from the initial
value dj, until we obtain n — 1 Syzygies satisfying condition (1).

110

ISSAC poster abstracts

2. For calculated Syzygies R; = (Ul(]),Uz(]),...,UT(L]))7 j=1,...,n—1, define a matrix U = (u;;) as
Ujj = U](Z), and let A; be the minor of U by deleting the i-th column (note that we must define U
satisfying that A; # 0 for all 7). Then, 4; is the cofactor of P; satisfying P; = H - A; [2, Lemma 5.2].
Thus, by calculating U and A;, we obtain desired GCD H.

In our GPGCD method, we accept polynomials Py, ..., P, that are pairwise relatively prime in general,
then find “perturbation terms” AP;, i = 1,...,n, satisfying that “perturbed polynomials” P; = P; + AP
have a nontrivial GCD H. With the original method by Rupprecht, we may encounter the following issue
in Step 1. In our GPGCD method, we set up constrained optimization problem with constraints on the
coefficients in input polynomials and their Syzygies that need coeflicients in all input polynomials at once.
On the other hand, Step 1 in the above may not involve all input polynomials from the beginning step(s),
thus it is not clear if we can calculate appropriate perturbed terms incrementally to make all the perturbed
polynomials satisfy the Syzygy relations in the final phase. Therefore, we modify the method so that we
use Syzygy relations that involve all input polynomials from the beginning step, as follows.

1. Let [be greater than or equal to d,, satisfying (1). For given polynomials Pi,..., P,, calculate
perturbed polynomials Py, ..., P, along with Syzygies R; = (Ul(J),UQ(])7 .. .,Uéj)) of degree [sat-
isfying Ul(])]-:’l + -+ U,s])lsn = 0, as follows. Let vi,...,v, be the right singular vectors of
Ni(P,...,P,) calculated with the SVD. By optimization method (in our case we use so-called
the modified Newton method; see our literature [4] for reference), we obtain]51, .. .,]Sn by per-
turbing coefficients in Py, ..., P,, and v1,...,0,, by perturbing vi,...,v,,, respectively, satisfying

Ni(Py,. .. ,f’n)f)j = 0. From vector v; = (ry) rgj) e rﬁp), we extract coefficients of a Syzygy
Ry = (WP uP,uP).

2. Using Syzygies R; calculated in the above step, select and/or calculate Syzygies of appropriate degree
satisfying (1) to make up matrix U with the following strategies.

(a) If we need to calculate Syzygies of degree k smaller than [, make appropriate linear combination
of the right singular vectors v, ..., ,, to eliminate coefficients of degrees greater than k in the
corresponding Syzygy, as follows. Let M be a submatrix of (f)l f)m) consisting of the

rows corresponding the coefficients of Ui(]) of degree greater than k. Then, calculate the SVD
on M to find basis of the null space of M. Repeat this step until we find appropriate Syzygies
satisfying (1) along with A; # 0 for all 4.

(b) If we could not find all of n — 1 independent Syzygies satisfying (1) with the above procedure,
then, for degree k # [satisfying (1), calculate new Syzygies from Ny (P, ..., P,) until we find
all of n — 1 independent Syzygies satisfying (1) along with A; # 0.

References

[1] Z. Li, Z. Yang, and L. Zhi. Blind image deconvolution via fast approximate GCD. In Proceedings of
ISSAC 10, pages 155162, 2010.

[2] D. Rupprecht. An algorithm for computing certified approximate GCD of n univariate polynomials. .J.
Pure Appl. Algebra, 139:255-284, 1999.

[3] A. Terui. GPGCD, an iterative method for calculating approximate GCD, for multiple univariate
polynomials. In Lecture Notes in Computer Science 6244, pages 238-249. Springer, 2010.

[4] A. Terui. GPGCD: An iterative method for calculating approximate GCD of univariate polynomials.
Theoretical Computer Science, 479:127-149, 2013. Symbolic-Numerical Algorithms.

111

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Incremental PSLQ with Application to
Algebraic Number Reconstruction *

Yong Feng, Jingwei Chen, Wenyuan Wu
Automated Reasoning and Cognition Key Laboratory of Chongqing, CIGIT, CAS

{yongfeng, chenjingwei, wuwenyuan }Qcigit.ac.cn

1. INTRODUCTION. A vector m = (mq,...,my) € Z" \ {0} is called an integer relation for x =
(1,...,2y) € R™if 3" myz; = 0. In literature, the HJLS algorithm [3, Sec. 3] and the PSLQ al-
gorithm [2] solve the problem of finding integer relation polynomially. Although it has been theoretically
proved that PSLQ is to some extent equivalent to HJLS, under the exact real arithmetic computational
model (see, e.g., [7, 1]), the PSLQ algorithm seems more practical.

The problem of finding the minimal polynomial from an approximation @ of a dy degree algebraic
number a, equivalent to finding an integer relation for the vector (1, «, ... ,ado), was first solved in [5] by
using the celebrated LLL algorithm [6]. This routine has been recently improved in [4]. Naturally, the
PSLQ algorithm applies to the algebraic number reconstruction problem as well [8].

Given an approximation to an unknown algebraic number «, a degree bound d and an upper bound
M on its height, if the exact degree dy of « is also unknown, then no matter whether one uses PSLQ or
LLL, one has to search an integer relation for the vector (1,q,...,a?) from i = 2,3,... until dy (< d).
Hence, if the complexity of a polynomial algorithm for finding an integer relation is O(P(n, M)) for an
n-dimensional vector, then the complexity of the minimal polynomial algorithm, based on the integer
relation finding algorithm, is O(do - P(dp, M)). Our main contribution in the present work is to give an
incremental version of PSLQ, which leads to an efficient algebraic number reconstruction algorithm with
complexity only O(P(dy, M)), even though the exact degree of the algebraic number is unknown.

Algorithm 1 (IPSLQ).

Input: A vector @ = (z1, - ,xn) € R™ with 2; # 0 for ¢ = 1,...,n and a positive number M.
Output: Either return an integer relation for @, or return “no relation with length smaller than M”.
1. Construct Hy € R*X(n=1) Set H := Hy, A:=1I, and B := I,,. Size-reduce H and update A and B.
2. For k from n —1 to 1 do
(a) While hp,—1,n—1 # 0 do
i. Choose r such that v" || = max;eg,... n—1} {77 |Rj 1 }-
ii. Swap the r-th and the (r + 1)-th rows of H and update A and B.
iii. If » < n —1 then update H to L-factor of H.
iv. Size-reduce H and update A and B.
v. If maxjeqp,... n—1} IRyl < 1/M then do the following: If k£ > 1 then go to Step 2; Else return “no relation with length
smaller than M”.
(b) Return the last column of B.

2. THE INCREMENTAL PSLQ ALGORITHM. The main difference between IPSLQ (Algorithm 1) and PSLQ
is that PSLQ considers x1, ..., z, directly, while IPSLQ considers x;, ..., x, gradually, i.e., if the vector
(24, ..., 2n) has no relation with 2-norm less than M then add x;_; to the left; see Step 2(a)v.

The application of IPSLQ to efficient reconstructing minimal polynomial depends on the following two
key points: (1) We use (z1,...,2,) = (@™ 1,... a, 1), which is the reverse order of the traditional version,
to construct the matrix H, (see [2, Def. 2] for the construction). (2) The important observation is that

*This work was partially supported by NKBRPC (2011CB302400) and NSFC (11001040, 11171053, 91118001).

112

ISSAC poster abstracts

the matrix H, for (z;,...,z,) is exactly the right-bottom most submatrix of H, for (zj—1,%i,...,Tn).
Thus, the results produced by the previous iterations are still valid for the new matrix H. However, the
traditional methods can not reuse those previous information. Therefore, the complexity of IPSLQ for
minimal polynomial without knowing degree is only O(P(dy, M)), which is the same as PSLQ for minimal
polynomial with knowing degree.

3. EXPERIMENTS. The following experiments are preliminary and to compare the performance between
traditional PSLQ and IPSLQ for minimal polynomial reconstruction. Consider approximations of a =
31/5 4 21/t with 500 decimal digits. Running these experiments in Maple 15 with Digits :=500 gives a
preliminary experimental results in Table 1. Note that here Digits :=500 may not be necessary (see [8]
for the a detailed error control). In Table 1, the input degree bound and height bound in these tests are d
and M + 1; the exact degree and height of o are d — 1 and M, respectively. All these experimental results
are obtained by using a Windows 7 (32 bits mode) PC with AMD Athlon II X4 645 processor (3.10 GHz)
and 4 GB memory. Note that there exists a built-in function IntegerRelations:-PSLQ in Maple 15, but
for the comparison in Table 1, we implement the PSLQ algorithm by ourselves. The reasons we do not
use the built-in function is that there does not exist a height parameter in the built-in function. This may
cause that the built-in function will go on the iterations even if the height has been greater than M. In our
implementations of PSLQ and IPSLQ, the same function uses the same technique for fairness. According
to Table 1, the IPSLQ algorithm is faster than the PSLQ algorithm. Meanwhile the ratio between Tpgrg
and T7psrg seems to get larger and larger with increasing d, but always smaller than d.

TpsLQ
No. s t d M TIPSLQ TPSLQ TrrsLg
1 2 2 5 10 0.08 0.16 2.00
2 2 3 7 36 0.16 0.64 4.00
3 3 3 10 125 0.89 5.34 6.00
4 3 4 13 540 3.14 21.34 6.79
5 2 7 15 5103 6.91 45.91 6.64
6 3 6 19 10278 23.37 144.11 6.17
7 4 5 21 11160 32.73 249.54 7.62
8 5 5 26 57500 78.95 838.99 10.63
9 5 6 31 538380 186.28 2089.87 11.22
10 6 6 37 4281690 421.94 4313.99 10.22

Table 1: TPSLQ VS PSLQ for minimal polynomial

References

[1] J. Chen, D. Stehlé, and G. Villard. A new view on HJLS and PSLQ: Sums and projections of lattices.
In Proc. ISSAC ’13, Boston, USA, 2013. To appear.

[2] H. R. P. Ferguson, D. H. Bailey, and S. Arno. Analysis of PSLQ, an integer relation finding algorithm.
Math. Comput., 68(225):351-369, 1999.

[3] J. Hastad, B. Just, J. Lagarias, and C. Schnorr. Polynomial time algorithms for finding integer relations
among real numbers. STAM J. Comput., 18(5):859-881, 1989.

[4] M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new complexity for factoring
polynomials. Algorithmica, 63(3):616-633, 2012.

[5] R.Kannan, A. Lenstra, and L. Lovédsz. Polynomial factorization and nonrandomness of bits of algebraic
and some transcendental numbers. Math. Comput., 50(181):235-250, 1988.

[6] A. Lenstra, H. Lenstra, and L. Lovdsz. Factoring polynomials with rational coefficients. Math. Ann.,
261(4):515-534, 1982.

[7] A. Meichsner. Integer Relation Algorithms and the Recognition of Numerical Constants. Master’s
thesis, Simon Fraser University, 2001.

[8] X. Qin, Y. Feng, J. Chen, and J. Zhang. A complete algorithm to find exact minimal polynomial by
approximations. Int. J. Comput. Math., 89(17):2333-2344, 2012.

113

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Hypergeometric generating functions and series for 1/

James G. Wan
Singapore University of Technology and Design
james_wan@sutd.edu.sg

Introduction

Some truly innovative series for 1/, first discovered by Ramanujan and elucidated in [1], take the form

> 57Ll n{l = 5)n
$ OBy L 0

13
=0 n.

In other words, the constant 1/7 can be written as a suitable linear combination of a hypergeometric
function (in this case a 3F3) and its derivative at some zy. Such series have both theoretical and practical
applications. In a recent preprint [3], some double sums are conjectured to also evaluate to 1/7; we aim
to prove them using the theory behind (1). Examples of these sums include

S ()G G SR =5 @
S0 G R G - ®

Method

Instead of 3F3’s, these conjectural series in [3] all contain functions of the form

= Z Z F(n, k)z"2"

n=0 k=0

where F' is a product of four or more binomial coefficients. It is routine to find a differential equation
in z satisfied by G; however such ODEs have degrees > 4 and current CAS struggle to find or rule out
hypergeometric solutions implicitly required in (1). Our approach is to guess, based on numerical evidence,
that = and z are connected by a simple algebraic relation r. For instance, we may guess that

)n k+n

Gz, rap(x ZZFnkWorZZF W’ (4)

n=0 k=0 n=0 k=0

for some a and b. We compute sufficiently many coeflicients in the z-expansion of (4), and attempt to find
a, b such that they satisfy a three-term recurrence (with polynomials of bounded degrees as coefficients).
Such a recurrence corresponds to a degree 3 ODE satisfied by G. The key step then comes down to an
easy problem in linear algebra of checking if a certain determinant is zero for some a and b.

114

ISSAC poster abstracts

Once suitable a and b are found, we need to solve the 3rd order ODE satisfied by G(z,rqp(x)); for
this we have a more complete theory. E.g. in the case corresponding to (2), Maple 13 is able to give the
solution which can be rearranged into a 3F5. In the case of (3), the ODE is of Heun type, and can be
solved using [2, eqn. (3.5b)] followed by a transform due to E. Goursat; we obtain

i z": <2n - 2k:) (2:)2 (2;) - f:;;m _ f: (é)n(j!)gn(é)n (10821 — 4))™)

n=0 k=0 n=0

In either case the 3F; is of the type in (1), and the extensive theory for producing formulas of this type
can be used to prove equations (2) and (3).

Some details

When we take the z-derivative of (5) (as is required in (1)), linear dependence on k appears on the left
hand side, which is not found in (3). To cancel this k term, a vanishing, k-dependent identify (known as
a ‘satellite identity’, coined in [4]) is required. For (5), the satellite identity is

Z Z <2n B %) (%f) ()ufjn)(z;x +2k(4x + 1) + n(4x — 1)) = 0. (6)

n=0 k=0

Identity (6) was guessed as follows: pick a small, irrational x and compute a9 =), . A(n, k,x), a1 =
Yok Aok, x)k, and ag = -, A(n, k, x)n (A being the summand), then use PSLQ to find a null integer
linear combination among the elements of {ao, a1, ag, apx, a1, asx, aox?, a12?, apx?, ..}. Once found, the
satellite identity can be proven by the multiple WZ algorithm. Similarly, (5) itself can be rigorously proven
(as the 3rd order recursion was only a guess): write the coefficients of 2 on the LHS as a double sum,
apply the multiple WZ algorithm to obtain a recursion, convert it to an ODE for the LHS, and finally
check that the ODE annihilates the RHS. Many conjectures from [3] have been settled using our method,
via the discovery of generating functions like (5).

Future work

Some conjectures in [3] do not fall into the type (4); perhaps more elaborate algebraic relations are needed —
this could also anticipate more exotic generating functions. It would be illuminating to be able to find
suitable a and b in (4) analytically (without extensive computer searches), and also to prove the existence
of satellite identities whenever F' is a hypergeometric term.

References

[1] J.M. Borwein and P.B. Borwein, Pi and the AGM: A study in analytic number theory and computa-
tional complexity (Wiley, New York, 1987).

[2] R. Maier, Transforming the Heun equation to the hypergeometric equation: I. Polynomial transfor-
mations, preprint (2002).

[3] Z.-W. Sun, List of conjectural series for powers of m and other constants, preprint arXiv: 1102.5649
(Jan 2012).

[4] W. Zudilin, A generating function of the squares of Legendre polynomials, Bull. Austral. Math. Soc.
to appear (2013).

115

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Annihilating monomials with the integro-differential Weyl algebra

Johannes Middeke
Department of Applied Mathematics
University of Western Ontario
London (ON), Canada, N6A 5B7
jmiddeke@uwo.ca

Abstract

The integro-differential Weyl algebra provides an algebraic model for differential and integral opera-
tors with polynomial coefficients. It has a natural action on the ring of polynomials. We are interested in
computing the annihilator of a given polynomial with respect to this action. This contribution contains
a first step towards that goal—mamely we give a description of the annihilator of a monomial.

1 The integro-differential Weyl algebra

The (univariate) integro-differential Weyl was introduced for the first time in [1]. It arose from the algebra of
integro-differential operators first discussed in [2] and refined in [3, 4] with the goal of solving boundary value
problems using purely algebraic methods. While the aforementioned papers construct integro-differential
operators with arbitrary coefficients using a Grobner basis approach, in [1] the authors chose to model
operators with polynomial coefficients using Ore polynomials.

A way to construct the integro-differential Weyl algebra as a generalised Weyl algebra has been discussed
in [5].

In this abstract we briefly recall the basic properties of the integro-differential Weyl algebra and refer
to [1] for details. Let K be a field of characteristic 0. The integro-differential Weyl algebra—denoted
A1(0, [)—is the K-algebra generated by the symbols z, d and [and defined by the equations

Or = 20 + 1, [[=z[— [z, and o =1. (1)

One can prove that A (D, f) is neither simple nor left or right Noetherian; it even contains zero divisors.
Also, the integro-differential operators from (2, 3, 4] are isomorphic to A1 (9, [)/(Ex —cE) where E =1— [0
and c is a constant depending on the integral operator—cf again [1].

Interpreting 0 as derivation and f as an integral, the integro-differential Weyl algebra has a natural

action on the polynomial ring K[z]. More precisely, the action *: A;(9, [) x K[z] — K[z] is defined by

1
T
n+1

1 dz™ 1 z
rxz" =g a*m":d—:nxnf, and f*m”:/ "dr =
X 0

n+1

where n > 0. With this action, the relations in (1) model the Leibniz rule, partial integration and the
fundamental theorem of calculus, respectively. Moreover, E corresponds to the evaluation at 0.

116

ISSAC poster abstracts

2 Annihilators

We want to compute annihilators of polynomials, i.e., the set of all operators in A;(9, [) whose action
sends a given polynomial to zero. It is well-known that annihilators are left ideals in A1(9, [). As a first
step towards computing them, we give the following theorem:

Theorem 1 For any n > 1, the annihilator of x™ within the integro-differential Weyl algebra Aq(0, [) is
generated as a left ideal by

ot (x—[)o", EO"Y, ..., EO, E

for n > 0 and the annihilator of 1 is generated by 0 and x — f In particular, all these annihilators are
finitely generated.

As a next step, we intend to generalise this result to annihilate arbitrary polynomials. Also, we shall
add more evaluation operators to our algebra in order to model boundary conditions instead of only initial
value problems. Moreover, a theorem in [6] states that all finitely generated left ideals in A1 (9, [) can be
generated by only two elements. Therefore, another path of research is to attempt to compute these two
generators for the annihilators.

References

[1] Regensburger, G., Rosenkranz, M. & Middeke, J. A skew polynomial approach to integro-differential
operators. In May, J. P. (ed.) Proceedings of ISSAC 2009 (Association for Computing Machinery,
2009).

[2] Rosenkranz, M. A new symbolic method for solving linear two-point boundary value problems on the
level of operators. Journal of Symbolic Computation 39, 171-199 (2005).

[3] Rosenkranz, M. & Regensburger, G. Solving and facroring boundary problems for linear ordinary
differential equations in differential algebras. Journal of Symbolic Computation 43, 515-544 (2008).

[4] Regensburger, G. & Rosenkranz, M. An algebraic foundation for factoring linear boundary problems.
Annali di Matematica Pura ed Applicata 188, 123-151 (2009).

[5] Bavula, V. V. The algebra of integro-differential operators on a polynomial algebra. Journal of the
London Mathematical Society 83, 517-543 (2011).

[6] Bavula, V. V. The algebra of integro-differential operators on an affine line and its modules. Journal
of Symbolic Computation 495-529 (2013).

117

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Probabilistic Analysis of Wiedemann’s Algorithm for Minimal
Polynomial Computation

Gavin Harrison, Jeremy Johnson, B. David Saunders
Department of Computer Science
Drexel University, University of Delaware
gmh33@drexel.edu, jjohnson@cs.drexel.edu, saunders@udel . edu

Blackbox algorithms for linear algebra problems start with one sided (Lanczos) or two sided (Wiede-
mann) projection of the sequence of powers of a matrix to a sequence of scalars or a sequence of smaller
matrices. Such algorithms usually require that the minimal polynomial of the resulting sequence should be
that of the given matrix. Exact formulas are given for the probability that this occurs based on the Jordan
structure of a matrix, and from these formulas sharp bounds follow. The bounds are valid for all finite
field sizes and show that a small blocking factor can give high probability of success for all cardinalities
and matrix dimensions.

Let K be a finite field with cardinality ¢. Given A € K<™ and A be the linearly generated sequence
{I,A, A% ...}. Given U,V € K™ whose elements are selected uniformly randomly from K, UT AV
is a linearly generated sequence of smaller matrices, and with high probability, the minimal generating
polynomial of UT AV = {UTV7 UTAV,UT A%V, .. .} is the minimal polynomial of the matrix A. All square
matrices are similar to a generalized Jordan form matrix, A = PJP~!, where J, P € K™*". If U and V
are selected uniformly randomly, then X = PTU and Y = P~V are also uniformly random. UAV =
XTJy ={XTy, XTJy, X" J?Y,...}, and XJY has the same probability as UAV of having its minimal
generating polynomial match the minimal polynomial of A and J. We call this probability Prob,(A).

Let Cy € K% represent the companion matrix for the polynomial f(z) = fo+ fiz + ...+ fa_12¢ 1 +
z% with coefficients in K. Let J te be the generalized Jordan block of an irreducible f occurring with
multiplicity e. Since Probyy(Js @ Jg) = Probgy(Js)Probgy(Jy) when ged(f,g) = 1, unique irreducibles
can be treated separately, and for each irreducible only its highest multiplicity affects the probability that
the projection preserves the minimal polynomial. Furthermore we show Prob,(J¢) = Probgy(Jge) for
any e. Therefore, letting T = {(f1,e1,t1), (f2,e2,t2),...}, where the polynomials f; are the irreducibles
occuring in the invariant factors of A, e; is the highest multiplicity of f;, and t; is the number of occurrences
of fi, it follows that

IT|
Probyy(J) = H Probg (@ Jfk))
k=1 tr

For an irreducible polynomial f of degree d, the probability that U TCfV has minimal polynomial f is
easy to determine. The minimal polynomial of the projection is always a factor of f, which for irreducible
fislor f. It is 1 only if the sequence is a sequence of zero matrices, which is to say that one of U,V is
zero. Thus

Probyy(Cy) = (1 — g~ %)%,

If J = &,C%, then for U,V € K dtxb with blocking conformal to the diagonal blocks of J, we have
t

UTJV = Ul CyVi. We show Proby,(Cy) < Probg, (€D, J).
k=1

118

ISSAC poster abstracts

field cardinality

block size 2 3 | 10007 22 —1
1 0.000467 0.00112 0.0499 0.911
2 0.25 0.444 1-2x10% | 1-43x10711
4 0.766 0.927 1-2x10712 | 1-94x 1073
8 0.984 1-91x10% | 1-2x107% [1-44x107
16 1—6x107° 1-14x107 | 1-2x10"% [1-9.8x 10142
32 1-93x10710[1-32x107 [1—-2x107"* | 1—-4.8x 1072

Table 1: Bounds for worst case probability of success to preserve minimum polynomial,
matrix size 10% x 108

It is evident that the probability of success increases with d as well as with b. The worst case is a matrix
whose minimal polynomial is a distinct product of the smallest possible irreducibles. This yields an exact
lower bound formula for the probability that a projection U7 AV of A has the same minimal polynomial.
Let Lg(d,n) be the number of degree d irreducible factors over the finite field of cardinality ¢ that fit in a
matrix of dimension n after all smaller degree irreducibles have been inserted. Then, for an n x n matrix
A

7 00 2% 1 Lq(d,n)
Probgy(A) > H (1 — 7q2db)
d=1

We compare this bound to previously given lower bounds in the case when field cardinality and matrix
dimension are of similar size. For small primes, Wiedemann (proposition 3) treats the case b = 1 and he
fixes the projection on one side because he is interested in linear system solving and thus in the sequence
Ab [2] . For small g, his formula, 1/ (61og,(N)), computed with some approximation, is nonetheless quite
close to our exact formula. However as g approaches N the discrepancy with our exact formula increases.
At the large/small crossover, ¢ = N, Kaltofen/Pan’s lower bound is 0, Wiedemann’s is 1/6, and ours is
1/e. The Kaltofen/Pan probability bound improves as g grows larger from N [1] . The Wiedemann bound
becomes more accurate as ¢ goes down from N. But the area ¢ &~ N is of some practical importance.
In integer matrix algorithms where the finite field used is a choice of the algorithm, sometimes practical
considerations of efficient field arithmetic encourages the use of primes in the vicinity of N. For instance,
exact arithmetic in double precision and using BLAS works well with ¢ € 105..107. Sparse matrices of
order N in that range are tractable. Our bound may help justify the use of such primes.

But the primary value we see in our analysis here is the understanding it gives of the value of blocking,
b > 1. Table 1 shows the bounds for the worst case probability that a random projection will preserve the
minimal polynomial of a matrix A € K 10°x10% for various fields and projection block sizes. It shows that
the probability of finding the minimal polynomial correctly under projection converges rapidly to 1 as the
projected block size increases. Even over GF'(2), with block size b = 16 the probability is very good.

References

[1] Erich Kaltofen and B. David Saunders. On wiedemann’s method of solving sparse linear systems. In
Proceedings of the 9th International Symposium, on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, AAECC-9, pages 29-38, London, UK, UK, 1991. Springer-Verlag.

[2] D. Wiedemann. Solving sparse linear equations over finite fields. Information Theory, IEEE Transac-
tions on, 32(1):54-62, 1986.

119

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

Implementation of a Solution to the Conjugacy Problem in Thompson’s
Group F

James Belk, Nabil Hossain, Francesco Matucci, and Robert McGrail
Bard College, Annandale-on-Hudson, NY, USA, 12504
Université Paris-Sud 11, Batiment 425, Bureau 21, F-91405 Orsay Cedex, France
belk@bard.edu, nh1682@bard.edu, francesco.matucci@math.u-psud.fr, mcgrail@bard.edu

Abstract

We present an efficient implementation of the solution to the conjugacy problem in Thompson’s
group F. This algorithm checks for conjugacy by constructing and comparing directed graphs called
strand diagrams. We provide a description of our solution algorithm, including the data structure that
represents strand diagrams and supports simplifications.

1 Thompson’s Group F and Strand Diagrams

The elements of Thompson’s Group F' [3] are piecewise, linear homeomorphisms of the interval [0, 1] such
that each piece has slope that is a power of 2 and, furthermore, the breakpoints between pieces take
place at dyadic rational coordinates. The group operation is simply function composition. In a group,
the conjugacy problem is the problem of determining whether any two elements are conjugate. The
conjugacy problem is not solvable in general [5], but is solvable in certain cases.

A strand diagram [2] is a finite acyclic digraph embedded on the unit square. The digraph has a
source along the top edge of the square and a sink along the bottom edge. Any internal vertex is either a
merge or a split (Figure 1). Elements of Thompson’s Group F can be translated to strand diagrams. Each
element in a generating set corresponds to a particular strand diagram. A composition of such elements is
represented by a concatenation of the associated strand diagrams.

o

input

left right
output output

Figure 1: A strand diagram, a merge, and a split (image taken from [2]).

2 Algorithm for the Conjugacy Problem in F

The algorithm to determine whether two strand diagrams inhabit the same conjugacy class proceeds as
follows. First, we convert the strand diagrams to annular strand diagrams. This is achieved by a
process called closing, in which sources are identified with sinks. Next, the annular strand diagrams are

120

ISSAC poster abstracts

reduced using a graphical rewriting system that is both confluent, terminating, and respects conjugacy
[1]. Furthermore, any two connected and reduced annular strand diagrams s; and sy can be encoded
into two planar graphs g; and go respectively such that s; and s represent conjugate elements if and
only if g1 and go are isomorphic. Hence the problem reduces to checking whether two simplified planar
graphs are isomorphic. Moreover, this enterprise can be carried out in linear time given a linear time
planar-graph-isomorphism checker [4].

Return True if conjugate,
otherwise return False

Strand Diagram Isomorphism
Creator Checker

Annular Strand Diagram
Creator (i.e. Closing)

Figure 2: Algorithm Flowchart

References
[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1999.

[2] J. Belk and F. Matucci. Conjugacy and dynamics in Thompson’s groups. Preprint, 2013.

[3] J. W. Canon, W. J. Floyd, and W. R. Parry. Introductory notes on Richard Thompson’s groups.
FEnseignement Mathématique, 42: 215-256, 1996.

[4] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs (preliminary
report). Proceedings of the Sixth Annual ACM symposium on Theory of Computing, 172-184, 1974.

[5] P. S. Novikov. Unsolvability of the conjugacy problem in the theory of groups. Izv. Akad. Nauk SSSR.
Ser. Mat, 18: 485-524,1954.

121

ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013

A Linear Sparse Systems Solver (LSSS) applied to the
Classification of Integrable non-abelian Laurent ODEs

Thomas Wolf Eberhard Schrifer Kenneth Webster
Brock University Fraunhofer Institut University of
Ontario, Canada Bonn, Germany Waterloo, Canada
twolf@brocku.ca eschruefer@ca-musings.de

Sparse linear algebraic systems can be of different nature. A well known class are systems, we
call them “numerical”, that result in the discretization of partial differential equations (PDEs). A
very different class of systems, we call them “selective”, arises from integrability investigations of
differential equations. Both types of systems behave very differently during the solution process and
give results of different nature and therefore are also solved most efficiently with different methods.

The Linear Selective Systems Solver LSSS, described on the poster, was developed to solve
“selective” systems that result when the aim is to find discrete mathematical objects of symbolic
nature like Lie symmetries or first integrals if they exist. Table 1 compares both types of problems.

type “numerical” systems “selective” systems

examples systems resulting from a | systems resulting from a sym-
discretization of PDEs metry investigation of PDEs

value of free parameters any floating Oorl

when applying the solution point numbers (to isolate the individual

of the linear system (boundary values of PDE) symmetries)

number of zero-valued essentially none most variables

variables in solution

initial sparsity yes yes

sparsity throughout

exact solution yes yes

overdetermination no yes

usability of iteration

schemes for large problems useful not useful

of that type

Table 1: Characterization of two different types of sparse linear systems

The special nature of selective systems allows a dedicated computer program LSSS (Linear
Sparse Systems Solver) running in the computer algebra system REDUCE to be much more efficient
than conventional computer programs for solving these systems [1]. Reasons are:

122

ISSAC poster abstracts

e Because of the existence of many variables that take the value of zero in the solution the
systems involve 1-term equations which are utilized first to simplify the remaining system and
generate more 1-term equations.

e The simplification of a system due to the vanishing of variables can be accomplished much
faster than the simplification due to other substitutions.

e From the mathematical problem it is clear whether the type of a system is numerical or
selective and thus to apply the most suitable technique from the start.

e Selective linear systems are typically formulated by separation of larger expressions. The
complete separation and up-front formulation of the whole linear system can be avoided
through a repeatedly selective splitting and thus formulation and solution of 1-term equations.

e Increasing the complexity of the mathematical problem (e.g. by a increased degree of the
ansatz for symmetries or first integrals) the overdetermination and sparseness increases com-
pensating partially the exploding size of the initial linear system if 1-term equations are used
rigorously.

The package LSSS was developed in the course of investigating the integrability of the Kontsevich
system ([3])

1 -1

w=ww —uwvt —v7 v = —vutout +ut (1)

where u,v are non-commutative variables (in particular, square matrices of arbitrary size). This
is the first non-abelian system with non-polynomial right hand sides for which integrability could
be shown, in this case by computing a Lax pair with spectral parameter [2]. Essential ingredients
were the computation of Lie-symmetries, first integrals, a pre-Hamiltonian operator and a recursion
operator of (1), all of them requiring the solution of selective linear systems. With the program
LSSS it was possible to compute Lie-symmtries of degree up to 16. The complete linear system
that had been solved includes over 10 equations for 172 Mio variables. Despite of the majority of
them being zero, the general solution is not trivial as it has 32 free parameters and its formulation
requires already several mega byte.
Current applications of LSSS include the integrability investigation of generalizations of the
form
uy = wv + Pu,v,u” oY), v = —vu+ Qu,v,ut v, (2)

References

[1] Wolf, T., Schriifer, E., Webster, K. Solving large linear algebraic systems in the con-
text of integrable non-abelian Laurent ODEs, Programming and Computer Software, (2012)
DOI:10.1134/S0361768812020065, also arXiv:1109.2785 (nlin.SI).

[2] Wolf, T., Efimovskaya, O. On integrability of the Kontsevich non-abelian ODE system,
Lett. in Math. Phys., vol 100, no 2 (2012), p 161-170 DOI:10.1007/s11005-011-0527-4, also
arXiv:1108.4208v1 (nlin.SI).

[3] Kontsevich, M., private communication.

123

ACM Communications in Computer Algebra, Vol. 47, No. 3, Issue 185, September 2013

Abstracts of Recent Doctoral Dissertations in
Computer Algebra

Each month we are pleased to present abstracts of recent doctoral dissertations in Computer Algebra
and Symbolic Computation. We encourage all recent Ph.D. graduates (and their supervisors), who
have defended in the past two years, to submit their abstracts for publication in CCA.

Please send abstracts to the CCA editors <editors_SIGSAM@acm.org> for consideration.

Author: Brice Boyer

Title: Efficient matrix multiplication and design for the exact linear algebra library LinBox
Institution: Laboratoire Jean Kuntzman, Université de Grenoble.

Thesis Advisor: Jean-Guillaume Dumas

Defended: June 2012

Keywords: exact linear algebra, sparse matrix, SpMV, dense matrix, fast matrix multiplication,
pebble game, schedulings, design patterns, generic mathematics library, LinBox.

Matrix multiplication is a major cornerstone in exact linear algebra: its study can concern algorith-
mic, complexity, design, reduction, etc. problems. We are interested in the few following aspects.

We first expose, in this thesis, efficient exact matrix multiplication techniques, developed for
both multiplication (A = B x (') and product with accumulation (A = A+ B x C'). We set up new
schedules that allow us to minimize the extra memory requirements during a Strassen-style matrix
multiplication, while keeping the complexity competitive with Winograd’s multiplication algorithm.
In order to obtain them, we develop external tools (pebble games), tight complexity computations
and new hybrid algorithms.

We then use parallel technologies (multicore CPU and GPU) in order to efficiently accelerate
the sparse matrix—dense vector multiplication (SpMV) or sparse-matrix dense matrix multiplication
(SpMM), crucial to blackbox (block) algorithms. We also set up new hybrid, environment dependant,
sparse matrix formats that help yield large speed-ups. We exemplify these results by speeding up
the block Winograd rank algorithm in the LinBox library.

Finally, we establish generic design methods focusing on efficiency, especially via building block
conceptions or self-optimization. We also propose tools for improving and standardizing code quality
in order to make it more sustainable and more robust. This is applied in particular to the LinBox
computer algebra library.

Author: Ibrahim Adamou
Title: Curve and Surface Bisectors, and Voronoi Diagram of a family of parallel half-lines in R3
Institution: Universidad de Cantabria

124

Dissertation Abstracts

Thesis Advisor: Laureano Gonzalez-Vega and Mario Fioravanti

Committee Members: Tomas Recio, Marie-Francoise Roy, Bert Jiittler

Defended: September 10th, 2013 Keywords: Bisectors, Rational Curves and Surfaces, Voronoi
Diagram, Spatial Subdivision, Meshing.

This thesis has three main parts: computation of the bisectors of two curves or a point and a
curve in the plane, of the bisector of two surfaces in R3, and of the Voronoi diagram of a finite
family of parallel half lines in R?, with the same orientation. These subjects are closely related,
and have applications in CAD/CAGD and Computational Geometry. In each of the three parts,
we present algorithmic methods for computing certain representations of the geometric object of
interest: the bisector curve, the bisector surface, or the Voronoi diagram.

We present a new approach to determine an algebraic parametrization (rational or non rational)
of the bisector curve of two given planar rational curves. The method uses Cramer’s rule and
algebraic elimination steps. The method is applied, in particular, to obtain parametrizations of the
bisector of two rational plane curves, when one of them is a circle or a straight line. Then, this
approach is generalized to determine an algebraic parametrization of the bisector surface of two
low degree rational surfaces. We show how to easily obtain parametrizations of the bisector of the
following pairs of surfaces: plane-quadric, plane-torus, circular cylinder-non developable quadric,
circular cylinder-torus, cylinder-cylinder, cylinder-cone and cone-cone. These parametrizations are
rational in most cases. In the remaining cases, the parametrization involves one square root which
is well-suited to determine a good approximation of the bisector.

In addition, we present a different approach for the bisector curve problem. This new method
uses dynamic color in GeoGebra (a dynamical geometry software) for the geometric and numerical
characterizations of the bisector of two curves, or a curve and a point, in the plane. Even if it
does not provide an algebraic representation, the method could lead to the computation of an
approximate representation of the bisector curve.

The Voronol diagram (VD) is a fundamental data structure in computational geometry with
various applications in theoretical and practical areas. We consider the VD of a set of parallel
half-lines, with the same orientation, constrained to a compact domain D, C R?, with respect to
the Euclidean distance. This new kind of VD can be used to provide an efficient solution to some
problems in the drilling industry. We present an efficient algorithm for computing an approximate
VD, using a box subdivision process, which produces a mesh representing the topology of the VD
in Dy. The concept of minimization diagram plays an important role in the method.

125

ACM Communications in Computer Algebra, Vol. 47, No. 3, Issue 185, September 2013

Recent and Upcoming Events

October 23-25, 2013

2nd International Seminar on Program Verification, Automated Debugging and Symbolic Computa-
tion

Beijing, China

Organizers: Tudor Jebelean, Wei Li, Dongming Wang

Dates: Submission deadline: September 10, 2013

Website: http://pas2013.cc4cm.org/

December 11-13, 2013

5th International Conference on Mathematical Aspects of Computer and Information Sciences
Nanning, China

Organizers: Dongming Wang, Jinzhao Wu

Dates: Submission deadline: October 12, 2013

Website: http://www.mpi-inf.mpg.de/conference/macis2013/

January 29-February 1, 2014

9th International Conference on Applied Informatics (ICAI 2014)
Eger, Hungary

Organizers: Attila Pethd, Franz Winkler, Roland Kunkli, Gabor Kusper
Dates: Submission deadline: January 6, 2014

Website: http://icai.ektf.hu/

March 31-April 4, 2014

Latin American Theoretical INformatics (LATIN 2014)

Montevideo, Uruguay

Organizers: A. Viola (PC chair), A. Pardo (Local chair)

Dates: Abstract submission: September 17, 2014; Full submission: September 22, 2014
Website: http://www.fing.edu.uy/eventos/latin2014/

June 16-20, 2014

25th International Conference on Probabilistic, Combinatorial, and Asymptotic Methods for the
Analysis of Algorithms (AofA’14)

Paris, France

Organizers: M. Bousquet-Melou, M. Soria

Dates: Submission deadline: January 27, 2014

Website: http://www.aofald.upmc.fr/

June 29-July 3, 2014

26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014)
Chicago, USA

Organizers: L. Billera, I. Novik (PC Chairs), B. Tenner (Local Chair)

Dates: Submission deadline: November 18

Website: https://sites.google.com/site/fpsac2014/

126

Events

July 9-12, 2014

20th Conference on Applications of Computer Algebra

New York, USA

Organizers: R.H. Lewis (general chair), T. Shaska, I. Kotsireas (PC Chairs)
Dates: session proposal: February 28, 2014; talk submissions: May 15, 2014
Website: http://faculty.fordham.edu/rlewis/aca2014/

July 9-24, 2014

Vienna Summer of Logic

Vienna, Austria

Organizers: M. Baaz, A. Ciabattoni, Th. Eiter, A. Leitsch, G. Gottlob, T. Henzinger, V. Sabljakovic-Fritz, S.

Szeider, H. Veith, S. Woltran and others
Website: http://vsl2014.at/

127

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Message from the SIGSAM Chair

llias S. Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

Dear SIGSAM Members,

I would like to take this opportunity to update you on the two ACM meetings that I recently attended
on behalf of SIGSAM in New York City:

e September 30, 2013, SIG Leader Orientation meeting

e October 1, 2013 SGB! meeting.

1 SIG Leader Orientation meeting

During the SIG Leader Orientation meeting, the participants had the chance to hear introductory remarks
from Erik Altman (SGB Chair) and John White, (ACM CEO). Subsequently, Erik Altman spoke on the
topic of the Volunteer Structure of the ACM. He emphasized the SIG Video Repositories initiative and
focused on the example of SIGSIM that has created a 1000+ simulation-related videos on their webpage
http://www.acm-sigsim-mskr.org/Videos/videos.htm . Among the benefits of such a repository are
that it represents a good value for members, could be used to entice more people to join a SIG. In addition,
the repository could use automated video mining capability. I thought this is a very interesting initiative
and would like to solicit opinions from SIGSAM Members on whether we could organize a similar initiative
within SIGSAM.

During the second part of the SIG Leader Orientation meeting I attended four workshops: (1) Fi-
nance, (2) Marketing/Membership, (3) Publications, (4) Information Systems. Here is a summary of some
interesting aspects of these workshops:

1. ACM Tech Pack initiative http://techpack.acm.org/ . Production of annotated bibliographies on
specific areas compiled by experts. Examples include the Cloud Computing, the Parallel Computing
and the Security Tech Packs.

2. ACM Learning Webinars http://learning.acm.org/webinar/ . Started in 2012, these video pre-
sentations on topics of interest to a wide range of computing professionals are non-vendor-specific
and open to everyone.

3. ACM Distinguished Speakers Program http://dsp.acm.org/ . Potential speakers can be nominated
and ACM covers the cost of transportation for the speaker to travel an event.

4. ACM Books http://books.acm.org/ . A new ACM book series has been created, in collaboration
with Morgan & Claypool Publishers based in San Francisco.

1SIG Governing Board

128

Message from the chair

2 SIG Governing Board meeting - ACM-W

During the SGB meeting there were several interesting presentations, but i would like to focus on the
presentation on ACM-W http://women.acm.org/ the ACM organization whose mission statement reads:

ACM-W supports, celebrates, and advocates internationally for the full engagement of women
in all aspects of the computing field, providing a wide range of programs and services to ACM
members and working in the larger community to advance the contributions of technical women.

i) SN
acm-w)
\'4

On of the several interesting initiatives sponsored by ACM-W is the ACM-W Athena Lectures award.
Athena Lectures celebrate outstanding women researchers who have made fundamental contributions to
computer science. Each year ACM will honor a preeminent woman computer scientist as the Athena Lec-
turer. Speakers are nominated by SIG officers. The Athena Lecturer will give a one-hour invited talk at
an ACM conference determined by the speaker and the SIG which nominated her. A video of the talk will
appear on the ACM website. The award includes travel expenses to the meeting and a $ 10000 honorar-
ium. Financial support for the 2008-2009 through 2014-2015 Athena Lecturers, is being provided by Google.

I believe that SIGSAM should try to nominate one of its members for the ACM-W Athena Lectures
award and would like at this point to solicit suggestions for potential qualified candidates.

The minutes of the above two meetings as well as overheads of workshop presenters can be found
on-line at http://www.acm.org/sigs/sgb/minutes and I would encourage you to browse these materials
for more information on ACM initiatives and more details on how these are potentially relevant to SIGSAM.

Ilias S. Kotsireas
SIGSAM Chair chair_SIGSAMO@acm.org
Wilfrid Laurier University
Waterloo, ON, Canada

129

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

A computer algebra user interface manifesto

David R. Stoutemyer*

Abstract

Many computer algebra systems have more than 1000 built-in functions, making expertise
difficult. Using mock dialog boxes, this article describes a proposed interactive general-purpose
wizard for organizing optional transformations and allowing easy fine grain control over the
form of the result — even by amateurs. This wizard integrates ideas including:

e flexible subexpression selection;

e complete control over the ordering of variables and commutative operands, with well-
chosen defaults;

e interleaving the choice of successively less main variables with applicable function choices
to provide detailed control without incurring a combinatorial number of applicable alternatives
at any one level,

e quick applicability tests to reduce the listing of inapplicable transformations;

e using an organizing principle to order the alternatives in a helpful manner;

e labeling quickly-computed alternatives in dialog boxes with a preview of their results,
using ellipsis elisions if necessary or helpful;

e allowing the user to retreat from a sequence of choices to explore other branches of the
tree of alternatives — or to return quickly to branches already visited;

e allowing the user to accumulate more than one of the alternative forms;

e integrating direct manipulation into the wizard; and

e supporting not only the usual input-result pair mode, but also the useful alternative
derivational and in situ replacement modes in a unified window.

1 Introduction

“Before the Lisp machine interface to Macsyma,

computer algebra was like doing mathematics encumbered by boxing gloves.”
— Bill Gosper

I am sorry Bill, but that user interface from 1988 [18| disappeared with the Lisp machine, and
its best features regrettably have not yet been implemented in any of the current most powerful
computer algebra systems. Even the much earlier 1972 article |6] discusses desirable features that
are still missing from modern systems.

Many computer algebra systems have more than 1000 built-in functions. Besides standard
mathematical functions such as cos(...) and classic higher transcendental functions, built-in func-
tions often include numerous optional transformation functions such as expand(...), factor(...),

*dstout at hawaii dot edu

130

A computer algebra user interface manifesto

trigExpand(. . .), convert(...), and simplify(...) that supplement default simplification with various
transformations. Besides the expression being transformed, these transformational functions often
accept optional extra arguments such as a list of variables, and /or various keyword arguments that
control details such as the amount of factoring. Moreover, most computer algebra systems have
numerous global control variables whose values help control transformations done by these functions
and/or by default.

Unlike cos(...), the names and semantic details of these transformation functions and control
variables are not part of any standard mathematics curriculum. Therefore it requires a long time
to fully exploit such systems well, and most users never do. Moreover, these names and behaviors
vary greatly between systems, making it challenging to become skilled with more than one system
in order to exploit their differing capabilities. Consequently many users are frustrated because they
don’t know how to make any system transform an expression to a desired form.

Worse yet, often there is no composition of functions and/or or combination of control-variable
settings capable of producing a desired form. For example, users often want expansion with respect
to a certain proper subset of the variables, with polynomial coefficients that are factored with
respect to the other variables — or want partial fractions with respect to a certain proper subset of
some variables, with factored numerators and denominators.

This article address the usefulness of computer algebra systems as productivity tools to help
amateur users accomplish their tasks without necessarily being aware of the underlying algorithms,
transformation functions and their nomenclature. This article presents some ideas for enhancing
the kind of wizard implemented on the Lisp Machine by:

1. more flexible subexpression selection;

2. complete control over the ordering of variables and commutative operands, with well-chosen
defaults;

3. interleaving the choice of successively less main variables with applicable function choices to
provide detailed control without incurring a combinatorial number of applicable alternatives
at any one level;

4. quick applicability tests to reduce the listing of inapplicable transformations;
5. using an organizing principle to order the alternatives in a helpful manner;

6. labeling quickly-computed alternatives in dialog boxes with a preview of the result, using
ellipsis elisions if necessary or helpful;

7. allowing the user to retreat from a sequence of choices to explore other branches of the tree
of alternatives — or to return quickly to branches already visited;

8. allowing the user to accumulate more than one of the alternative forms;
9. integrating direct manipulation into the wizard; and

10. supporting not only the usual input-result mode, but also the useful alternative derivational
and in situ replacement modes in a unified window.

Section 2 describes important features to combine in a user interface. Section 3 presents some mock
examples of using the proposed wizard. Section 4 addresses design issues and their resolution, with

131

Stoutemyer

a summary in Section 5. The Appendix summarizes some important rational-expression transfor-
mations that should be included in addition to those discussed in subsection 4.3. The wizard must
also be aware of all of the many transformations specific to irrational expressions that are built in
or should be, but that is an open-ended topic too large for discussion here. However, the wizard
should be implemented in an extensible way that allows users to add components easily at run time
for new transformations that they implement.

This article often uses “Float” as an abbreviation for “floating-point number”.

2 Important features to combine in a user interface

Many of the ideas in this section have been implemented to some extent in various computer algebra
systems, but integrating them into a uniformly designed user interface could greatly enhance the
user experience over that of any one current system.

Computer algebra often generates large expressions, and with current RAM sizes measured in
gigabytes, screen area is now the most precious resource for most user’s tasks.! Many of the ideas
discussed here are concerned with attempting to make the best use of that limited resource to help
amateur and expert users arrive quickly at the most comprehensible alternative output forms.

2.1 Enhancing the Lisp Machine Macsyma precedent

Among the most helpful features of Lisp Machine Macsyma was that as you moved the mouse over
an expression, the minimal rectangle containing a syntactically complete subexpression surrounding
the mouse pointer would automatically be framed, which is perhaps the entire expression. A right
click would open a drop-down menu of common transformations such as factor and expand, or you
could enter a function name of your own. The selected transformation is applied to the framed
subexpression.

This feature could be regarded as a wizard that helped users quickly locate appropriate subex-
pressions for desired transformations, then apply them to those subexpressions. This is important
because without subexpression selection and shortcuts for applying a desired transformations to
selected subexpressions, it is painful for even expert users to force large expressions into anything
near the form they would prefer — death by a thousand cuts and pastes.

Part of the pain is carefully reassembling a final result from independently transformed subex-
pressions, then carefully deleting the distracting debris of all the intermediate steps.

Even merely ordering commutative operands as desired is difficult or impractical in most com-
puter algebra systems. For example, it is a constant irritant to be unable to transform a result
such as E = c?>m to E = mc? or, better yet, to prearrange that it will automatically be ordered as
desired.

2.2 Including direct manipulation

Direct manipulation provides a complementary way that major computer algebra systems could
make their user interfaces more helpful: With Milo [2] or Theorist [7] you could use the mouse to
select a term or a factor, then drag and drop it to

e reorder terms and factors,

I'The maximum number of legible characters simultaneously legible on multiple high-resolution screens or sheets
of paper is unimprovable.

132

A computer algebra user interface manifesto

e distribute a term over a factor,
e factor out a common factor from a sum of terms,

e transpose factors or terms from one side of an equation to the other.

The selected subexpression could also be dropped into a variable in another expression to substitute
the subexpression for every instance of the variable in that other expression. Also, expressions could
optionally be compressed by automatic or mouse-driven temporary replacement of subexpressions
with ellipses.

Here is a temporal sequence of Milo snapshots for dragging x successively further right in an
equation [16]:

1
+x—1 = +x—1 = %er:l = (%Jrl):l = %+1:—
X

Milo evolved to The Plotting Calculator, which is still available and supported [3]. The most recent
version of Theorist is named LiveMath™, which is also still available and supported [19]. Both are
oriented toward mathematics through calculus, but direct manipulation should also be implemented
in other computer algebra systems, integrated with the transformation wizard proposed here: After
selecting subexpressions, one of the transformation options, if applicable, should be “drag and drop”.

2.3 Collecting multiple alternatives

The wizard generates and displays the results of alternative transformations as the user explores
a tree of successive applicable transformations. The user can accumulate any number of these
alternative results into a list that is returned as the result if the user wants more than one. For
example, as users interactively view alternative factored and partial fraction forms for a rational
expression, they can indicate which ones they want included in a returned list of alternatives. This
is inspired by Wolfram|Alpha [38], which automatically returns multiple alternative results. The
difference here is that the user can participate in a more thorough exploration of the possible
alternatives and select only those of interest.

2.4 Input-result pairs versus derivation steps versus replacement

Most industrial-strength computer algebra systems use only the input-result mode. This mode is
particularly appropriate when the goal is to obtain good final results in as few steps as is practical.

Some mathematics education programs such as Mathpert™ and the SMG application for some
TI computer algebra products use the derivation mode wherein the input is transformed to a result
by selecting successive subexpressions and choosing transformations from menus, with the annotated
result of each step displayed beginning on a separate line. This mode is also often used in theorem
proving software [29, 37]. This mode is also good for expository use by professionals when they
want to explain in a presentation or publication how a result is derived. For example, the multi-step
derivational style is used several times in this article.

Some programs such as The Graphing Calculator offer the replacement mode wherein selected
transformations replace the selected subexpressions in situ. This mode has the advantage of con-
serving screen space by minimizing the amount of debris — at the expense of not being able to view
the input and result simultaneously.

133

Stoutemyer

An industrial-strength computer-algebra system should offer all three modes. The following
observations can justify allowing mixtures of all three modes in a single session window and name-
space context:

e An input-result pair can be regarded as a one-step instance of the derivation mode.

e A one step in situ replacement could be labeled with a two-button setter bar such as
\
| Tnputs that toggles between the two.

e A multi-step in situ replacement could have a slider bar between these two endpoints, and
perhaps also a Play button that does a slide show or an animation.

e A right click could offer the option of changing previous computations between these three

modes, such as

— collapsing a derivation sequence to an input-result pair or to an in situ replacement,

— expanding an input-result pair to a refinable derivation sequence that was automatically
used to create it.

The model-view-controller paradigm is a good way to achieve this multi-view software design [36].

2.5 {Undo™, redo"}

Anyone who has used software with a well designed essentially unlimited undo-redo capability knows
how aggravating it is to return to software that offers only one step of undo — perhaps with no redo.
With current RAM capacities measured in gigabytes there is no excuse for this. Internet browsing
has familiarized users with using the “<-” and “—” buttons together with a drop-down browse
history list to revisit easily throughout the tree of past web page visitations. The wizard can use
the same techniques and temporarily save all recent closed dialog boxes for quick regeneration.

2.6 Dynamically created dialog boxes specialized for the example

The variety of mathematics examples is so great that general-purpose dialog boxes created when a
computer algebra system is built would be unpleasantly cumbersome to use:

e They would have numerous distracting grayed-out controls.

e They would entail numerous subsidiary dialog boxes to accommodate all of the inapplicable
entries without making each dialog box unreasonably large.

e They would contain lengthy or awkward wording such as “variable or variables” or “variable(s)”
to correctly accommodate both singular and plural cases without distracting grammatical
eITors.

Thus custom dialog boxes specialized to the framed subexpression must be created at run time.

134

A computer algebra user interface manifesto

2.7 Adapt to the user’s level and goals

Computer algebra is being used by students from beginning secondary school algebra through
graduate-level mathematics — and by professional mathematicians, scientists, engineers, economists
etc. at many different levels of sophistication. The number of potential users declines rapidly
with increasing mathematics level. However, most computer algebra systems are designed for the
higher levels of this spectrum. Consequently the most powerful general-purpose systems are quite
daunting to most potential users. For example, in many courses from secondary school algebra
through university real-variable calculus:

1. Many students know nothing about hyperbolic functions, higher transcendental functions and
hypergeometric functions.

2. Most students have not encountered many standard mathematics symbols and notations such
as 3, V, =, V, A, R, & Z and Q.

3. Most students know nothing about terminology such as algebraic groups, rings, fields, ideals,
varieties, and square-free factorization.

4. The expression 1/0 is usually or always regarded as undefined rather than as +o0o or a circle
of infinite radius in the complex plane.

5. The expression y/—1 is usually or always regarded as undefined rather than 1.
6. The expression (—1)'/? is usually taken to mean —1 rather than 1/2 + iv/3/2.

The mathematically weakest students and professionals who could most benefit from computer
algebra are most intimidated by the appearance of such unknown function names, symbols and
nomenclature in their dialog boxes and results. Often this intimidation and the consequent loss of
self esteem terminates receptivity to learning effective use of the computer algebra system.

In computer aided instruction there are efforts to automatically infer the level and overall goals
of users, then adapt the interface accordingly. Those techniques are not explored in this article,
and the termination of receptivity might occur before enough input occurs to make an accurate
inference. However, one easy way to accomplish many of the benefits of such customization is for
the first dialog box of a session to have a button labeled “Session preferences” that opens a dialog
such as the following if pressed:

4% Session Preferences: - (223w
1 e 1 @ 1 I
— undefined, ar - = 00, OF oo e | g<Osx
] 1
Ly =1 = undefined, or @ v =1 =

(7 Use "and", 'or', and 'not’, or @ Use &, %, and =
[¥] Allow hyperbolic functions] Allow classic higher transcendental functions V] Allow all functions

Rernember my preferences under the name:

135

Stoutemyer

The defaults should be those of the computer algebra system, but the more elementary alternatives
should appear first in each row of alternatives to minimize alarming elementary users.

Another complementary alternative to matching student mathematical level is to enable the
easy creation of named shell programs and their icons that launch the computer algebra system
then immediately set appropriate preferences automatically. An instructor can then create such
shells named, for example, MapleForAlgebral or MathematicaForCalculusl.

3 Examples of using the wizard

This section contains examples of using the proposed wizard.

3.1 Simplifying an ugly expression

The Mathematica CreateDialog]. . .| function is a convenient way to create new dialog boxes at run
time. Thus I used CreateDialog]...] to create dialog boxes that are appropriate for specific exam-
ples, without bothering to attach these boxes to each other or to any Mathematica transformation
functions. The mock intermediate and final results are not that of any particular current computer
algebra system, but rather what I wish they would produce — especially with regard to ordering of
factors and terms. For example, suppose that either an input or a result of previous steps is

(102@17"3 + pqr?s + pPqrit + pPqrst + p*rt 4 p*rds + p?r®t + pPrist + pgrt + pards + pgrit + pgrist+-
2pqrs + 2pqrt + Apgr + 4pgst + 2pgs + 2pqt + prd + pris 4 prit + prist 4+ pris + 2pgrs+
2pgrt + dpgr + 4pgst + 2pgs + 2pqt + prd + pris + prit + prist + pris + prit + 2pri4+
2prst 4 2prs + 2prt + 2pr + 2pst + ps + pt + qris + qrit + 2qr? + 2qrst + 2qrs + 2qrt-+
2qr + 2qst + qs + qt + 2r®s + 2r*t + 4r® + drst + 2rs + 2rt)/

(pqr2 +pqrs+pqrt+pgst+pr® +pris+prit+prst+qrd +qris+qrit+qrst+rt 4 r3s 43t +7’25t).

(1)

I have no particular goal form in mind, but I would like a result that is more concise and
comprehensible — and more efficient for substitution of numbers. I position the mouse pointer
between the left margin and the expression, thus framing the entire expression, then right click
and choose “transform”.? This opens the following dialog box courteously positioned just above the

subexpression if the subexpression is low on the screen, or just below the subexpression otherwise?:
£ Choose main variable [
p q s bt Mane .

344443« Approximate number of camman transfarmations for each choice

1 Back || Next” Cancel [transform] button

2 Alternatively, I can choose “Transform ...” from the main menu bar or click on the main toolbar.
31 hate it when a dialog box initially covers the information I need to respond to it!

136

A computer algebra user interface manifesto

Some transformations such as expansion of an improper ratio to a polynomial plus a proper
ratio require a designated variable. The button considers only transformations that do not
require such a variable, such as factoring or polynomial expansion with respect to all variables.
With that choice, the variables would be ordered according to the analysis in [20].

The variables are listed in non-increasing order of an estimated number of applicable common
transformations because the choice of main variable tends to have the greatest influence on the
overall form of the result. Choosing a main variable for which there are few alternative forms tends
to narrow the choices more than otherwise. For example, if we chose p, ¢, s or t as the main variable,
then there would probably be fewer than 5 common alternatives for r thereafter. Thus button r
was initialized to pressed to encourage lazy users such as me to accept it, which I do. This opens
the following dialog box:

4% Transfarmations of framed expression with ras main variable: @

Size Alternative

|:-2qr3+p2q|25+p2q|2t+p2qrst+p2r4+ P T RV L, YR

|:q|2+|:qrs+---+|:-r3+|:-|2 =+ |:-|2 t+|:-rst+qr3+q|2 s+q|2t+qrst+r4+r3s+r3t+|25t

368 Frarmed expression:

|:| I68 Order factors & terrms: pr5+|:-2r4+|:u:|r"'+pr45+|:-r4t+|:-2qr3+---+2pqt+2pst+pspt+2q51+qs+qt

r4+|:-r3+qr3+r3s+r3t+ |:-q|2+---+|25t+ pars+pgrt+prat+qrst+pgst

pr5+r4 [p2+|:-q+ps+pt]+r3 [p2q+p25+---+pst]+|2[...]+[...]r+4|:u:| t+--+gs+qt
[] 275 Collect powers of 1 T3
I +r [|:-+q+s+t]+|2[pq+ps+---+st]+[pq5+pqt+p5t+qst]r+|:u:|st

|:-r5+r"f [p2+|:u:|+ |:-5+|:-t]+r3 [p2 n:|+|:-25+---+|:-5t]+|2 [J+[.]r+dpgt+--- +gs+qt

[r+pl (r+a] [r+=] [r+1]

~ [pe+pt+Z2p+gs+gt+2q+2s+2t+4) 4[]+ - +qt
[r+pl [r+g) [r+=] [r+1)

[C] 216 Partial fractions with weto r p py SRAEE o2 GEESEL SN I 4 2Pt ot
(p-slfg-=) (r+2] (per) (p-s) (-t [9#n) [3-=1 [9-1 (p-1) (3-1) [r+4]

0oz conciseFarmi..) with r main: g |

[T] 233 Factored wrto r

153 Paolyrnormial 4+ proper fractionwrto r pr +

[Substitute walue for

[.ﬂ.ccept replacement][ﬂhunse next variahle][Cancel variahle chuice][Cancel [transform] buttan

“A lot of times, people don’t know what they want until you show it to them.”
— Steve Jobs

The button lists alternatives that would interest most users only occasionally for this
example — alternatives such as continued fractions, Hornerization, expression in terms of Chebyshev
polynomials, or series approximations.

The displayed sizes are some easily computed measure that correlates approximately with the
relative area that would be required to display the entire alternative results. The initially checked
boxes are those having the smallest size.

The dialog box shows alternative results for all the alternatives that can be computed in a total
of at most 0.1 seconds — with elisions if necessary to avoid scroll bars or using the entire screen.
User interface designers [23| feel that maximum acceptable response times are:

137

Stoutemyer

e about 0.1 seconds for responses to a mouse click, key press, or anything involving hand-eye
coordination;

e about 1 second for opening a progress indicator, closing a dialog box or reformatting a table;

e about 10 seconds for everything else, including displaying a graph or completing an under-
standably time-consuming task. This “mind begins to wander” threshold is not always achiev-
able with computer algebra.

The Mathematica Collect][. .., r|, Factor|...], PolynomialQuotient|. .., ..., 7],
PolynomialRemainder|. .., ..., r] and Apart[...,r] functions require a total of only 0.04 seconds on
a dual-core 1.6 gigahertz computer to compute Mathematica-ordered versions of the five initially-
displayed results in this dialog box. Therefore this dialog box could be created and displayed in an
acceptable amount of time.

The progress bar for the conciseForm(. . .) alternative appears within one second, indicating that
it is still being computed after the initial display of the dialog box. If that function doesn’t post
progress messages, then a slug cyclically moves from left to right to let the user know that the
computer is working rather than merely awaiting user input.* The conciseForm(...) alternative
represents the system’s most powerful general-purpose simplification function such as the Mathe-
matica FullSimplify[. . .] function, which requires 2.4 seconds for this example. This is way less than
the time it requires for me to compare the five alternatives above conciseForm(. ..) with the Framed
expression. As such continuing computations complete, their results are displayed in the dialog
box — elided if necessary. They are listed below initially presented results to reduce displacement
distraction when they complete. The conciseFormy(...) alternative completes with a size of 125,
which is the smallest, so that check box also becomes checked if I haven’t already pushed a button.

Every time a check box is checked that has not been checked before, if the corresponding result
is elided, then another dialog box opens that merely displays the un-elided alternative result, with
scroll bars if necessary. For example, the initial “Polynomial 4+ proper fraction wrt r”’ choice opens
the dialog box

£§ Polynowmial + properfraction with respect to ¢ @

pr+ (ri(ps+pt +2p+qs + qt + 29 + 25 + 2t + 4)+4
r(2pgs + 2pgt + 4pg + 2pst + 2ps + 2pt + 2p + 2gst + 2gs + 2gt + 2q + 4st + 25 + 2¢)+4
dpgst + 2pgs + 2pgt + 2pst + ps + pl + 2gst + gs + gt)/
((r+p)(r+g)r+s)(r+t))

4 Back [Cicrse.[ﬂr_-:ept rep Iacementl Cancel variable choice | [Cancel [transform] butta n

and when conciseForm(. ..) completes, it opens the dialog box

4Tt is not yet customary to have computer algebra functions post progress messages, but there are obvious
candidate events for some algorithms. For example, many algorithms for degree n or for n variables, terms, factors,
equations or columns process them one at a time, permitting messages of the form “1/n % done”, “2/n % done”, ...
even if the time spent for each such step is likely to be rather uneven. People are comforted by progress bars even
when they are inaccurate.

138

A computer algebra user interface manifesto

£% ConciseFarmi..J with r main (3]

(P +r'(g+s+)+ri((s+t)g+st) +ri(gst + s+t 4+2) +2((s+t+2)g+st+ s+t +1)r4+
lﬂr; 4 |'||':||I'2"'H|l e & f}}lr;- . .”2["' -+]]:; 1 n}:; L fr + llral 4+ 2 L '{f}l.l.“ 4 1 4 2],1 4 Pl 5 'f]].-
((r+plr+aglir+s)(r+t))

[4 Back][CIDse][.&ccept replacement”ﬂancel watiable chu:uice][l:ancel [transfarrm] huttu:un]

Both alternatives are significant improvements over the original framed expression (1), but
both numerators are still lengthy with no easily discerned pattern. The reasons for the factored
denominator in “Polynomial + proper fraction” are:

e The factored denominator was already computed for the alternative “Factored wrt r”.

e The factored denominator is much more compact and informative than the fully expanded
original denominator.

e There is nothing in the phrase “Polynomial + partial fraction” that promises displaying the
denominator expanded with respect to r that was used to compute the polynomial part and
the numerator.

e [t is easy to frame the factored denominator then expand it if desired.

Although the ConciseForm result is slightly more compact, perhaps I could improve the numerator of
the proper fraction result because I requested no more than a polynomial plus a proper fraction, and
the quickest path to that goal was to expend no extra effort on the numerator beyond the collection
with respect to the main variable r that was already done. Therefore in either the dialog box that
contains the elided or the complete version of the proper fraction, I frame the entire numerator,
right click, then choose “transform”. This recursively opens up a new dialog box to choose a main
variable, for which I again choose r for consistency. The resulting displayed alternatives include the
factored numerator

(rlp+a+2)+2pg+p+q) (r(s +t+2)+2st +s+1).

This is much more compact, with insightful symmetries p <> ¢, s <> t and [p, ¢] <> [s,t] that are
also true of the denominator. Therefore I accept this replacement in this sub-problem that is an
alteration of the “Polynomial + proper fraction” alternative, thus transforming the expression in
that dialog box to

(rp+q+2)+2pg+p+q) (r(s+t+2)+2st+s+t)
(r+p)(r+q)(r+s)(r+t)

pr+ . (2)
This is the nicest overall result so far, but before accepting it, I notice that although every factor
contains r, the first numerator factor and the first two denominator factors are free of s and ¢,
whereas the second numerator factor and the last two denominator factors are free of p and ¢. From
experience I know that for two ratios having disjoint variable sets or nearly so, common denominators
almost always increase bulk because there can be very little cancellation in the resulting numerator.

139

Stoutemyer

Thus conversely, partitioning the ratio in (2) into a ratio containing {r, p, ¢} and a ratio containing
{r, s,t} then transforming each ratio to partial fractions might reduce bulk. Consequently, I drag
the first numerator factor left of the ratio giving

(r(s+t+2)+2st+s+1t)
(r+p)(r+q)(r+s)(r+t)

Then I drag the first two denominator factors under the former numerator factor giving

rl(p+q+2)+2pg+p+q\ [(r(s+t+2)+2st +s+1
p”(T)(o)+ t)) @)

(With the ability to select several non-adjacent subexpressions, I could instead select in (2) the first
factor of the numerator and the first two factors of the denominator, then right click, then choose an
action named something such as “collect”, “group” or “isolate” — or perhaps directly choose partial
fractions.)

Next I highlight the left ratio in (3), choose 7 as the main variable, then accept partial fraction
expansion with respect to r, then do similarly for the right factor, giving

+1 +1 +1 t+1
pr—i—(p —l—q ><S +) (4)

r+p r+gq r+s r+t

pr+(r(p+q+2)+2pg+p+q)

This is a very gratifying result compared to the equivalent input (1), and I am happy with the

ordering of the terms and factors. Therefore I press the button, which opens the

dialog

&% Input-Result style: @

@ Mew Input—Result pair
) Mewy derivation sequence

_) Mew Input—Result toggle

If T choose “New Input-Result pair”, then the main computer algebra session window would be
updated with a numbered input such as Input, : Transform(Results,...) followed by expression (4)
preceded by a label such as Resulty. The purpose of the Input line is to capture a programmatic
way to transform Results to Resulty for purposes such as scripting. Most users will not want to
view the ugly details, but if I click on the ellipsis in Transform(Results, ...), then it expands to a
procedure that generates Resulty, such as

Block (Local (templ , temp2 , temp3 , temp4) ,

templ := PolynomialPlusProperFraction(Result3, r),
temp2 := Factor (Numerator(Second (templ)), 1),
temp3 := Factor(Denominator(Second (templ)), r),

First (templ) +
PartialFractions (First (temp2

)/(First (temp3)*Second (temp3)), 1)x
PartialFractions (Second (temp2

/(,
)/ (Third (temp3)*Fourth (temp3)), r));

140

A computer algebra user interface manifesto

The “New derivation sequence” choice is similar, except it generates a collapsible sequence of
such pairs using labels such as Intermediate, ;, Intermediate,,

The “New Input-Result toggle” is similar to the “New derivation sequence”, except listing a single
expression labeled with a two-button setter bar.

3.2 Transforming equations, inequalities and Boolean expressions

The primary activity that users want to do with equations, inequalities and systems thereof is
to transform them into explicit solutions, so why force users to learn numerous different function
names with different parameter semantics for solving different kinds of equations? If the user clicks

the button when an entire equation, inequality or system thereof is framed, then the
wizard tries to return solutions. Here is an example for a differential equation:

4% Transfarmations of framed differential equation: @
dize Alternative
_3yE o
22 Framed expression: y' = %o 37 oAy
2ay + and

3
24 Tplicit solution: %(4y2+4x}f—x} =0

[C] 99 Explicit solutions: y = S Wy = —E e EE L

[C] 308 Solution curves forCy =10, 2, ..., 10; e

I.ﬂu:cept replacement”ﬂancel [transfarim] huttnn]

Notice the synergy of multiple views of the solutions. When the mouse pointer is over a curve,
it is attached to a call-out displaying the corresponding explicit solution containing the associated
numeric value for C;. The plot range for x and the set of values for C; were chosen to insure that
y is real. Checking this alternative opens a dialog with a magnified plot that gives the user control
over the plot ranges for z and y together with the set of numeric values for C;. The listed size of
308 is correlated with the area of the plot in the session window if accepted.

Here is an example for a system of two nonlinear algebraic equations:

141

Stoutemyer

4% Transfarmations of framed equations: @

dize Alternative
22 Framed expression: x2:2y2 Mhoxy=3 A xeR A yeR

19 Correctfractional digits =5 = »=-218449 n »=-137332 Vv x=218449 » w=137332

[C] 24 Triangular systern: _.,-4:2 M >c:§1n,.-'3 AxeR M yeR
: [14473 1.y |1y (10473 73 -1 [14473
[90 Exactsolutions: x=— -~ o iy = = LR Wox= | fy w= s 2 e
Vo= 1z 2 Vo= 1z 2

[2345 Two equation plots:

Accept replacement“Cancel [transform] button

e The approximate solution was computed with adaptive precision interval arithmetic to deliver
guaranteed requested accuracy initially set to correspond to six significant digits for nonzero
components. If interval arithmetic is inapplicable or is taking too long for the specified
accuracy, then the wizard tries adaptive significance arithmetic. If that is also taking too
long, the wizard switches the popup digits setting to “IEEE” double and uses that. The
corresponding displayed phrases are “Estimated correct fractional digits” or “Approximate
solutions of unknown accuracy”.

e The triangularized system is a reduced lexicographic Grobner basis, which might be the pre-
ferred alternative for parametrized systems having exact explicit solutions that are messy or
require unendurable time to complete. If the system included inequalities, then there would
be a cylindrical algebraic decomposition instead.

e The z and y ranges in the plot were automatically set to include a margin around the convex
hull of all the isolated finite solutions — a margin small enough to resolve detail near the
solutions but large enough to provide useful context.

142

A computer algebra user interface manifesto

Here is an example of transforming a Boolean expression:

&% Transformations of framed Boolean expression: (23w

size Alternative
25 Frarved expression: x<=1 A yx2 Vxzl Ayl hz=3Ve=1lAyz2hz=3

15 The minirmal disjunctive normal form: x2 1 A y=2d W y<=2 A z=13
[C] 17 The minirnal conjunctive normal form: =l Wy =) A fy =2 v z2=13)

1]
]
1

[C] 372 Some points satisfying the inequalities: o P

Advanced

I.ﬂu:cept replacement”Cancel [transfarrm] buttc:n]

The button lists alternatives expressed in terms of nands, nors, etc.

3.3 The wizard is helpful even for mere numbers

Common useful internal representations for exact numbers are rational numbers and irrational
constant expressions such as /7 + In2. Common representations for approximate numbers are:

1. software variable-precision Floats — preferably with adaptive significance tracking,
2. IEEE double Floats to take advantage of fast hardware instructions;

3. intervals whose endpoints are each independently an exact rational number or a Float —
preferably adaptive precision for floating-point endpoints, and allowing a disjoint union of
such intervals with either open or closed endpoints.

Before commencing a computation a user might want to transform from an exact to an approximate
representation to make the computation faster — or from an approximate to an exact representation
to avoid rounding errors. After a computation a user might want to convert from an approximate to
an exact representation to attempt recovering an exact result — or from an exact to an approximate
representation to make lengthy exact numbers more comprehensible or faster for purposes such
as plotting. Also, at the end of a computation a user might want to simply alter the display of a
number, such as displaying an exact rational number factored or as an integer plus a proper fraction
or as a decimal fraction or in scientific form with a particular number of fractional or significant
digits. The wizard makes it easy to do these transformations.

143

Stoutemyer

3.3.1 Alternate forms for rational numbers
If the framed subexpression is

1371742100137174210
10973936901)

then the wizard could offer the dialog box

£} Tranzfor~atizn: of “amed exact oo~ sTank =pressio

Sz Albemabec

. LALLM 2 MU
6 Frarnad aupressiv- . s —

Il % Inager +prope-fraction 124930393 — SO0l
LS 2 el]

2 G 10N 154 T S0 2
7147 Fac==red e B 0L~ I2A T D80T 26 0 0el
LA AL

[[& weriazle zrecizion floct Tnzzreal, Fic la s weidth |2:-=:_:I = v|: L2420290336 204637 30 0 _TF 1 10 42
& Voriacle zrecizion floct Inzzpeal, Lo s lube weiddh |2::~:_:I le - |: LE4cacar a3 20ds37300,_0

|:| 4 Ngumrenes heckiog an--me- e | sheomabed sig - thean- din 1 I BT P (O ([A T T R L e

[1 2« qui= rene = hecking an--rnes stmeted tractinnsl ziges: I'I.-' '-'| TALPL QRS AN 1
[2 FarlZi—ulioitM_al Lutea kool 2rror Dizplayad sionificas Llisil: 3 = | 220107

[2 FaetZi=dicitM_oal Lobra_kzud zeror, Dispoaged Diaclioral e | :ow o 12493939 g€

S ed |

SACC BET TBR 3CRIT) ant" Cahze [tra~:zrm’ I:-,tt-:-nl

In accordance with the recommendations of [27], the approximate alternatives are ordered from
intervals through bare IEEE Floats to encourage more use of arithmetic that is closer in spirit to
exact arithmetic. The button could offer p-adic, continued fraction, and different radix
representations.®

Notice that this dialog provides useful supplementary information about the framed number
even if the user never intended to replace the framed number: The user now has a good estimate
for its magnitude, can see that it is well approximated by 1.25 x 108, and that both the numerator
and denominator are composite but square free.

5In most systems, default simplification would immediately transform a factored or continued fraction or integer
plus proper fraction form of a rational number back to a reduced ratio. Thus special passivity is required to make
such volatile forms appear in results, and such non-idempotent forms are quite likely to disappear when such results
are used in subsequent inputs. For this reason, many systems return a factored rational number as a list of pairs
of bases and exponents, etc. The wizard must correct for such impediments to direct substitution of transformed
subexpressions into the expression from which it came, suppressing default simplification where necessary to preserve
the displayed overall result in standard mathematical form.

144

A computer algebra user interface manifesto

3.3.2 Alternate forms for intervals and Floats

If the framed subexpression is an interval, an IEEE double or a variable-precision Float, then
the wizard could offer alternatives including approximating the number with an exact rational or
irrational constant. For example, if the framed number was the IEEE double [7.024814731040727 |
or a reasonably close approximation to it, albeit perhaps displayed with fewer significant digits,
then the wizard could offer

£E Transfos~atzn: of amed Azak zon s nt oo reszion |t

Sz Albemabwo
Ao Pramed Th—=1qim ba wesie tHoets -]

J| ? Inctional zonswnt: 4 5 g Zelative zrror 4 10 -7, Bhso ube ervor 3,10 1
0 Copweown.” |17 w0 Wolue: J;HME'IMWJ'I_ Selalice 2rror: 0 A ik ez]
3 Worinzle crecizion floctInzzeeal, R laz v weidth |E:—=J.II 1w gl 310007 27 L0 10 -®
5 Wrrinzle zrecizion floztInzzreal, Loszlubr width | 2200 15w | LO2gL4TIL0G0TILD

4 sgm-renes heckiag an-ore- I sh=-aked s -thean- dug t | Th 7™ o F1AT3 TN A w1 Pem1nm =2

A4 Mg eencs hEckmg anc e stiaeted trachinnal Tiges: | 1% = | PRIEE N F P e [TEa b

3 Fast Zi—ulic il Noal Lora bzl zreor. Dizplagad siooifioas Lelicil:: 18 - |: TO24R14TIANA0 T T T

15 = T22814531020727

3 Faxl Zi—icib Mgl Lora_kzd 2rror. 0 s laes Traclioe al dig L:

|.—".df:m-: d |

|;u_|_u|-_|_] dl.urrlzrlL"l:drl_u [tra: = oo b l.l.l.ln]

Details matter. For example:

e The alternate expressions are aligned, if practical, to make it easier to compare them.
o [f the framed Float displayed few digits, the initial displayed digits for alternatives displays
all or many digits — and wvice versa.
The delightful alternative v/5 7 was computed quickly by the Maple identify(. ..) function, for which
there is a more powerful free stand-alone version on the internet [5].

3.3.3 Alternate forms for non-real numbers

For non-real numbers, which of rectangular, unit polar and exponential polar form is most attractive
depends on the particular number. For example, compare

145

Stoutemyer

Rectangular Unit polar Ezxponential polar
7+ 5i _ (_1)arctan(5/7)/ﬂ' _ \/7_46arctan(5/7)i7
3 3 .
—2sin <£> + 2 cos <£> i = 2(_1)5/7 _ 2657m/77
2cos (1) +2sin (1)1 = 2(—1)"" = 2et.

Default simplification would ideally display the form that is most concise for each non-real num-
ber in a result even if a different form is used internally. However, optional transformations can
conveniently offer all three alternatives.

4 Design issues and their resolutions
Challenging design issues include deciding;:

1. What set of transformations should the wizard consider?

2. How can the wizard quickly estimate the number of applicable transformations without know-
ing the next variable choice?

3. When the next variable choice is known or , how can the wizard quickly determine what
subset of transformations are applicable and schedule them so that a worthwhile number are
completed quickly?

This section addresses these issues and a few others. However, there are so many transformations
that the wizard should know about that this section concentrates on those that help resolve issues 2
and 3. For more completeness, the Appendix discusses additional transformations that are relevant
to the rational aspects of expressions. Transformations of the irrational aspects of expressions is
too large a topic for treatment in this article.

First, three simple definitions:

Definition. Default simplification is the result of pressing the key or else perhaps
with the factory-default mode settings and no transformational or simplification functions
anywhere in the input expression.

Definition. A functional form is an expression of the form
f (expression,, expression,, ...)
where f is any function name.

Definition. Generalized variables are the smallest subtrees of an expression tree that are not a
sum, difference, product, ratio, rational number, Float, or reasonably regardable as an integer
power.

146

A computer algebra user interface manifesto

For example, z, T, i, cos(x+ f(2)), 2/°, and 3'/° are generalized variables. In contrast, 3/4, z/y,
and = — 3 are not. Also, 2%/° and 3% are not generalized variables, because they can be regarded
as (21/%)? and (3'/%)2.

The importance of generalized variables is that transformations that are applicable with respect
to variables in an expression can also be applicable with respect to generalized variables in an
expression. For example, a user might want ordering, expansion or factoring with respect to to =
and or cos(z + f(2)). Additional transformations might be applicable with respect to generalized
variables that are not merely indeterminates, such as cos(z + f(2)) — sin(7/2 — x — f(2)),
cos(x + f(2))* = 1 —sin(x + f(2))?, or m — 3.14159.

As a prerequisite to discussing the wizard, it is helpful to organize the most important optional
transformations offered by most computer algebra systems into categories of related transformations.
For simplicity, the discussion addresses only constant ground domains that are common scalar
numeric domains of characteristic 0. However, much of the discussion is relevant to other ground
domains such as Z,, or {true, false}.

4.1 Different transformations for different generalized variables

“To each his own.”
— Cicero

“I got different strokes for different folks.”
— Muhammad Ali

Often users want certain transformations such as expansion or factoring only with respect to
certain variables. For example:

e To compute the integral of (x5 + (c+ 1)999 T+ 1)2 with respect to x, it is helpful to expand

with respect to z, but foolish to expand with respect to c.

e To solve
(0999—1)(z2—1):0 | 09997&1

it is helpful to factor with respect to z, but foolish to factor with respect to c.

In these cases we would prefer either concise or mere default simplification with respect to c.

When the user requests successive transformation for successive variables, we do not want to
destroy transformations done for prior variables. Consequently, requested transformations are au-
tomatically mapped into the largest subexpressions that do not contain variables that have already
been treated. For example:

1. If the alternative for expanding a framed expression with respect to the chosen main variable
T is
(y2+2y+1):c2—y2+2y—1,
then factoring this alternative with respect to y gives (y + 1)2z? — (y — 1) rather than

(y+Dr+y—-1((y+ Dz —y+1).

147

2.

Stoutemyer

If the alternative for factoring a framed expression with respect to the chosen main variable
T is
=Dy +1) (y—2)(y+2z+(z+1)%) (z+ 2y +1)(2y — 1)),

then expanding this alternative with respect to y gives

(y* — 1) ((y2 —d)x+ (z + 1)2) (:v + 4y? — 1) .

. If the alternative for factoring a framed expression with respect to the chosen main variable

T is (yz—l) ((y2—4)x+(z+1)2) (x—|—4y2_1)a

then factoring this alternative with respect to y gives

=D+ (y-2)y+2z+(z+1)7) (@+ 2y —1)(2y +1)).

(Notice that the wizard factored not only the coefficients of powers of = with respect to v,
including the coefficient of the zeroth power of x, but also the top-level content y* — 1, because
none of these contain x.)

. If the alternative for expanding a framed expression with respect to the chosen main variable

or (z+1)°"+y+3)”+ (z+1)°z+ (y+1)(y— 1),

then expanding this alternative with respect to y gives two distinct alternatives: distributed
form
(z+ 122 +yr* + 32° + (2 +)2 + 9> — 1,

and the often more concise recursive form
((z+1)9y2+y+3) x2+(z+1)9x+y2— 1,

both of which are offered to the user. Expansion of (z+1)? will be offered if the user proceeds to
that last remaining variable rather than balking or accepting an alternative already displayed.

Now consider the input sin(x) (cos(2y) + 1) cos(x). If the user is allowed to choose trigonometric
expansion of multiple angles for the generalized variable cos(2y) but choose the opposite transfor-
mation for sin(z) and cos(z), then this product can transform to the particularly concise equivalent
sin(2z) cos(y)? because cos(2y) = 2(cos(y)? — 1) and sin(z) cos(z) — sin(2z)/2.

Thus for maximum flexibility:

1.
2.
3.

The user should be able to choose the order of generalized variables.
The user should be able to choose separate transformations for each generalized variable.

The choices for each variable should include conciseForm(...) and mere reordering with any
associated default simplification when such results differ from the framed subexpression.

Where there is expansion with respect to two or more successive variables, both distributed
and recursive forms should be offered if they are not identical.

148

A computer algebra user interface manifesto

4.2 Control over the order of generalized variables

“Order is the shape upon which beauty depends.”
— Pearl S. Buck

Subsection 4.1 discussed how collection of similar powers of a generalized variable can be re-
cursively applied to the resulting collected coefficients to perform transformations for successive
generalized variables in any order. However, current computer algebra systems would nonetheless
impose their built-in ordering rules to the resulting factors and terms. Therefore the displayed
ordering of factors in terms and of terms in multinomials might not correspond to the recursive
most main to least main order in which the user has treated successive variables. For example after
requesting expansion with respect to y with coefficients that are factored with respect to all other
variables a user might obtain a result such as

2+ P2+ 1) + 22
rather than the more appropriate result
(z + 1%y + 2y® + 2°.
Also, regardless of the requested order, Newton’s definition of force might be displayed as
f=am (5)

which is visually quite disturbing despite its compliance with the usual alphabetical ordering con-
vention for variables in a monomial. Consequently:

Optional transformations should include control over the displayed ordering of factors and terms.

The few systems that give such control tend to do so indirectly and incompletely via control
over the ordering of generalized variables. For example:

e In the Maxima computer algebra system the desired traditional order displayed in result equa-
tion (5) can be accomplished by a declaration such as ordergreat(a,m) or orderless(m,a). If
the user has issued an ordergreat(...) and a non-conflicting orderless(. . .) declaration, then all
other variables order between the least of the great and the greatest of the least, alphabetically.
The effect is global from the time of a declaration until all declared orders are deleted with
an unorder() declaration, which must be used between any two ordergreat(...) declarations
or between any two orderless(. . .) declarations. Maxima also provides another mechanism for
overriding default alphabetical ordering:

declare (variabley, property;, variables, propertys, ...)

gives each variable the corresponding property. Possible properties include constant, scalar,
and mainvar. The command remprop(variable, property) can be used to remove such a dec-

laration. Using < to represent “less main”,

constants < scalars < undeclared < mainvars.

By default, alphabetical order is used within each of these categories.

149

Stoutemyer

e The Reduce computer algebra system has an order declaration that is similar to ordergreat(. . .),
except that more than one cumulative order declaration is allowed before a declaration

order nil;

which clears all such ordering declarations. The Reduce order declaration also accepts func-
tional forms and built-in literal constants such as 7, which is important.

e These and some other systems provide some control over the ordering of special distributed
polynomials for Groébner bases, but that is not very helpful for controlling the ordering of
factors and terms in general expressions.

4.3 Common alternate forms for the rational aspect of expressions

Many computer algebra systems have separate functions for common denominators, various fac-
torization levels, and various levels of polynomial or partial fractions expansions. This subsection
describes how, for any particular ordering of generalized variables, these traditionally disparate con-
cepts can be organized into a single topologically sorted list of partially-ordered alternatives varying
from the most complete commonly-named factorization through the most complete commonly-
named expansion offered by many computer algebra systems. This organizing principle greatly
simplifies the transformation wizard by preventing selection of a set of contradictory transforma-
tions and by making the trade-off consequences in this list more obvious.

This subsection concerns only addition, subtraction, multiplication, division and integer powers,
but most of the ideas also apply recursively to rational compositions of generalized variables and
to fractional powers. Moreover, this subsection discusses only factoring, common denominators
and expansion because they are most relevant to estimating quickly how many transformations are
applicable for each variable and for quickly determining exactly which common transformations are
applicable for a particular variable. The Appendix discusses additional rational transformations.

4.3.1 Reasons for common denominators, factoring and expansion
Definition. A candid expression is one that is not equivalent to an expression that visibly
manifests a simpler expression class [24] .

As counterexamples:

e The expression z(y + 1) — xy is not candid because it contains the superfluous variable y.

e The expression (z + 1)? — 22 is not candid because it appears to be quadratic but is actually
linear.

e The expression (z +1)/(z*+2z + 1) is not candid because it is equivalent to 1/(x + 1), which
has lower numerator and denominator degrees.

For most computer algebra systems, any amount of factoring includes reduction over a common
denominator. Reduction over a common denominator yields a candid form for rational expressions,
because the resulting form has no superfluous variables and has maximum possible cancellation of
poles with coincident zeros.

150

A computer algebra user interface manifesto

4.3.2 A univariate partially-ordered set of factorization and expansion levels
1. For univariate factoring there are names for certain amounts of exact or approximate factoring
based on multiplicities and the desired numeric coefficient domain of the factors:

(a) term primitive,®

(b) square free,

(¢c) over the integers Z,

(d) over the Gaussian integers Z][i],

(e) over particular algebraic extensions’

(f) exact reasonably absolute,®

(g) exact absolute,’

(h) approximate absolute over the floating-point real numbers R,

(i) approximate absolute over the floating-point complex numbers C.10

2. For systems that support variable precision Floats, users can choose the precision level for
alternatives (h) and (i). For systems that offer significance and/or interval arithmetic, those
alternatives immediately before (h) for real numbers and before (i) for non-real numbers.

6The term content of a univariate polynomial is the ged of the numeric coefficients times the smallest occurring
power of the variable. Factorization into the term content times the term primitive part forces a common denominator
if any coefficient has a denominator, because with polynomials A, B, C' and D,
A C AD + BC (AD + BC) /G

242 = AB!? D! AD+ BC)B~'D™! =
5D +C — (AD+ BC) 5D - BD)/C

where G + ged(AD + BC, BD).
"As a convenience in Mathematica, Factor[ezpression, Extension — Automatic] automatically uses extensions

implied by the complex unit ¢ and/or any radicals present in expression. For example,

Factor[z? + x — 2 + v/2, Extension — Automatic] — — (—x -1+ \/ﬁ) . (:c + \/5)

However, Factor[:r2 + 242z — 1, Extension — Automatic] 4 (xz+ V2 — \/g) . (m +vV2+ \/§) because V3 is
not in the given polynomial. We must instead use Factor[z? + 2 - v/2-x — 1, Extension — {1/2, v/3}] to obtain this
factorization, but how many users would know to include V37

8This is what is usually expected of algebra through calculus students for purposes such as solving equations
or integrating rational functions: Algebraic extensions implied by radicals in the input together with use of the
quadratic formula and n'" roots to factor binomials. Derive offers this option but also includes cubic and quartic
formulas, which tends to generate unreasonably messy factorizations.

9This means whatever algebraic extension is necessary to factor the polynomial as much as possible, without the
extension being provided by the user. Reference [9] discusses some algorithms for this. Some systems appear to use
absolute factorization in their functions that solve systems of polynomial equations and integrate, but unfortunately
appear not to offer it as a built-in factorization option. Therefore many computer algebra systems cannot directly
factor 22 + 22 — 1 into (x + 1+ v/2)(x + 1 — v/2) without assistance, which any beginning algebra student can do!.

Attempted exact absolute factorization might consume an intolerable amount of computing time, or resulting
factors might entail intolerably messy nested radicals or intolerably messy subexpressions containing functional
forms named something such as Root. This is why I list the exact reasonably absolute level of factorization.

10 Alternatives (h) and (i) are approximations rather than equivalence transformations. Some methods for exact
absolute factorization begin from an approximate absolute factorization that is often preferable to the resulting messy
exact factorization!

151

Stoutemyer

3. With Fy = F5 denoting the fact that for a given example, a factorization at level F} is either
identical to a factorization at level F3 or is a further splitting of the factorization at level F3,
we have

Z[i] = Z * square free > term primitive,

exact absolute = specific algebraic extensions = 7Z,

exact absolute > reasonably exact absolute = Z,
C>R*»Z,
C = Z[i.

Thus these factorization levels form a directed acyclic graph. that we can topologically sort
into one of several alternative lists, such as order 1(a) through 1(i) above.!!

4. If we fully expand the product of the numerator factors and the product of the denominator
factors of a reduced ratio, then we have the reduced ratio of two fully expanded polynomials.
Despite the common denominator, the result is an expanded polynomial when this reduced
denominator is 1 or when both the numerator and denominator are numeric. Therefore this
form is on the borderline between factored and expanded.

5. The computer algebra built-into Texas Instruments hand held, Windows and Macintosh prod-
ucts has a function propFrac(expression, variable) that expands expresssion into a expanded
polynomial with respect to wvariable plus a reduced ratio of two polynomials that is proper
with respect to variable. The propFrac(...) function can easily be implemented using a poly-
nomial quotient and remainder function, and the resulting form is an appropriate next node
in our partial ordering from most factored to most expanded. This form is often more concise
than either a common denominator or a partial fraction expansion. For example, this form
was a key intermediate step in the example of subsection 3.1. For canonicality:

(a) The coefficients of the resulting expanded univariate polynomial part that are not com-
plex Floats can be normalized to Gaussian rationals Q[é] or rationalized algebraic num-
bers.

(b) The denominator of the proper ratio can be made unit normal as described in [25].

(¢) The numeric coefficients in the resulting proper ratio that are not complex Floats can be
normalized to Gaussian integers or algebraic integers.

(d) If all of the denominator numeric coefficients are complex Floats, then we can normalize
their magnitudes — such as making the largest of the real and imaginary magnitudes in
the denominator coefficients be 1.0.

6. Polynomial expansion can be regarded as a special case of propFrac(...) for when the denom-
inator of the given reduced ratio is numeric — perhaps 1.

7. If the reduced ratio of two polynomials has a non-numeric denominator, then the relevant
adjective phrases 1(a) through 1(i) above can be used to label successive nodes corresponding
to the amount of denominator factorization for corresponding partial fraction expansions.

I Actually, different specific algebraic extensions generally form a directed acyclic subgraph because, for example,
we could have any one, two or all three of the extensions v/2, v/3 and v/5, giving more than one path to {v/2, v/3, v/5}.
These directed acyclic subgraphs are the field extension lattices of Galois theory.

152

8.

A computer algebra user interface manifesto

However, the square-free aspect of partial fraction expansion has two variants in the partial
ordering. In non-decreasing order of the amount of expansion, adjective phrases applicable to
the square free aspect are:

(a) incomplete, meaning multiples of all powers of the same square-free denominator factor
are combined over a common denominator, and

(b) complete, meaning instead that for each resulting very proper ratio N(z)/D(x)™ with
expansion variable z, deg, (N (z)) < deg,(D(x)).'?

Whenever a resulting numerator has more than one term, we can distribute an associated denom-
inator over the numerator terms. It is generally unwise to distribute a multinomial denominator
over the numerator terms for purposes such as integration, and it almost always increases bulk.
However, it is helpful to do such a distribution for purposes such as fragmenting a ratio into the
greatest number of simplest possible pieces for angle sum expansion.'® The wizard can display both
alternatives when they are not identical.

Table 1 shows the named alternative forms for a univariate example of the reduced ratio of two
expanded polynomials.

1.

The first two rows and last two rows are approximations to all of the other rows, which are
equivalent to each other.

. The double line separating “ratio of expanded polynomials” and “polynomial + proper ratio”

separates factored from expanded forms.

. Factors that differ from those of the preceding row are boldface.

. Wherever there is a sum in a numerator, the corresponding denominator can optionally be

distributed over the terms of the numerator.

. For each of these named levels an example can be constructed where it is more concise than

all of the other named levels. Therefore all of the levels are important.!

. If a system doesn’t offer built-in support for all of these named levels and a wizard implementer

is not inclined to add such support, then:
(a) Missing intermediate factorization levels can be provided by over-factoring then expand-
ing appropriate subsets of factors.

(b) Missing expansion levels can be provided by over expanding then combining appropriate
subsets of summands.

. The input could be any of these expressions or any rational expression that is equivalent to one

of these expressions. If an input contains Floats, then float-free alternatives can be obtained
by using a function such as the Maple identify(...) function to determine close rational or
irrational constants [5].

12Tn contrast, for the incomplete square-free partial fraction expansion we can guarantee only that deg, (N (z)) <
deg,(D(x)™). Many systems offer only complete expansions, but incomplete expansions are adequate for most
purposes and are often more concise!

131f you must distribute multinomial denominators over numerator terms, it is most efficient to wait until after the
expansion is complete in other respects.

MThere are also unnamed intermediate levels such as splitting some but not all of the square-free factors over Z.

153

Stoutemyer

Table 1: A univariate expression partially ordered from most factored to expanded

‘ Amount of factor or expand

‘ Boldface parts are different from the alternative above them ‘

C 1.5(2—1.37)(2+5.7) (2—1.07+0.764) (2—1.07+0.767) -+ (2-+1.09+0.18¢) (2+1.09—0.181)
z(zfl)2 (z+1)(z—1)(2+1.414)(2—1.414) (2+1.13)(2—1.0440.82¢) (2 —1.04—0.827) -
R 1.5-(22—2.18241.71)(22—1.13240.9) (22 —0.052+0.24)---(2242.192+1.23)

2(2=1)%(2241) (241.414)(2—1.414) (2+1.13) (22 —2.0824+1.76) (22 +0.952+1.5)

reasonably absolute (Z [i,v2])

3(212 4421192104 4291 281132629254 72%41323—-25224+62—6)
22(z2—1)%(z+1) (z—1) (z4+v2) (z—V2) (25 +2+3)

7 M 3(2' 244211 92104429428 4+1326 2925+ 72441323 —2522+62—6)
22(z—1)%(2+4) (2=4) (22 =2) (z+2+3)
7, 3(212 44211 —92104.42% 4 28 4132629254724 +1323 2522 462—6)

22(2—1)2(2241)(22—2)(2542+3)

square free

3(212 44211 —92104 4294+ 2841326 29254724 41323 2522 462—6)
22(2—1)%(22—27—254324—23—-322—22—6)

term primitive

3(212 44211 921044294 28413262925+ 724 41323 2522 +62—6)
22(211—22104228 2274 526_8254224+323-5221102—6)

ratio of expanded polynomials

3212412211 27210412294 32843926 —87254+212443923—75224+182—18
2212 421141429 42841027 —162°4+42°4+622—10234+2022—-122

: : 3, 18211 2721046224925 -152716325—-9325+122445423-10522+362—18
polynomial + proper ratio 5t 22124114 429_4-54+1027— 162044254622 — 102342022 —122
BN . . 3 3 15210 212946284327 —9254+4825—-6924+62344522—-902+6
term prlmltlve partlal fraction 2 + 2z + 221142104428 _4274+1025—-16254+445+4+623—-10224+202—12

incomplete square free part frac

3 3 3243

+ 1228 -326—-32443623—-182+424
z—1)2 229

—227-2254624—-223—-622—-42—12

complete square free part frac

3 3 3 3 1228 —-326-3244362°—182424
2 + 2z + (z—1)2 + 2z—2 + 229—227—2254624—223—622—42—12

partial fractions over Z % + % + (231)2 + 2;; + zfi2 + zgj-1+2:5zi;z142-6
partial fractions over Z[i] % + % + (zf’1)2 + 2;:2 + z§f2 + 2z3—f2'l + 2zi2i + stzjrgﬁe
absolute partial fractions %—i— % + (2_31)2 + 2Z3_2 + 2z_|_32\/§ + 2z_32\/§ + 23}221 + 2221- + 23§i§ji6

partial fration over & | -+ iy + 18 4 805 4 002 _ pamecoar | ponson

partial fraction over € 1.5+ .. 0:089+0.049i _ 0.089—0.049; , 0.0088+0.13i 0.0088—0.13;

2—1.04+0.825 2—1.04—0.82i ' 2+0.48+1.137 ' 2+0.48—1.13i

4.3.3 DMultivariate partially-ordered sets of factorization and expansion levels

Reference 26| describes how to do multivariate partial fraction expansion with respect to two or
more successive generalized variables. As a degenerate case, the expansion is polynomial expan-
sion with respect to variables that don’t occur in the reduced common denominator of the given

expression.

As shown that article, the number of terms in a multivariate partial fraction expansion can
depend on the ordering of the expansion variables. Table 2 shows eight alternatives for factoring
and or expanding a bivariate example over Z. Notice how the partial fraction expansion with respect

154

A computer algebra user interface manifesto

to y in the last two rows introduces poles at x = %1 into some individual ratios, forcing the use of a
piecewise result to avoid contracting the domain of definition. Making a ratio proper can also cause
this. (Unfortunately, most current computer algebra systems quietly do such domain reductions.)
Common denominators remove these additively removable singularities.

Table 2: Some alternative recursive form factorizations and expansions over Z.
f = factored. e = expanded to incomplete partial fractions.

’1“‘2”'3} Result
£t (=D y+D (2 +3)23 —y(y+1) (y*—y3+y* —3y—4)2—2y> (y—1) (y*+2)
Y (z—y)(z+y) (y—1)(y+1)(y>+2)
£ le (! +2y°—3)a® — (10 —2y° ~Ty? —Ay)a— (2y° —2* +4y° —4y?)
Y (z—y)(z+y) (y*+y?-2)
£t xyS+2¢° — (234+2)y* —2(x—2)y3 — (223 4+ T2 +4)y? —4ay+322
v (y—z)(y+=)(y—1)(y+1)(y>+2)
£ le xyS+2y° — (234+2)y* — (22—4)y® — (2234 T2 +4)y? —4ay+ 322
y|me (y—z)(y+=)(y—1)(y+1)(y>+2)
y3+3 2y 2y
€a|fy 72 T G0 T Te-DEHD
z 2 1 1 1 1
Cx|Cy T+ y2+2 + z+y + zy—z+y’—y + zy+a+y’+y + zy—r—y2+y + ry+z—y2—y
+8 11y+8 1 e
L= 517 ~ s T sy ife=-1,
1 2y+1 1 e
L I Sl e vl = e 2) ife=1,
T 2x o 2z 2z o 2 :
Tt Fn T ey GDetere T G0 0G-D _ Gohernerny Otherwise
y+8 11y+8 1 .
- 6(y—1)2 - 6(y+1)2 3(y2+2)7 lf xr = —]_,
1 2y+1 1 e
€)%\ T G T G e fe=1,
2 1 1 1 1 1 1 .
Ytz zytytazitw + Ty—y+ai—z zyty—al—ax sy—y—a2+4x + = ry—y+z—1 + zy—y—x+1’ otherwise

4.4 Series and other approximations

The discussion so far has been about transformations to alternatives that are equivalent to the input
wherever the input is defined — except perhaps approximating exact numbers in the input with
approximate Floats or approximating Floats in the input with nearby rational numbers. This sub-
section instead addresses the equally important alternatives of transformations that approximate
the input with simpler expressions.

Closed-form exact results aren’t always obtainable. Even when they are, the results might be too
bulky to convey needed insight or to permit fast enough well-conditioned evaluation for numerous
floating-point values of the variables therein. Therefore, various kinds of approximation are useful
transformations. Also it is important to realize that the ultimate destiny of many exact expressions
is to substitute Floats into them, in which case the resulting rounding errors might exceed those
caused by an approximate expression. Here are some examples of appropriate optional approximate
transformations for a wizard to offer:

e Quadrature can often be used to determine a single approximate number for a definite integral.

155

Stoutemyer

e Approximate equation solving is often preferable even when compact explicit exact solutions
are obtainable.

e Generalized infinite or truncated Laurent-Puiseux series (allowing, for example, logarithmic
factors) can concisely approximate lengthy expressions. The wizard can initialize expansion
points to ones that are most likely of interest, such as 0, infinities, and poles. If selected, the
user can adjust the expansion points and the requested order.

e Padé approximations often have a larger region of convergence and greater computational
efficiency than power series.

e Truncated Fourier or wavelet series are often more appropriate than expansions about a point.

A well-chosen approximation can be simpler than any obtainable exact result and yet retain all of
the important characteristics of an exact result.

4.5 Generating the list of generalized variables

If a variable v in the framed subexpression has an assigned value, then it would be misleading to list
that irrelevant v. However, we do want to consider listing some or all of the generalized variables
in the assigned value, if any. We can use default simplification for this purpose, because it replaces
all assigned variables with their values.

On many systems default simplification can easily produce results containing generalized vari-
ables that candid simplification would eliminate. For example, the default simplification of most
systems merely reorders the factors and/or terms in the input ((z + 1)z —2* — 2z +2) / (y* — 1),
but all of the factoring and expansion transformations described in sub-subsections 4.3.2 and 4.3.3
transform the expression to 2/(y* — 1)* or 2/ ((y — 1)(y+ 1) or 1/(y — 1) + 1/(y + 1), which all
depend on y alone.

It is helpful for the wizard to recognize such superfluous generalized variables. For polynomial
expressions, expansion to recursive form always eliminates superfluous variables. For other rational
expressions, reduction over a common denominator always does so.'> Thus the first thing that the
wizard can do is compute such a form to identify generalized variables that thereby disappear. One
of these transformations can be initially checked to help encourage the user to eliminate superfluous
generalized variables. However, the user might prefer to eliminate them in a way that alters cherished
structure less drastically. To do this, the wizard could also offer the alternative, for example,
“merely eliminate superfluous = and In(y)”. This can be accomplished by substituting simple exact
constants such as 0, 1 or -1 for those generalized variables, then applying default simplification.
If the substitution value is at a removable singularity and thereby causes division by 0, then the
wizard can backtrack and try another simple constant.

A generalized variable wouldn’t be offered if doesn’t affect ordering and no optional transfor-
mation is applicable to it. For example, it is pointless to list x if it only occurs as the argument
in sin (). However, it might be worthwhile to list the generalized variable sin (z), depending on
how it occurs in the default-simplified result. As another example, none of the transformations or
ordering choices being discussed here are applicable to the subexpression 3x2.

There will usually be an initial “Choose main variable” dialog if there is more than one applicable
generalized variable. If so, and after choosing the transformation with respect to the selected main

151f this reduction produces 0/0, then the expression is undefined for all values of its variables, so the one and only
offered alternative can be the result of “0/0".

156

A computer algebra user interface manifesto

variable there is still more than one applicable generalized variable for some maximal subexpression
that doesn’t contain the main variable, then there will be another dialog labeled instead “Choose
next most main variable”, and so on until the user aborts the investigation or accepts replacements.

4.6 Estimating the number of common transformations for each gener-
alized variable choice

Quick syntactic checks can identify some opportunities for transforming a framed subexpression
with respect to a generalized variable. For example,

e Expansion is applicable to any variable that occurs in a multinomial raised to an integer power
or a multinomial multiplied by any subexpression.

e A common denominator is applicable to any variable that occurs to a negative power in a
sum.

e Angle sum expansion is applicable if the argument of a sinusoid is a sum.

e The transformations sin(u)? — 1 — cos(u)? or sin(u)™ — (sin(nu) 4 ---)/2" are applicable if
sin(u) is raised to any integer power exceeding 1.

Quick syntactic checks can also preclude some opportunities for transforming a framed subexpres-
sion with respect to a generalized variable. For example, expansion is precluded if the framed
subexpression is monomial or linear in the variable.

Another ordering heuristic is that the number of applicable transformations is likely to in-
crease with the degree of a variable in a numerator or denominator, and more transformations
are associated with high degree denominators than high degree numerators, because denominator
factorizations can also enable partial fraction expansions.

If time remains in the 0.1 second acceptable delay for generating and displaying the first dialog
box, then we can compute more accurate estimates for the number of common applicable trans-
formations for each variable: For the rational aspects of a framed subexpression, minimal-effort
reduction over a common denominator reveals the numerator and denominator degrees of every
top-level generalized variable, which are all of those that can be affected by top-level factoring or
expansion. Minimal effort here means using partially factored form — preferably recursive — as de-
scribed in [24]. If this reduced partially factored form differs from the framed subexpression, then
it is already one applicable transformation. Moreover, expansion to a polynomial plus a proper
fraction is applicable to every such generalized variable whose degree in the resulting numerator
is at least as large as the degree in the denominator; and it is easy to compute these degrees for
partially factored forms.

If time still remains in the 0.1 second acceptable delay, then we can compute more accurate
estimates by factoring the common denominator with respect to all of its generalized variables.
From this it is easy to determine which successively lesser factorizations would combine two or
more factors containing that main variable and thus determine the number of distinct named partial
fraction expansions with respect to that variable and a lower bound on the number of distinct named
factorizations over a common denominator.

If time still remains, then the wizard can factor the numerator to better estimate the number
of named factorizations over a common denominator.

157

Stoutemyer

To reduce the chance of exceeding 0.1 second before any factorization is achieved, it could be
done in levels, such as term content with respect to every variable, then square free, etc. through,
say, exact reasonably absolute factorization followed by absolute factoring over the complex Floats.
If the allotted 0.1 seconds runs out before completing this agenda, then we simply use the best
estimates that we have at that time. Moreover, we can continue to refine and update the estimates
after the initial display, without changing the initial order of the generalized variable buttons.

4.7 Recognizing applicable transformations

The exact and approximate factorizations with respect to all variables is a useful point of departure
for computing alternative results regardless of what variable the user chooses. Therefore it is
helpful to proceed computing those factorizations in the background while users ponder their choice
of variable.

After a user chooses a variable, the wizard can complete the distinct factorization levels by
appropriately expanding pairs of factors, which is fast. To convey the strongest possible information,
when labeling the displayed alternatives or elided versions thereof, they are labeled with the most
thorough applicable factoring level. For example, if the only distinct factorizations are factorizations
over the Gaussian integers and over the integers, then the later would not be labeled “square-free”
even though it is that as well. If there is only one factored alternative, then it could be labeled
merely “factored” for brevity, but with a more detailed phrase displayed upon mouse-over. This
provides a learning opportunity for mathematically unsophisticated users.

If there is a denominator and it contains the chosen variable, the wizard can then proceed to
compute the polynomial part and proper fraction, followed by any distinct partial fraction levels
with respect to that variable.

5 If I want this interface, why haven’t I implemented it?

Good question. The reasons are:

e I am not an interface programmer.
e It is best done by a team.

e Some aspects will require access to proprietary internals that are inaccessible to outsiders for
systems that aren’t open source.

e [t will require testing feedback from numerous users. Surely some of the ideas presented here
won’t work out well in practice, and better ideas will occur.

e If it isn’t the default interface distributed with a computer algebra system, then it is unlikely
to be known to most users, and the system is likely to evolve in a way so that the alternative
interface no longer works.

e For various reasons, corporations are often unwilling to adopt and maintain packages written
by outsiders as first class parts of their system — thoroughly and seamlessly integrated into
the system and the documentation with no need for building or loading.

Therefore, although I would be delighted to help, the purpose of this manifesto is to stimulate
computer algebra users to request better interfaces and stimulate decision makers to build them.

158

A computer algebra user interface manifesto

“If you build it, they will come.”
— an apt misquote from Flield of Dreams

Computer algebra users of the world: the squeaky wheels get the grease!

Acknowledgments

I thank Bill Gosper for information about Lisp Machine Macsyma and Norbert Kajler for helpful
suggestions. Jacques Carette provided so many extraordinarily good suggestions that he should be
a co-author — except for conflict of interest that he is an unmasked referee!

Appendix: More transformations for rational expressions

It is worthwhile to list in one place most of the many known transformations that might be of
general interest. Subsection 4.3 discussed factoring, common denominators and expansion. Here
are some additional transformations for the rational aspect of expressions:

A.1: Basic — of interest to most users

The wizard should automatically try the following transformations in the background because they
can dramatically decrease the bulk of an expression and reveal important structure:

Polynomial shifts

Most of the factorization and expansion levels leave polynomial sub-expressions that often have
more than two terms. Sometimes merely re-expressing such a multinomial in terms of optimally
shifted variables can greatly reduce the number of terms and/or the size of coefficients. For example,

(' —4y+4) 2° + (3y*—12y+12) 2 + (3y*—12y+12) v+ 9> — 4y +1 — (y—2)*(z+1)° +8,

531441 25+ 2834352 2° 46298560 2* + 7464960 2° + 4976640 2° + 1769472 x +262151 — (92 + 8)°+7.

Articles [13, 14], give algorithms for computing optimal shifts. As a quick preclusion test, it is not
worth shifting a polynomial with respect to a variable if the polynomial is monomial or binomial
with respect to that variable.

Polynomial decomposition
Complementary to such shift decompositions, Kozen and Landau [17] describe an efficient algorithm
for completely decomposing a univariate polynomial p(x) into nested polynomials

pr(p2(--- (pm (2))-..))
with each py, (t) of degree at least 2 in ¢. For example, the irreducible polynomial

P(z) = 22 +42" +2° +62°% + 32" +42% + 32° + 2 + 27 + 7
= (P 4a) + (P +a) 4T

Their algorithm also applies recursively to multivariate polynomials represented recursively. As a
quick preclusion test, such decompositions are inapplicable with respect to a variable of degree less

159

Stoutemyer

than 4 or having few terms. There are also algorithms for other kinds of univariate and multivariate
polynomial decompositions, as described, for example, in [12, 34, 33, 32, 35|.

Polynomials rewritten in these ways can reveal significant structure, help precondition an ex-
pression for efficient repeated numeric evaluation or reduced rounding error, and facilitate solutions
of higher-degree polynomial equations or systems of equations. For example, with the above decom-
position, masochists could apply the quartic formula then the cubic formula to express the zeros of
P(z) in terms of radicals.

Linear combinations of powers

At least since Pythagoras, people have been interested in representing numbers and non-numeric
expressions as sums, differences, or general linear combinations of powers of other expressions. For
example, if an expression can be rewritten as a sum of even powers of real subexpressions, then the
expression is thereby proven to be nonnegative for all real values of these subexpressions. Algorithms
for such transformations can be found in, for example, [21, 22, 31|.

A.2: Advanced — of interest only to experts

Here are some transformations that should be tried only in response to the button
because they would probably intimidate and distract most users without any compensating benefit
to them.

Expression in terms of orthogonal polynomials

Important optional transformations include a change of basis from monomials to orthogonal poly-
nomials, which can

e yield more concise results,
e yield results less subject to magnified rounding errors,
e reveal patterns that otherwise wouldn’t be apparent, or

e suggest efficient accurate min-max truncated approximations.

Many computer algebra systems provide functions that return one of various classic orthogonal
polynomials of a specified degree in a specified variable using the monomial basis. However, most
of the systems provide little or no automation for:

e converting ordinary polynomials to linear combinations of orthogonal polynomials specified
by symbols such as the Chebyshev polynomials of the first kind Ty(2), T1(z2), ... ;

)

e propagating linear combinations of such polynomials into other linear combinations thereof
exactly through rules such as

Tu()Tul2) = 5 Tl (2) + 5 Tin(2),
T (Th(2) = Thnl(2),

/Tn(Z)dZ N {;l;(To(x)—i-TQ(]}))’ ifn =1,

575 Tn1(2) + ﬁ Tn:1(2), otherwise,

and approximately through infinite or truncated series expansions;

160

A computer algebra user interface manifesto

e efficiently and accurately substituting Floats into expressions involving combinations of such
functions: Rather than substituting a number zg for z in the monomial-basis representations
of the symbols Ty(2), T1(2), ... in a combination thereof, it is much faster and more accurate
to compute the successive Ty (2g) from the recurrence T,,(20) < 220 T—1(20) — Tn—2(20)-

Of the various named orthogonal polynomials, Ty(z), T1(2), . . . are probably most important. There-
fore, Trefethen and others [30] developed a powerful MATLAB package that automates effective use
of these polynomials for many applications, using IEEE double Floats to represent the coefficients.
Fateman [11] implemented some of these capabilities in Maxima to take advantage of its variable
precision floating point and exact rational arithmetic. Such transformations and analogous ones for
other orthogonal polynomials would be a welcome addition to many computer algebra systems.

Expression in terms of symmetric polynomials

Analogous transformations for the most common kinds of symmetric polynomials would be another
welcome addition. Such polynomials can help reduce the curse of dimensionality for problems that
exhibit symmetries when pairs of variables are interchanged. As a start toward this, the Mathe-
matica function SymmetricReduction [expression, {vi,va,...v,}, {s1,52,...,5,}] returns the pair
{p,r} where expression depends on variables {vi,vs,...v,}, p is the symmetric component of
expression in terms of symbols {s1,s2, ..., s,} representing the elementary symmetric polynomials
through degree n, and r is the residual of expression that can’t be so represented. To convert a
symmetric result back to the original variables, function SymmetricPolynomial[m, {vy, v, ... v,}],
returns the m'" elementary symmetric polynomial using variables {vi, vy, ...v,}. Sturmfels [28]
contains algorithms for transforming to and from symmetric polynomials.

Rational Decomposition

We can attempt separate polynomial decompositions on every numerator and denominator poly-
nomial in an expression. However, there are also algorithms for decomposing ratios of polynomials
into nested ratios, as discussed in [4, 15, 39]. As an example from the first of these articles, but
using recursive form and primitive normalization, the ratio

(y? + 222y + 21 = 81)2? — 2y - (v° + 2%y + 225 2) x + y? (v® — 625 2?)
(Y2 + 222y + 2* — 162) 22 — 2y - (v° + 22y* + 450 2) = + y? (y® — 1250 22)
1, if 9 + 25zy = 0,
Lz),
— 9z + 25 2y

<@+z%x—¢>2_;

otherwise.

9z + 25 zy

This example also illustrates that rational decomposition can introduce new removable singu-
larities in the nested form, such as on the manifold 9z + 252y = 0 for this example. We can avoid
this by clearing the nested denominators but preserving the nested polynomial components thereof
to obtain correlated polynomial decompositions of the numerator and denominator:

e\
9z + 252y R ((y + 22z — 1°)° — (92 + 25 2)° .
<(y+z2)w—y5>2_2 ((y+ 22z —15)" =2 (97 + 25 zy)°
9x + 252y

161

Stoutemyer

If desired, for this example we can then further factor the difference in two squares in the
numerator and in the denominator to obtain the factorization over Z[v/2].
(y+22+9) e —y° +2529) ((y +2° = 9) v —y° — 252y)
((y + 22 +9\/§) x — P +25\/§zy) ((y+22— 9\/5) x—y® — 25\/§zy)'

The numerator factorization could easily have been computed from the original numerator. How-
ever, the required v/2 algebraic extension necessary to factor the multivariate denominator would
be more difficult to determine without the intervening rational decomposition.

Continued fractions

Continued fractions are another type of compound-fraction representation for rational expressions.
Acton [1] lists three different variants of continued fractions together with algorithms for convert-
ing between them and a reduced ratio. Cuyt and Verdonk [10] review methods for multivariate
continued fractions. As an example of a continued fraction expansion that reveals a simple pattern:

(4 — 10522 +945) 2 | 45 3 2
22 (354
e 2’2(35 805) _>1

72

Here a constraint was appended to the input to avoid the appearance of contracting the domain
of definition because of removable singularities introduced by the continued fraction. If instead we
used a piecewise result, then it would have 9 pieces, 8 of which are constants that can be determined
by substituting the two square roots of each element in the constraint set into the original expression.

Actually, if the computer algebra system automatically handles unsigned zeros and infinities
correctly, then with exact computation the continued fraction form evaluates to the correct finite
values even at these removable singularities. However, unlike the reduced ratio, the continued frac-
tion form might be less accurate due to catastrophic cancellation near those introduced singularities.
Therefore it is worth alerting the user to these singularities by either appending an input constraint
or producing a piecewise result.'6

Hornerized forms
In its simplest form, Horner’s rule is the factoring out of the least power of a variable from succes-
sively lower-degree terms. For example,

— 1234321 2" — 1234321 2° + 2468642 z* + 723 + 14z — 21
— ((((—1234321 2% — 1234321) + 2458642) 2 4+ 7) 2 + 14) x — 21.

6With correct handling of infinities, a continued fraction can be defined at infinity where a reduced common
denominator is not. For example, 1/(1+1/z) — 1 at z = 0o, where the corresponding reduced ratio z/(z+1) — oco/00
is indeterminate. Most people would prefer having a result defined at all finite values of variables to being defined
at infinite values, but a mere division can turn 0 into an infinite value.

162

A computer algebra user interface manifesto

It is also worth partially factoring out units and numeric content to the extent that it reduces
bulk or the number of operations. For example,

— 1234321 27 — 1234321 2° + 2468642 2* + 72® + 142 — 21
— ((—1234321((x* + D)z — 2)z + 7) 2® + 14) z — 21.

Horner’s rule often leads to faster evaluation when substituting numbers for variables, which
is particularly important in situations such as plotting, where substitution is done many times for
different values. Horner’s rule also often improves accuracy for approximate arithmetic, because the
operands of a catastrophic cancellation are closer to the input numbers, hence less contaminated
with rounding error.

Horner’s rule can be viewed as factoring out term content term by term, starting with the highest-
degree terms at each level. With this viewpoint, we can apply it to multinomials throughout an
expression in all of the above special forms. Ceberio and Kreinovich [8] discuss greedy algorithms
for computing efficient multivariate Hornerized forms.

Another transformation that can enable faster evaluation when substituting numbers for vari-
ables is to factor out an integer common divisor of the exponents from a product of powers. For
example, if the powers are done with the help of repeated squaring, then

(y+3)°* = ((y+3)° %)

uses only five multiplications rather than six.!”

References

[1] Acton, F.S., Numerical Methods that Work, Chapter 11, Harper and Row, 1970 or The Math-
ematical Association of America, 1990.

[2] Avitzur, R., Milo (a Macintosh computer program), Paracomp Inc., 1988.
[3] Avitzur, R., The Graphing Calculator Story, http://www.pacifict.com/Story/

[4] Ayad, M. and Fleischmann, P., On the decomposition of rational functions, Journal of Symbolic
Computation 43 (4), pp. 259-274, 2008.

[5] Bailey, D. and Borwein, J., Inverse Symbolic Calculator,
http://isc.carma.newcastle.edu.au/advanced

[6] Barton, D. and Fitch, J.P.; A review of algebraic manipulative programs and their application,
The Computer Journal 15(4), pp. 362-381, 1972.

[7] Bonadio, A., Theorist (a computer program), Prescience Corporation, 1989.

[8] Ceberio, M. and Kreinovich, V., Greedy algorithms for optimizing multivariate Horner schemes,
ACM SIGSAM Bulletin 38(1), pp. 8-15, 2004.

THowever, for most systems default simplification automatically distributes the outer exponent 2 over the two
factors unless something special is done to prevent it.

163

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Stoutemyer

Cheze, C. and Galligo, A., Four lectures on polynomial absolute factorization, Algorithms and
Computation in Mathematics 14, pp. 339-392, 2005.

Cuyt, A.A.M. and Verdonk, B.M., A review of branched continued fraction theory for the
construction of multivariate rational approximants, Applied Numerical Mathematics 4 (2-4),
pp. 263-271, 2005.

Fateman, R.J., Notes on Chebyshev series and computer algebra, 2011,
http://www.cs.berkeley.edu/"fateman/papers/cheby.pdf

Faugére, J.C. and Perret, L.. High order derivatives and decomposition of multivariate poly-
nomials. Proceedings of ISSAC 2009, pp. 207-214.

Giesbrecht, M., Kaltofen, E. and Lee, Wen-shin., Algorithms for computing the sparsest shifts
of polynomials via the Berlekamp/Massey algorithm, Proceedings of ISSAC 2002, pp. 101-108.

Grigoriev, D.Y., Lakshman, Y.N., Algorithms for computing sparse shifts for multivariate
polynomials, Proceedings of ISSAC 1995, pp. 96-103.

Gutierrez, J., Rubio, R. and Sevella, D., On multivariate rational function decomposition,
Journal of Symbolic Computation 33 (5), pp. 545-562, 2002.

Kajler, N. and Soiffer, N., A survey of user interfaces for computer algebra systems, Journal
of Symbolic Computation 25 (2), pp. 127-159, 1998.

Kozen, D. and Landau, S., Polynomial decomposition algorithms, Journal of Symbolic Com-
putation 7 (5), pp. 445-456, 1989.

Krausz, F., A better user interface for Symbolics Lisp Machine Macsyma, Macsyma Newsletter
5(3), pp. 3-5, 1988.

MathMonkeys, LLC, LiveMath, formerly known as Theorist, MathView, MathPlus, and Live
Math Maker.,
http://www.livemath.com/

Moses, J, Algebraic simplification: a guide for the perplexed. Proceedings of the second ACM
symposium on symbolic and algebraic manipulation, pp. 282-304, 1971.

Powers, V. and Woérmann, T., An algorithm for sums of squares of real polynomials,
http://www.mathcs.emory.edu/ vicki/pub/sos.pdf

Reznick, B.E., Sums of Even Powers of Real Linear Forms, Memoirs of the American Mathe-
matical Society, 1992, and http://www.math.uiuc.edu/ reznick/memoir.html

Shneiderman, B. and Plaisant, C., Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 4th edition, Pearson Addison Wesley, p. 367, 2004.

Stoutemyer, D.R., Ten commandments for good default expression simplification, Journal of
Symbolic Computation, 46(7), pp. 859-887, 2011.

164

[25]

[26]

[27]

28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

A computer algebra user interface manifesto

Stoutemyer, D.R., Unit normalization of multinomials over Gaussian integers, ACM Commu-
nications in Computer Algebra 43 (3/4), pp. 73-76, 2009.

Stoutemyer, D.R, Multivariate partial fraction expansion. ACM Communications in Computer
Algebra 42 (4), pp. 206-210, 2008.

Stoutemyer, D.R., Useful computations need useful numbers, ACM Communications in Com-
puter Algebra 41 (3), pp. 75-99, 2007.

Sturmfels, B., Algorithms in invariant theory, 2nd edition, Springer 2008.

Théry, L., Bertot, Y. and Kahn, G., Real theorem provers deserve real user-interfaces, SDE
5 Proceedings of the fifth ACM SIGSOFT symposium on Software development environments
17(5), pp. 120-129, 1992.

Preprint at http://hal.inria.fr/docs/00/07/69/07/PDF/RR-1684.pdf

Trefethen, L.N. and others, Chebfun Version 4.2, The Chebfun Development Team, 2011,
http://www.maths.ox.ac.uk/chebfun/

Vandenberghe, L. and Boyd, S., "Semidefinite Programming", SIAM Review 38, pp. 49-95,
March 1996.

von zur Gathen, J., Functional Decomposition of Polynomials: The Wild Case., Journal of
Symbolic Computation 10(5): pp. 437-452, 1990.

von zur Gathen, J., Gutierrez, J., Rubio, R., Multivariate Polynomial Decomposition, Appli-
cable Algebra in Engineering, Communication and Computing 14(1), pp. 11-31, 2003.

von zer Gathen, J. and Weiss, J., Homogeneous bivariate decompositions, Journal of Symbolic
Computation 19, pp. 409-434, 1992.

Watt, S.M., Functional Decomposition of Symbolic Polynomials, Proceedings of the Interna-
tional Conference on Computational Sciences and its Applications, IEEE Computer Society,
pp. 353-362, 2008.

Wikipedia, Model-view-controller,
http://en.wikipedia.org/wiki/Model’,E2%80%93view)E2,80%93controller#References

UITP, User Interfaces for Theorem Provers, http://www.informatik.uni-bremen.de/uitp/
Wolfram|alpha, http://www.wolframalpha.com/

Zippel, R., Rational function decomposition, Proceedings of ISSAC-91, pp. 1-6, 1991.

165

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

ISSAC 2013 Software Presentations

Communicated by Joris van der Hoeven

Arb: a C library for ball arithmetic

Fredrik Johansson *
RISC
Johannes Kepler University
4040 Linz, Austria
fjohanss@risc. jku.at

1 Introduction

Arb ! is a new open source C library for provably correct arbitrary-precision numerics, extending FLINT [3]
(which provides fast arithmetic over various exact rings) to the real and complex numbers. Following
the example of iRRAM [7] and Mathemagix [13], Arb performs automatic error propagation using ball
arithmetic [12] (not to be confused with heuristic significance arithmetic as used e.g. in Mathematica [9]).
This gives performance close to floating-point arithmetic such as provided by MPFR [2] while avoiding the
cost at high precision of endpoint-based interval arithmetic as provided for instance by MPFT [8].

One of our motivations for developing a new library has been to provide a low-level, low-overhead inter-
face, and our implementation differs from others in some technical aspects. Arb also provides fast polyno-
mial arithmetic, to our knowledge only available in Mathemagix and without error control in MPFRCX [1],
as well as matrix arithmetic. Finally, Arb implements some special functions that have been absent from
arbitrary-precision interval software, with performance that compares favorably to available nonrigorous
implementations. The presentation covers implementation details and shows some benchmarks.

2 Feature overview
Arb provides the following types:

e fmpr_t: floating-point real numbers Rp = Z x 2% U {—o00, +-00, NaN}

fmprb_t: real numbers implemented as balls Rg = {[m —r,m +r] : m,r € Rp,r > 0}
fmpcb_t: complex numbers in rectangular form Cp = Rp|i]

fmprb_poly_t, fmpcb_poly_t: polynomials (and truncated power series) over Rp, Cp
fmprb mat_t, fmpcb mat_t: matrices over Rp, Cp

Each type has a set of associated methods for memory management, conversions, arithmetic and spe-
cial functions, with an interface resembling that of FLINT. For example, the power series multiplication
a < b x ¢ mod 2™ with rounding to prec bits, where a, b, ¢ are of type fmprb_poly_t, is written as:

fmprb_poly_mullow(a, b, ¢, n, prec)

Polynomial methods have corresponding “underscore” versions that act directly on coefficient arrays, re-
ducing overhead and giving more control over memory allocation and copying (like the mpn layer of GMP):

_fmprb_poly_mullow(a->coeffs, b->coeffs, b->length, c->coeffs, c->length, n, prec)

*Supported by the Austrian Science Fund (FWF) grant Y464-N18.
'http://fredrikj.net/arb/ (Arb is licensed GNU GPL version 2 or later)

166

Software presentation

3 Representation of numbers

Arb does not directly base its arithmetic on MPFR (but does call MPFR for a few operations, and the
test suite extensively verifies correctness against MPFR). MPFR attaches a precision to each variable, and
allocates memory for a full-precision number even if only a few bits are used. In Arb, the precision is
always passed as an argument to each function; the components of an fmpr_t are FLINT integers, and can
grow dynamically. A mantissa or exponent with at most 62 bits (30 bits on a 32-bit system) is particularly
efficient, as it takes up a single word in the fmpr_t struct without allocating memory on the heap.

We have found this approach convenient for mixed-precision algorithms and particularly valuable for
computations involving integer coefficients of variable size (such as binary splitting and various polynomial
operations). The same type also works well for low-precision arithmetic such as error bound calculations.
The drawback is some overhead at precisions up to a few hundred digits, although experiments suggest
that this overhead could be reduced with further implementation effort.

Bits mpfr mul | fmpr_mul | fmprb_mul
32 1.0 0.6 2.3
128 1.0 1.4 2.7
012 1.0 0.9 1.4
2048 1.0 1.1 1.2
8192 1.0 1.2 1.2
32768 | 1.0 1.2 1.2
131072 | 1.0 1.1 1.1
524288 | 1.0 1.0 1.0

Table 1: Time relative to MPFR of floating-point and ball multiplication. The difference
below approximately 1000 bits results from implementation overhead, and the 10% — 20%
difference around 10% — 10° bits is due to MPFR using the mulhigh algorithm.

An fmprb_t consists of a midpoint and a radius, both of type fmpr_t. Radius operations use a predefined
precision (30 bits). Midpoint arithmetic is always carried out at the requested working precision. It would
be more efficient to round midpoints to the accuracy indicated by the radius, though such a normalization
naturally can be performed explicitly, and the present convention is sometimes useful for detecting when
the computed error bound greatly overshoots the actual numerical error.

Complex numbers are represented as pairs of real balls. This seems preferable to a complex midpoint
with a single radius, for reasons of convenience, and it is frequently useful to track whether either the real
or imaginary part is exact. Similarly, polynomials and matrices are represented as arrays of coefficients to
maximize flexibility. Where a different data order is required, temporary copies are relatively cheap since
the base fmpr_t type takes up only two words and usually only needs to be copied shallowly.

4 Special functions

Except for some special cases, the elementary functions in Arb call the MPFR implementations of exp,
log, sin, cos and atan (our future plan is to develop faster implementations for precisions up to a few
thousand digits), using function derivatives to bound propagated errors. Care has been taken to ensure
numerically satisfactory behavior on the whole complex plane, for example when evaluating tan(z + yi) for
large |y|. Extremely large numbers are handled specially: we allow arbitrary-precision exponents, and we
restrict the internal working precision allowed for argument reduction to a small multiple of the requested
precision. For example, an attempt to evaluate cos(21010) quickly returns a crude bounding interval (e.g.
[—1,1]) unless the precision is set in the hundreds of millions of digits. This makes worst-case evaluation

167

Johansson

time at a given precision predictable and avoids unnecessary stalls caused by tiny terms that might not
even contribute to the final result, particularly aiding “black-box” use in computer algebra settings.
Interval software has historically been limited to the elementary functions and some special functions
of a real variable, while software with good support for special functions (e.g. [10], [5]) has not guaranteed
correctness. We wish to improve this situation. As of the current version, Arb provides Bernoulli numbers,
the Hurwitz zeta function (s, a) and its derivatives with respect to s for complex s and a, and the gamma
and digamma functions for real and complex arguments. The implementations are tuned for different sizes
and precisions, incorporating many optimizations. Arb also contains code for binary splitting evaluation of
generic rational hypergeometric series with automatic error bounding, used for evaluation of mathematical
constants, as well as code for rigorous polynomial root refinement, used for some algebraic numbers.

Evaluation Digits MPFR 3.1.1 Pari/GP 2.5.3 Mathematica 8.0 Arb

A: v (Euler’s constant) 108 93 s >1h 30 s 18 s

B: cos(m/31) 10° 6.1s 42 12's 0.48 s
C:igFa(3, 548, 8:%) 10 n/a n/a 1396 s 0.45 s

D: T'(v2) 10 60 s 1.9 (233) s 13 s 0.21 (1.3) s
E: T'(V2 +iv/3) 10 n/a 2.9 (235) s 5.8 (44) s 0.67 (1.7) s
F: ¢(1/2 + 1000i) 10* n/a 24 (1571) s 672 s 22 (25) s
G: C(1+ 24,3+ 4i) 103 n/a n/a 2.4 s 0.38 s

Table 2: Special function timings, measuring repeated calls with the initial call inside
parentheses. Algorithms in Arb: A) binary splitting B) minimal polynomial root refinement
C) generic binary splitting D-E) Stirling’s series F-G) Euler-Maclaurin summation.

5 Polynomials and power series

Polynomial operations are implemented in an asymptotically fast way by reducing to multiplication using
standard techniques such as Newton iteration for division, series logarithm and series exponential, divide-
and-conquer for composition [4], rectangular splitting for power series composition, and product trees for
fast multipoint evaluation and interpolation. We have implemented three algorithms for multiplication
in R[z]: classical, sloppy, and blockwise. The latter two translate to Z[z] and call FLINT (which uses
classical, Karatsuba, Kronecker substitution, and Schonhage-Strassen FFT multiplication).

The sloppy algorithm cuts off the coeflicients of each input polynomial prec bits below the top bit
of the polynomial as a whole, performs a single multiplication over Z[z], and bounds errors using max
norms. This is fast, and numerically satisfactory if all coefficients have the same magnitude, but not used
by default due to the poor numerical stability for polynomials with coefficients of varying magnitude.

The blockwise algorithm splits the input polynomials into blocks of similarly-sized coefficients and
multiplies each pair of blocks exactly in Z[z]. In the worst case, this degenerates to multiplication of 1 x 1
blocks equivalent to classical multiplication. In the typical case, it only performs slightly worse than the
sloppy multiplication. Accurate per-coefficient error bounds are computed using an O(n?) loop running
over exponents. The algorithm could be improved further using scaling and by discarding parts of the
inputs that do not contribute to the result, as discussed in [11].

We illustrate the importance of polynomial arithmetic that is both fast and numerically stable. Letting
£(s) = (s—1)7~%/2 (1 + $s) ((s), Li’s criterion [6] states that the Riemann hypothesis is equivalent to the
positivity for all n > 0 of the coefficients A, defined by log& (z/(z — 1)) = Y2, Apz". We prove positivity
of the first 10,000 coefficients by evaluation. This requires derivatives of {(s), a series logarithm, derivatives
of logT'(s), and a series composition with z/(z—1). In this example, the final composition catastrophically

168

Software presentation

magnifies the error bounds if sloppy multiplication is used, making a precision of nearly 10n bits necessary.
With classical multiplication, about 1.3n bits suffice, speeding up the the zeta function evaluation, but
the subsequent power series operations now dominate. Blockwise multiplication allows using the same
precision as with classical multiplication, and the power series operations only take a fraction of the time.

Sloppy Classical ~ Blockwise
Working precision 100000 bits 13000 bits 13000 bits
Zeta 147180 s 1242 s 1272 s
Logarithm 596 s 2760 s 8.3s
Gamma 781 s 3.4s 34 s
Composition 1994 s 7971 s 185 s
Total 150011 s 11976 s 1469 s

Table 3: Precisions and timings for computing the Li coefficients A,, up to n = 10000 with
correctly determined signs, using three different multiplication algorithms.

References

[1] A. Enge. MPFRCX: a library for univariate polynomials over arbitrary precision real or complex
numbers, 2012. http://www.multiprecision.org/index.php?prog=mpfrcx.

[2] L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Transactions on Mathematical Software,
33(2):13:1-13:15, June 2007. http://mpfr.org.

[3] W. B. Hart. Fast Library for Number Theory: An Introduction. In Proceedings of the Third interna-
tional congress conference on Mathematical software, ICMS’10, pages 88-91, Berlin, Heidelberg, 2010.
Springer-Verlag. http://f1lintlib.org.

[4] W. B. Hart and A. Novocin. Practical divide-and-conquer algorithms for polynomial arithmetic. In
Computer Algebra in Scientific Computing, pages 200-214. Springer, 2011.

[5] F. Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic, version
0.17,2011. http://mpmath.org.

[6] Xian-Jin Li. The positivity of a sequence of numbers and the Riemann Hypothesis. Journal of Number
Theory, 65(2):325-333, 1997.

[7] N. Miiller. The iRRAM: Exact arithmetic in C++. In Computability and Complexity in Analysis,
pages 222-252. Springer, 2001. http://irram.uni-trier.de.

[8] N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic library and the
MPFT library. Reliable Computing, 11(4):275-290, 2005. http://perso.ens-lyon.fr/nathalie.
revol/software.html.

[9] M. Sofroniou and G. Spaletta. Precise numerical computation. Journal of Logic and Algebraic Pro-
gramming, 64(1):113-134, 2005.

[10] The PARI Group, Bordeaux. PARI/GP, version 2.5.3, 2012. http://pari.math.u-bordeaux.fr.

[11] J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical Report
2008-02, Université Paris-Sud, Orsay, France, 2008.

[12] J. van der Hoeven. Ball arithmetic. Technical report, HAL, 2009. http://hal.archives-ouvertes.
fr/hal-00432152/fr/.

[13] J. van der Hoeven, G. Lecerf, B. Mourrain, P. Trébuchet, J. Berthomieu, D. N. Diatta, and

A. Mantzaflaris. Mathemagix: the quest of modularity and efficiency for symbolic and certified
numeric computation? ACM Communications in Computer Algebra, 45(3/4):186-188, January 2012.
http://mathemagix.org.

169

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

NAClab: A Matlab Toolbox for Numerical Algebraic Computation

(extended abstract)

Zhonggang Zeng* Tien-Yien Lif

1 Introduction

We present a Matlab toolbox NAClab for numerical algebraic computation. This toolbox includes Matlab
implementations of the basic numerical algorithms in algebraic computations and utility functions. Those
functions can be used either directly in applications or as building blocks for implementing advanced
computing methods. NAClab is a result of collective effort and its contributors include Liping Chen,
Tianran Chen, Wenrui Hao, Tsung-Lin Lee, Andrew Sommese and Wenyuan Wu.

Numerical algebraic computation, particularly numerical polynomial algebra, emerges as a growing
area of study in recent years with a solid foundation in place for building numerical and hybrid computing
methods [8, 9]. Many robust numerical and numeric-symbolic algorithms have been developed for solving
polynomial systems, polynomial factorizations, polynomial GCD, computing dual bases and multiplicity
structures of polynomial ideals, etc, with implementations such as in [1, 2, 3, 5, 6, 10] Those algorithms
have a broad spectrum of applications in scientific computing such as robotics, control, image processing,
computational biology and chemistry, and so on.

One of the main difficulties for numerical algebraic computation is the ill-posedness that frequently
occurs when the solution of a problem does not possess Lipschitz continuity with respect to data. Those
ill-posed problems are not directly suitable for floating point arithmetic since the solutions are infinitely
sensitive to rounding errors. However, it has been shown in recent studies that such a difficulty can be
overcome by seeking a regularized numerical solution with a proper formulation. Algorithms implemented
in NAClab are designed to regularize the problem for removing ill-posedness rather than extending machine
precision for accurate computation. The package also includes generic routines for matrix building and
Gauss-Newton iteration that are the main engines for handling ill-posed algebraic computaiton.

NAClab is an on-going project as a major upgrade and expansion from its predecessor ApaTools [13]. At
this stage, the main objective is to provide researchers in numerical algebra with generic and versatile tools
that simplify and accelerate algorithm development, experimentation, and implementation. We emphasize
on achieving the highest possible accuracy and robustness in algorithm design and implementation.

NAClab is maintained at its permanent website! and freely accessible to academic researchers and
educators for the foreseeable future.

2 Differences between symbolic and numerical algebra

Conventional symbolic computation assumes both data and arithmetic to be exact. In practical appli-
cations, however, problem data are likely to be empirical. As a result, exact solutions of those inexact
problems may not serve the practical purposes. Using the polynomial

2

p = stz +16y? —6a8.001 2% + 72029% + 0022222 + 001y 2% — 6482? — 288y> — 00722 + 1206 (1)

*Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625, USA, email: zzeng@neiu.edu.
fDepartment of Mathematics, Michigan State University, E. Lansing, MI 48824, USA, email: 1i@math.msu.edu
"http://www.neiu.edu/~naclab

170

Software presentation

in [7] as an example, Kaltofen proposed the Open Problem 1 in challenges of symbolic computation: Is
there factorable polynomial nearby? While polynomial p in (1) is not factorable in conventional sense, it
is a perturbed data representation of a factorable polynomial p. The objective of numerical factorization
is to calculate the factorization of the hidden underlying polynomial p using the imperfect data p. The
function PolynomialFactor in NAClab is built to carry out this computation as follows. First of all,
NAClab allows polynomials to be entered intuitively into Matlab as strings:

>> p = ’81%x"4+16xy"4-648.001%2"4+72%x " 2%y "2+, 002%x " 2%z"2+.001*y " 2%z~ 2-648*x"2-288%y " 2-.007*z"2+1296 ;

Then the numerical factorization can be obtained using the known relateve data error bound 107> as the
error tolerance:

>> F = PolynomialFactor(p,le-5, ’row’) % factor p within error tolerance le-5, showing result in a row
F =
1296 * (1-0.25000013640167*x72-0.111111232357041%y"2+0.707104626181296%272) * (1-0.249999863598339*x"2-0.111110989865191%y"~2-0.707110027415863*2"2)

This result is an accurate approximation to the factorization of the hidden polynomial p and reveals the
graph of p =0 is the union of an ellipsoid and a hyperboloid of one sheet.

In contrast to symbolic computation, another subtle issue in numerical algebraic computation is that
the given empirical data may have different underlying solutions depending on the error tolerance. This
phenominon can be further illustrated in polynomial factorization on

f = 047619031y + 0.5714288y°> + 0.55555493% + 1.3809278yx + 0.8571143y°ax + 0.83333282° + ya°

Two numerical factorizations within different error tolerances can be computed by NAClab function
PolynomialFactor:

>> PolynomialFactor(f,le-4,’row’) % within tolerance le-4

;?39;996404282881 * (0.833329772039985 + y) * (0.666677452701414 + x) #* (0.85712030479082%y + x)

>> PolynomialFactor(f,1e-6,’row’) 7 within tolerance le-6

??30300001100681 * (0.833332777619492 + y) * (0.571428774473131xy + 0.666666352807009%x + 0.857114290319387*y*x + x°2)

They are accurate approximations to the factorizations of two nearby polynomials from the same data.

Many other algebraic computations follow a similar pattern: An accurate solution of an algebraic
problem is to be computed but the problem data are imperfect so that the exact solution is meaningless
since the solution is infinitely sensitive to data perturbations. The objective of the numerical algebraic
computation is to solve the problem using the slightly perturbed data within an error tolerance similar to
the factorization example above. NAClab is built for this purpose.

Algebraic problems are often ill-posed because the set of problems whose solutions possessing a distinct
structure form a manifold of positive codimension, and perturbations generically pushes a given problem
away from the manifold. Our strategy starts with formulating the numerical solution of an ill-posed alge-
braic problem following a “three strikes” principle consisting of backward nearness, mazimum codimension
and minimum distance [13] for removing the ill-posedness. Based on those formulation principles, comput-
ing the numerical solution can be carried out in two optimization processes: maximizing the codimension
of manifolds followed by minimizing the distance to the manifold, leading to a two-staged strategy for
designing robust algorithms.

The main mechanism at Stage I is matrix rank-revealing, while Stage II relies on solving nonlinear least
squares problems. In NAClab, we provide matrix building/computation tools for Stage I and nonlinear
least squares tools for Stage II.

171

Zheng, Li

3 NAClab overview
NAClab originated from its predecessor ApaTools [13]. Among many improvement areas, we implemented
a user-friendly mechanism for direct polynomial manipulations and included a major package in numerical
solution of polynomial systems by homotopy continuation method. For example, solving the polynomial
System

-y +3y+1 = 5y4—3 = 200—y+z = 0

can now be carried out in a simple call:

>> P = {?x75-y 5+3%y+1’, 5%y 4-37, 7 20%x-y+2’}; % enter the polynomial system directly and intuitively
>> [Solutions, variables] = psolve(P) % call the polynomial system solver and obtain all the isolated solutions
Solutions =
Column 1

0.778497746685646 + 0.8934530811793081
-0.000000000000000 + 0.8801117367933941
-15.569954933712914 -16.9889498867927641

Column 20

0.778497746685646 - 0.8934530811793081

0.000000000000000 - 0.8801117367933931
-15.569954933712925 +16.9889498867927671

variables =
g by 170

Compared to Maple and Mathematica, Matlab has an advantage in efficient numerical matrix compu-
tations with an disadvantage in user interface. Cumbersome representations are required for carrying out
polynomial and other algebraic computations. Using NAClab, polynomials can be entered and displayed
as character strings in Matlab in a way similar to Maple.

>> f
>> g

73%x72 - (2-51)*x"3*y"4 - 1e-3%z"5-6.8°
7-2%y~3 - Bkx"2%z + 8.2’

Using such an intuitive polynomial representation, users can now perform common polynomial oper-
ations such as addition, multiplication, power, evaluation, differentiation, factorization, extracting coeffi-
cients, finding greatest common divison (GCD), etc, by calling NAClab functions, such as

>> p = pplus(’2%x"5-3%y’, ’4+x*y’) % add any number of polynomials
>> q = ptimes(f,g,h) % multiply any number of polynomials
>> v = PolynomialEvaluate(f,{’x’,’2’},[3,4]) % evaluate f(x,y,z) for x=3, z=4

and a lot more. For example, to compute a greatest common divisor:
710 - B*x"2%y + 6xxky~2 - 3*x"3%y~3’;
730 + 10xy + 18%x*y~2 + 6%x*ky~3’°

%
>> f
g
u = PolynomialGCD(f,g)

u =
33.5410196624968 + 20.1246117974981%x*y"2

In summary, NAClab is developed for numerical algebraic computations in Matlab including solving
polynomial systems, polynomial factorizations, polynomial greatest common divisors, multiplicity and
dual spaces of nonlinear systems at isolated zeros, numerical Jordan Canonical Forms, and numerical rank
revealing. The package also contains a comprehensive library of programming utilities for building further
algorithms for numerical algebraic computations.

NAClab is an on-going project. While continuing to refine the existing functions, we shall expand the
package by developing more algorithms and their implementations for numerical algebraic computations.

References

[1] D.J. BATES, C. PETERSON AND A.J. SOMMESE, A numerical-symbolic algorithm for computing the multiplicity
of a component of an algebraic set, IEEE Trans. Signal Processing, 52 (2003), pp. 3394-3402.

.J. Bates, J.D. HAUENSTEIN, A.J. SOMMESE AND C.W. WAMPLER II, Software for numerical algebraic

2] D.J. B J.D. H AJ. S C.W. W, II, S ical algebrai
geometry: A paradigm and progress towards its implementation, in Software for Algebraic Geometry, IMA Volume
148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 1-14.

172

Software presentation

[3] R. M. CoRLESS, S. M. WATT, AND L. ZHI, QR factoring to compute the GCD of univariate approximate
polynomials, IEEE Trans. Signal Processing, 52 (2003), pp. 3394-3402.

[4] B. DayToN, T.Y. L1 AND Z. ZENG, Multiple zeros of nonlinear systems Mathematics of Computation, Vol.
80, pp. 2143-2168, 2011

[5] S. Gao, E. KALTOFEN, J. MAY, Z. YANG, AND L. ZHI, Approzimate factorization of multivariate polynomials
via differential equations. Proc. ISSAC 04, ACM Press, pp 167-174, 2004.

[6] C.-P. JEANNEROD AND G. LABAHN, The SNAP package for arithemetic with numeric polynomials. In Interna-
tional Congress of Mathematical Software, World Scientific, pages 61-71, 2002.

[7] E. Kaltofen, Challenges of symbolic computation: My favorite open problems, J. Symb. Comput., 29, pp.161-168,
2000.

[8] A.J. SOMMESE AND C.W. WAMPLER II, The Numerical Solution of Systems of Polynomials, World Scientific
Pub., Hackensack, NJ. 2005

[9] H. J. STETTER, Numerical Polynomial Algebra, STAM, 2004.

[10] J. VERSCHELDE, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy
continuation, ACM Trans. on Math. Software, 25(1999), pp. 251-276.

[11] Z. ZENG, A polynomial elimination method for symbolic and numerical computation. 409(2008) pp. 318-331.
[12] Z. ZENG, Computing multiple roots of inexact polynomials, Math. Comp., 74 (2005), pp. 869-903.

[13] Z. ZENG, ApaTools: A Maple and Matlab toolbox for approzimate polynomial algebra, in Software for Algebraic
Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 149-167.

[14] Z. ZENG AND B. DAYTON, The approzimate GCD of inezact polynomials. II: A multivariate algorithm. Pro-
ceedings of ISSAC’04, ACM Press, pp 320-327. (2006).

173

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

The new GroupTheory package in Maple 17

E.J. Postma

Abstract

The GroupTheory package was added to Maple 17 [1]. It deals with discrete groups. The package
offers visualizations of group theoretic concepts; accepts input and generates output that is relatively
close to the classical textbook notation; and can deal with parameterized groups where the parameters
are given only symbolically.

Maple [1] is a well-known computer algebra package, initially developed in the early 1980s by the
Symbolic Computation Group at the University of Waterloo. Maple has had a package dealing with group
theory dating back to the first decade of its existence. It is called group and has been showing its limitations
for a long time. For Maple 17, a completely new package called GroupTheory was added that replaces the
older package. It was written at Maplesoft, incorporating many ideas and a substantial amount of code
and data from two earlier packages written by the Computer Algebra Group at Simon Fraser University.
One is a library of group presentations and permutation representations, written by Vahid Dabbaghian.
The other package [2] focuses on visualization (it contained most of the code described in Section 4) and
also performs substantial computation; it was written by Asif Zaman and Michael Monagan.

Other notable software packages dealing with discrete groups are GAP [3], Magma [4], and Mathemat-
ica [5]’s group theory features. We believe that, while some features offered by these packages are similar,
each of the Sections 2, 3, and 4 describes some functionality that is unique to Maple.

1 Basic functionality

Groups can be represented in one of five ways: by permutations, by generators and relations, by an explicit
multiplication table, as a set with manually defined group operations, and as an abstract group where
elements cannot be listed but only properties computed. (This last option is explored in Section 2.) There
is a substantial library of groups, containing all small groups of up to 200 elements (numbered consistently
with the small group databases in GAP and Magma), all simple groups, many linear groups, and many
individually named groups. These groups can typically be constructed in multiple representations: for
example, using the DihedralGroup command, one can construct either the permutation or the finitely
presented representation.

Such a group can then be interrogated about its properties, such as its order, whether it is simple, or its
Fitting subgroup. Isomorphism testing between arbitrary groups is also supported. In total, the package
contains about 120 commands for constructing and interrogating groups.

2 Symbolic groups

The GroupTheory package can deal with groups where it cannot list any elements explicitly. There are
two such classes of groups: those where the group is defined only up to a symbolic parameter (such as
DihedralGroup(n) or D,, the dihedral group with 2n elements), and those where listing elements is merely
highly impractical, such as the Monster group M.

174

Software presentation

For groups of the latter kind, Maple simply has many properties stored explicitly. Here are a few

examples concerning the Monster group:
> GroupOrder (Monster());

808017424794512875886459904961710757005754368000000000
> IsSimple(DirectProduct (Monster(), TrivialGroup()));
true
> IsSimple(DirectProduct(Monster(), CyclicGroup(2)));

false
For groups defined with a symbolic parameter, Maple has some predefined properties as for the purely

symbolic groups, but it can also deduce some properties from assumptions made on the parameters:
> IsNilpotent(DihedralGroup(6+*n)) assuming n :: posint;

true

3 Interface

The GroupTheory package attempts to accept input and generate output in typography that is as close as
possible to what one would traditionally find it in a textbook.

The requirements for input are clearly much stricter than for output, in that the input has to be
processed by the parser for the general Maple language. Nonetheless, the package understands as input
finitely presented groups in the format

<gl7 e ’gn|7,.1’ .. 'ark>7

where g1,..., g, are the generators and 71, ..., r; are the relations.
For output, there is much more functionality. A few examples follow.

175

30 31 32 33 34

181920 212223 24 2526

456789 101112131415

1

Postma

Figure 1: The subgroup lattice of the small group (48, 8). Highlighted in light blue is the
centre, in light green are the normal subgroups, and in red is the lower central series.

Input and output

Discussion

> DirectProduct (Monster (), Symm(n));

M x S,

The direct product of the monster
group and the symmetric group of or-
der n.

> DerivedSeries(Symm(4));

The derived series of the symmetric
group of order 4.

> g := PSL(2, 3);
g =PSL(2,3)
> h := SylowSubgroup(3, g);
h := (a permutation group on 4 letters)
> k := Normaliser(h, g);
k = Npgr(2,3)((a permutation group on 4 letters))
> GroupOrder (h) ;
3
> k;

Npsr2,3)(((2,3,4)))

The normalizer in PSL(2,3) of a
Sylow-3 subgroup, h. Note that the
generators of h are computed lazily,
but once they are computed (in or-
der to compute the order of h), they
are remembered. This is discussed in
Section 5.

4 Visualization

The GroupTheory package supports two visualizations: a subgroup lattice and a Cayley table.
An example of the subgroup lattice visualization can be found in Figure 1. This figure was obtained

with the commands
176

Software presentation

— e e B e T a o

M H 42 emoeoD OB

Figure 2: The Cayley table of Figure 3: The Cayley table
the dicyclic group of order 16. of a group of order 24.

> g := SmallGroup(48, 8):
> DrawSubgroupLattice(g, highlight=LowerCentralSeries(g));

Conjugate subgroups are placed next to each other, a little closer together than non-conjugate sub-
groups. This already shows, for example, what the normal subgroups are: the groups of size 1. For
extra emphasis, any subset of subgroups can be highlighted in any combination of colours; the default is
the centre and all normal subgroups. In the example, the lower central series is additionally highlighted
(overriding the colours for the normal subgroups).

Two examples of the Cayley table visualization are shown in Figures 2 and 3. In Figure 2, the centre
of the group is indicated by a thick black line. It consists of two elements. In Figure 3, the elements are
highlighted depending on the coset of a particular subgroup they occur in.

5 Performance: memoization and autocompiled code

Groups are represented by objects (a type of modules). This provides part of the dispatching logic that
selects the appropriate piece of code when a property needs to be computed for a given tuple of arguments.
Another part is a memoization feature: most properties that are defined on a single argument, such as group
order or simplicity, are computed only when necessary, but are remembered. That is, once such a property
is computed, it is stored in a hash table in the object, with the property name as the key, and subsequent
computations take advantage of this by looking it up rather than recomputing. A demonstration of this
functionality is contained in Section 3.

For many of the low level algorithms, it was decided that the best tradeoff between performance and
ease of programming was obtained by writing them in the subset of the Maple language that can be directly
compiled into C code, and using the autocompile option. This means that the code is compiled on the
fly.

As an example of these techniques, let us examine the IdentifySmallGroup command. It is used for
identifying the isomorphism type of small groups (presently of size 200 or less) and uses the same numbering
as its GAP and Magma equivalents. There are many shortcuts, for example if the group order n is prime. If

177

Postma

these do not apply, the algorithm determines, for each possible order d|n, the numbers of group elements of
order d, and additionally the number of elements of the derived subgroup. These numbers are determined
from the Cayley table of the group by autocompilable code. It then evaluates a perfect hash function on
this sequence of numbers to find all groups that share these characterstics. (The hash function value is
one of the values remembered as described in Section 5.) Subsequently, as long as there is more than one
candidate left, the code uses its general isomorphism testing command AreIsomorphic.

References

[1]
2]

Maple 17. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

Asif Zaman and Michael Monagan, Visualizing Groups in Maple (poster), http://www.cecm.sfu.ca/
research/posters/zaman09. pdf.

The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.6.8; 2013,
(http://www.gap-system.org).

Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language,
J. Symbolic Comput., 24 (1997), 235265.

Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL (2012).

178

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Holonomic Functions in Mathematica

Christoph Koutschan
Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences
Altenberger Strale 69, A-4040 Linz, Austria
christoph.koutschan@ricam.oeaw.ac.at

Abstract

We present the Mathematica package HolonomicFunctions which provides a powerful framework
for the automatic manipulation of multivariate holonomic functions, in the spirit of Zeilberger’s holo-
nomic systems approach. Its top-level functionalities are: converting a mathematical expression into a
holonomic description, executing holonomic closure properties, and creative telescoping for general holo-
nomic functions. To achieve these goals, many other, lower-level, functionalities had to be implemented
which were not available in the Mathematica system: finding rational solutions of linear systems of (g-)
difference / differential equations, noncommutative arithmetic in Ore algebras and computing Grébner
bases in such domains.

In his seminal paper A holonomic systems approach to special functions identities [11], Zeilberger writes:
“I hope that more professional programmers and algorithmic designers will soon expand the rudimentary
ideas in this paper and develop a symbolic software package to prove general special function identities.”
Meanwhile, his dream has certainly become true: numerous papers refining and extending his “rudimentary
ideas” have appeared, new and faster algorithms have been developed (some of them by Zeilberger himself),
and there are several software packages available which implement (at least parts of) his holonomic systems
approach.

Our package HolonomicFunctions is definitely one of the most general ones, since it allows to “prove gen-
eral special function identities”, as anticipated by Zeilberger. As special cases, our package contains his fast
algorithm for proving hypergeometric identities [10] and its g-analogue, as well as the Almkvist-Zeilberger
algorithm [1] for evaluating integrals of hyperexponential functions. Moreover, it can likewise deal with
sums (resp. integrals) of functions which don’t satisfy first-order recurrences (resp. differential equations),
but higher-order ones. The only other software package we know of, providing this degree of general-
ity, is Chyzak’s Mgfun package for Maple. Our main motivations to reimplement the algorithms already
contained in Mgfun were 1) to make them available to Mathematica users, 2) to provide an independent
implementation in a different computer algebra system, 3) and to create an easily accessible, user-friendly
interface to methods that are relevant to many disciplines outside of computer algebra. Additionally, we
implemented some very recent algorithms for creative telescoping [7, 2] and closure properties [5].

Due to space restrictions, we will limit this short exposition to the top-level functionalities of Holo-
nomicFunctions, which are: 1) converting a mathematical expression into a holonomic description, 2)
executing holonomic closure properties, and 3) creative telescoping for general holonomic functions. More
details, also about lower-level functionalities, can be found in [6], and detailed descriptions of all available
commands are listed in the user’s guide [8]. These documents, the package itself, and a collection of ex-
amples can be downloaded from the website

http: //www.risc.jku.at/research /combinat/software /HolonomicFunctions/
(the required password is given for free to researchers and non-commercial users). HolonomicFunctions
has first been released in 2009 and since then it has been extended constantly.

179

Software presentation

In order to apply the holonomic systems approach to some special function identity, the first step
consists in converting all input expressions to holonomic descriptions (strictly speaking, our package works
with descriptions of 9-finite functions [3], but for sake of simplicity, we don’t want to insist on this subtle
difference for now). This means, for a given mathematical function f, determine all linear partial (g-)
difference / differential equations with polynomial coefficients that f satisfies (“holonomic system”). This
usually infinite set of equations has the structure of a left ideal in the corresponding operator algebra; we
use Ore algebras for representing such equations. The command to obtain an annihilating ideal (ideal of
annihilating operators) for f is Annihilator; it takes as input a mathematical expression f, together with
a list of operator symbols like D,, S,, etc. to specify the type of equations, and outputs the reduced left
Grobner basis of an annihilating ideal for f (note, however, that it is not guaranteed to be the maximal one
so that it may not contain all annihilating operators for f). Following [4], we have extended our package
such that it can also deal with certain non-holonomic functions. The Annihilator command recognizes
more than 100 elementary and special functions (holonomic and non-holonomic) that are available in the
Mathematica system.

The class of holonomic functions exhibits some nice and useful closure properties, among them addition,
multiplication, certain substitutions and application of operators: given annihilating ideals of functions f
and g, respectively, there are algorithms for computing an annihilating ideal of f + g, f - g, etc. Since
these operations are implemented on the level of d-finite functions, the corresponding commands are
DFinitePlus, DFiniteTimes, DFiniteSubstitute, and DFiniteOreAction. We refer to [6] where
these closure properties are explained in detail. We want to emphasize that the Annihilator command
analyzes the syntactical structure of an input expression and then makes use of the above closure properties,
e.g., multiplication in the input line In[2], see below.

It is a classic result that holonomic functions are also closed under taking integrals and sums; for these
operations, the method of creative telescoping is employed. The problem of computing creative telescoping
relations (consisting of the telescoper and the certificate) has attracted a great deal of attention during
the last years. Zeilberger’s solution in [11] (later coined “the slow algorithm”) is based on elimination;
in HolonomicFunctions it can be achieved via the OreGroebnerBasis command or the FindRelation
command. The latter finds an element in a given left ideal that satisfies certain properties, to be specified
by the user. Takayama’s algorithm [9] is also based on elimination, but is more efficient than the slow algo-
rithm; the command Takayama exports it to the user. The command CreativeTelescoping computes
telescopers and certificates using Chyzak’s algorithm [3], whereas the command FindCreativeTelescop-
ing executes the heuristic fast approach proposed in [7]. Very recently, a creative telescoping algorithm for
bivariate hyperexponential functions based on Hermite reduction [2] has been implemented by the author;
it will be available in the next release of HolonomicFunctions.

At the end, we come back to Zeilberger’s seminal paper [11] and demonstrate the usage of our package
on the toy example that he discusses in the introduction, namely the generating function of the venerable
Legendre polynomials:

> Pa(a)t" = (1 - 2at +)71/
n=0

We start by computing an annihilating ideal for the summand on the left-hand side, and perform creative
telescoping on it; this gives a list of telescopers and corresponding certificates:

1= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 1.6 (12.04.2012)

2= ann = Annihilator[LegendreP[n, x| xt"n, {S[n], Der[t], Der[x]}]
oul= {tD, —n,(n+1)S, + (t — ta®) D, + (—ntx — tz), (z* — 1)D; + 22D, + (—n* —n)}

180

In3]:=

Koutschan

{ts, cs} = CreativeTelescoping[ann, S[n] — 1, {Der[t], Der[x]}]

ouis- {{(~2 + 2t~ 1)D, + 1, (2 =24z + DD, + (L= 1) |, {(to = DD, = nt, (& = D@+ 1)D, + "= nm}}

t

The correctness of this result can be verified by showing that the creative telescoping operators are indeed
in the annihilating ideal (done here only for the first one, note the usage of noncommutative arithmetic):

In[4]:=

ctl = ts[[1]] + (S[n] — 1) ** cs[[1]]

outfal= (tx — 1)S, D, — (n 4 1)tS, + (tx — t*)D, + (nt + 1)

In[5]:=

Out[5]=

OreReduce|ctl, ann]

0

Finally, one computes an annihilating ideal for the right-hand side: it agrees with the left ideal generated
by the two telescopers above.

In[6]:=

Annihilator[(1 — 2xx*t 4+ t°2)~(—1/2), {Der[t], Der[z]}]

oufel= {(t* —2tw + 1)D, — t, (t* =2tz +1)D, + (t —)}

Comparing initial values (not done here) completes the proof.

References

[1]

2]

Gert Almkvist and Doron Zeilberger. The method of differentiating under the integral sign. Journal
of Symbolic Computation, 10(6):571-591, 1990.

Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li, and Guoce Xin. Hermite reduction and
creative telescoping for hyperexponential functions. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC), New York, NY, USA, 2013. ACM. To appear (preprint
on arXiv:1301.5038).

Frédéric Chyzak. An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete
Mathematics, 217(1-3):115-134, 2000.

Frédéric Chyzak, Manuel Kauers, and Bruno Salvy. A non-holonomic systems approach to special
function identities. In Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation (ISSAC), pages 111-118, New York, NY, USA, 2009. ACM.

Stavros Garoufalidis and Christoph Koutschan. Twisting g-holonomic sequences by complex roots
of unity. In Joris van der Hoeven and Mark van Hoeij, editors, Proceedings of the International
Symposium on Symbolic and Algebraic Computation (ISSAC), pages 179-186. ACM, 2012.

Christoph Koutschan. Advanced applications of the holonomic systems approach. PhD thesis, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria, 2009.

Christoph Koutschan. A fast approach to creative telescoping. Mathematics in Computer Science,
4(2-3):259-266, 2010.

Christoph Koutschan. HolonomicFunctions (user’s guide). Technical Report 10-01, RISC Report
Series, Johannes Kepler University, Linz, Austria, 2010. http://www.risc.jku.at/research/combinat/
software /HolonomicFunctions/.

181

Software presentation

[9] Nobuki Takayama. An algorithm of constructing the integral of a module—an infinite dimensional
analog of Grébner basis. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation (ISSAC), pages 206211, New York, NY, USA, 1990. ACM.

[10] Doron Zeiberger. A fast algorithm for proving terminating hypergeometric identities. Discrete Math-
ematics, 80(2):207-211, 1990.

[11] Doron Zeilberger. A holonomic systems approach to special functions identities. Journal of Compu-
tational and Applied Mathematics, 32(3):321-368, 1990.

182

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Classifying Discrete Objects with Orbiter

Anton Betten

Abstract

Orbiter is a software package to classify discrete objects such as designs, graphs, codes, and objects
from finite geometry. It employs the method of breaking the symmetry to attack difficult problem
instances by means of subobjects that serve as a stepping stone. The algorithms combine techniques from
Group Theory and from Combinatorics. Orbiter is a library of C++ functions that provide functionality
for Discrete Mathematics. In order to be applied to a specific problem, code has to be written taylored
to the specific application.

The Experimental Approach

Research in Mathematics often benefits from examples. There are many areas where the existing theory
does not suffice to explain all the examples that are known. Therefore, studying examples is often the
first step in finding new constructions or new theory. This new theory helps to explain where the known
examples come from, and often predicts more examples for larger instances of the parameter set. In some
cases, infinite families of objects can be constructed. In order to help with this process, knowing examples
and their automorphism groups is crucial. In Discrete Mathematics and Combinatorics, we are able to
examine (at least for small cases) complete lists of objects up to isomorphism. This kind of data is very
valuable to researchers. Orbiter is intended to assist with these classification problems. One could call
this the experimental approach to mathematics. Designs, graphs and codes are related topics, and all are
well-suited to computer investigation. The various links between these areas are stressed in [7].

Classifying all orbits of a permutation group means listing a set, of representatives for the orbits, together
with their respective stabilizer subgroups. Also, if an object is given, we can compute a group element that
maps the given object to its representative in the classification. These kinds of problems are notoriously
difficult, since they involve the isomorphism problem as a subproblem and isomorphism is usually NP-hard.

Breaking The Symmetry

While group theoretic algorithms to classify orbits are available, experience shows that many problems
require a combination of methods to be solved efficiently. The method of breaking the symmetry allows to
classify objects using subobjects that serve as a stepping stone. The subobjects are easier to classify, and
it is possible to lift the classification of subobjects to the classification of the original objects. The method
combines group theory with traditional “solvers.” Here, we understand solvers as any kind of computational
primitive to solve the problem of finding all objects that arise from a given starter object. Once these objects
have been found, an additional isomorph rejection step is performed to solve the classification problem.
The theory behind this is explained in [2], where the method is applied to the classification of packings in
PG(3,3). It is important to realize that the method is very general, and can be applied to broad classes of
problems.

183

Software presentation

The use of subobjects is well-known. In [11], homomorphisms of group actions are discussed. In [5]
and [6], the technique of “breaking the symmetry” is developed. In [16], an algebraic algorithm to compute
the orbit decomposition is presented. In Orbiter, many of these algorithms are combined, and an isomorph
classification module based on the theory described in [2] is present. Orbiter offers some algorithms to
solve these systems of equations but also allows to interface with third party software. The communication
between Orbiter and the outside solvers can happen through files. Once the data from the solver is received,
the isomorph classification module starts its job and computes the final list of isomorphism types together
with the stabilizer groups. Data from the classification is stored in files to allow identifying objects of the
givem type at a later point in time. This means that given an object, a group element can be computed
that maps the object to one of the representatives from the classification. An implementation of Knuth’s
dancing links (DLX) [10] is available. Wassermann’s algorithm [17] or any other suitable piece of software
can be used as an external solver.

The underlying idea behind Orbiteris to provide isomorph classification for a variety of types of objects.
To be able to handle things uniformly, we rely on the use of C4++ function pointers to realize permutation
group algorithms for arbitrary objects. The only requirement is that the object can be represented as
a set (or set of sets). The entries of the set are integers that represent the components of the object.
For instance, when classifying sets of points in a finite projective space subject to certain conditions, the
components are projective points, and they are represented numerically. When classifying combinatorial
designs, the objects consist of sets of subsets of a set X. These subsets are known as blocks, and they
form the components of the object. We can use the lexicographic ordering of subsets of X to identify
blocks with integers. The process of converting components into integers and integers into components is
called ranking and unranking. Sometimes, the terms indexing or enumerating are used also. Basically, the
possible components are mapped bijectively to an interval of integers. We require that rank and unrank
functions to encode the object under consideration are available. For may types of combinatorial objects,
such functions exist or can be devised easily. Using this kind of methodology, Orbiter is able to realize
permutation groups acting on objects. The permutation group algorithms and the functionality for the
specific object are completely separate. The group does not know what objects it is acting on, and the
objects does not know what group is acting on them. This methodology makes the code easily adaptable
to different actions. The most basic group actions are that of the symmetric group acting on a set, and the
projective linear group acting on projective space (as well as the affine group acting on a vector space).
From these basic actions, one can define induced actions in various ways. For instance, the symmetric group
induces an action on the k-subsets. The projective linear group induces an action on the Grassmannian of
subspaces. Many other induced actions are available.

Orbiter’s predecessor is DISCRETA [4], which is specialized to ¢-designs with prescribed groups of
automorphisms, and comes with a graphical user interface. Since Orbiter applies to a much more general
class of problems, there was no longer the possibility for a graphical user interface. Instead, the user of
Orbiter will have to write code to facilitate the algorithms that are provided. Orbiter is available from the
website [15].

Applications

Recently, Orbiter has been used to classify packings [2], unitals [1] and BLT-sets [3]. Other applications
exist. Some are described in the Orbiter Manual.

184

Postma

Other Work

A general reference for the problem of classifying designs and codes is [9]. This book emphasizes the use
of canonical forms, facilitated for instance via the software package nauty [14], or the partition backtrack
approach [12]. Both of these algorithms are available through the computer algebra system MAGMA [13].
Nauty is also available through Orbiter. A different computer algebra system with an emphasis on Group
Theory is GAP [8].

References

[

[13]

[14]

John Bamberg, Anton Betten, Cheryl Praeger, and Alfred Wassermann. Unitals in the Desarguesian
Projective Plane of Order Sixteen. To appear in Journal of Statistical Planning and Inference.

Anton Betten. The Packings of PG(3,3). Submitted to Journal of Combinatorial Designs.

Anton Betten. Rainbow Cliques and the Classification of Small BLT-Sets. Accepted for the Proceedings
of ISSAC 2013.

Anton Betten, Reinhard Laue, and Alfred Wassermann. DISCRETA, a tool for constructing t-designs.
In: Computer Algebra Handbook, Edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfennig,
Springer 2003, pp 372-375.

Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack searching in the
presence of symmetry. In Applied algebra, algebraic algorithms and error-correcting codes (Rome,
1988), volume 357 of Lecture Notes in Comput. Sci., pages 99-110. Springer, Berlin, 1989.

Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack searching in the
presence of symmetry. Nordic J. Comput., 3(3):203-219, 1996.

P. J. Cameron and J. H. van Lint. Designs, graphs, codes and their links, volume 22 of London
Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.

GAP — Groups, Algorithms, and Programming, Version 4.4. The GAP Group, Aachen, Germany and
St. Andrews, Scotland, 2004.

P. Kaski and P. Ostergard. Classification algorithms for codes and designs, volume 15 of Algorithms
and Computation in Mathematics. Springer-Verlag, Berlin, 2006.

D. E. Knuth. Dancing links. eprint arXiv:cs/0011047, November 2000. in Davies, Jim; Roscoe,
Bill; Woodcock, Jim, Millennial Perspectives in Computer Science: Proceedings of the 1999 Oxford-
Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, pp. 187-214.

R. Laue. Construction of combinatorial objects—a tutorial. Bayreuth. Math. Schr., 43:53-96, 1993.
Konstruktive Anwendungen von Algebra und Kombinatorik (Bayreuth, 1991).

J.S. Leon. Partitions, refinements, and permutation group computation. In Groups and computation,
II (New Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
pages 123-158. Amer. Math. Soc., Providence, RI, 1997.

Magma. The Computational Algebra Group within the School of Mathematics and Statistics of the
University of Sydney, 2004.

Nauty User’s Guide (Version 2.4), Brendan McKay, Australian National University, Nov 4, 2009.

185

Software presentation

[15] Orbiter — A Program To Classify Discrete Objects,
http://www.math.colostate.edu/~betten/orbiter/orbiter.html, Anton Betten, 2013.

[16] B. Schmalz. t¢-Designs zu vorgegebener Automorphismengruppe. Bayreuth. Math. Schr., 41:1-164,
1992. Dissertation, Universitat Bayreuth, Bayreuth, 1992.

[17] Alfred Wassermann. Finding simple ¢-designs with enumeration techniques. J. Combin. Des., 6(2):79—
90, 1998.

186

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Jenks Prize 2013 Award Citation

Communicated by Erich Kaltofen

The 2013 Richard D. Jenks Memorial Prize for Excellence in Software Engineering Applied to Computer
Algebra was announced by members of the Prize Selection Committee, Mark Giesbrecht representing its
chair Erich Kaltofen, at ISSAC in Boston, MA, on June 28, 2013 to have been awarded to Professor
William Arthur Stein of the Sage Project at the University of Washington. The Prize includes
a Plaque and has a monetary award of $1,000.

William Stein is the creator of the Sage platform (www.sagemath.org), which, based on the Python
programming language, makes available for integrated use a number of computer algebra programs such as
Magma, Maple, Mathematica, MuPAD, and which includes Axiom, GAP, GP/PARI, LinBox, Macaulay?2,
Maxima, Octave, and Singular, among others. Sage also provides its own programming language Cython.

William Stein has been able to attract hundreds of followers to Sage, who have contributed to the open
source base of Sage and who have already met for dozens of Sage Days on several continents. Some of the
algorithms in Sage constitute the fastest implementations for the given problems.

Sage’s free software philosophy has attracted thousands of users all over the world to undertake com-
putations for mathematical research and development.

MEMO

Professor Willi Arthur Stein

the Sage Project
at the University of Washington

5

187

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Mark Giesbrecht ACM Distinguished Scientist

On November 20, 2013, ACM has selected distinguished members in recognition of their individual
achievements and contributions. ACM Sigsam is proud to announce that our colleague Mark Giesbrecht
from the University of Waterloo has been selected as Distinguished Scientist.

Quoting from the corresponding ACM press release:

ACM (the Association for Computing Machinery) has named 40 Distinguished Members for
their individual contributions and their singular impacts on the vital field of computing. Their
achievements have advanced the science, engineering, and education of computing, and highlight
the widening role that computing plays in a range of disciplines and domains around the
globe. The 2013 Distinguished Members hail from universities in Denmark, Japan, Israel, Italy,
China, and the United Kingdom in addition to North America, and from leading international
corporations and research institutions.

ACM President Vinton G. Cerf described the recipients as “the problem solvers, prophets, and
producers who are powering the future of the digital age.” He noted that these ACM members
“are the driving force for enabling the computing community to change how we live and work.
They demonstrate the advantages of ACM membership, which empowers self-improvement and
inspires a bold vision for their own careers as well as their impact on the future.”

The ACM Distinguished Member program can recognize the top 10 percent of ACM world-
wide membership based on professional experience as well as significant achievements in the
computing field.

http://www.acm.org/press-room/news-releases/2013/distinguished-2013

188

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Abstracts of Recent Doctoral Dissertations in Computer Algebra

FEach month we are pleased to present abstracts of recent doctoral dissertations in Computer Algebra and
Symbolic Computation. We encourage all recent Ph.D. graduates (and their supervisors), who have defended
in the past two years, to submit their abstracts for publication in CCA.

Please send abstracts to the CCA editors <editors_SIGSAM@acm.org> for consideration.

Author: Nan Li

Title: On Isolated Singular Solutions in Polynomial System Solving
Institution: Chinese Academy of Sciences, Beijing, China

Thesis Advisor: Lihong Zhi

Defended: June 2013

Nowadays, polynomial models are ubiquitous and widely applied across the engineering and sciences,
such as in robotics, coding theory, optimization, mathematical biology, computer vision, game theory,
statistics, machine learning, control theory, cryptography, and numerous others. A main challenge in
algebra and geometry computing is to identify and tackle singular points, which naturally occur when
computing the topology of implicit curves or surfaces, the intersection of parametric surfaces in geometric
modeling.

A numerical approximation is usually computed to identify an isolated solution of a polynomial system.
In practice, we often need to improve the quality of numerical approximations, but numerical methods such
like Newton’s method converge slowly at singular solutions (or not converge). On the other hand, it is
well known that to certify whether a polynomial system has an isolated singular solution is an ill-posed
problem, since arbitrary small perturbations of coefficients may transform the singular solution into a
cluster of simple roots (or even make it disappear). Therefore, it is hardly possible to verify this problem,
if not the entire computation is performed without any rounding error (exact arithmetics).

In this thesis, we first introduce the local dual space for characterizing an isolated singular solution
of a polynomial system. By employing some regularization and reduction techniques, we present a novel
algorithm for computing a reduced basis of such a space for the special case of breadth one. The algorithm
also works for inputs only with limited accuracy, and is efficient both in time and memory use. Moreover,
it leads to a parametric representation for a reduce basis (multiplicity structure) of the local dual space.

Based on such a parametric representation and presolving a regularized least squares problem, we
propose a regularized Newton’s method for refining an approximate singular solution of a given polynomial
system. By a careful analysis, we prove the quadratic convergence of the algorithm if the numerical
approximation is close to a breadth-one isolated singular solution.

By introducing some well-chosen smoothing parameters to the given system, we develop an improved
deflation technique, which derives a square and regular augmented system from an isolated singular solution
in a finite number of deflations. Based on this technique, we propose an algorithm for computing verified
error bounds such that a slightly perturbed polynomial system is guaranteed to possess an isolated singular
solution within the computed bounds.

189

Dissertation Abstracts

Author: Maximilian Jaroschek

Title: Removable Singularities of Ore Operators
School: RISC, Johannes Kepler University, Linz
Thesis Advisor: Manuel Kauers

Defended: December 2013

Ore algebras are an algebraic structure used to model many different kinds of functional equations
like differential and recurrence equations. The elements of an Ore algebra are polynomials for which the
multiplication is defined to be usually non-commutative. As a consequence, Gauf3’ lemma does not hold
in many Ore polynomial rings and hence the product of two primitive Ore polynomials is not necessarily
primitive. This observation leads to the distinction of non-removable and removable factors and to the
study of desingularizing operators.

Desingularization is the problem of finding a left multiple of a given Ore operator in which some factor of
the leading coefficient of the original operator is removed. We derive a normal form for such left factors and
unify known results for differential and shift operators into one desingularization algorithm. Furthermore,
we analyze the effect of removable and non-removable factors on computations with Ore operators.

The set of operators of an Ore algebra that give zero when applied to a given function forms a left ideal.
The cost of computing an element of this ideal depends on the size of the coefficients (the degree) and the
order of the operator. In order to be able to predict or reduce these costs, we derive an order-degree curve.
For a given Ore operator, this is a curve in the (7, d)-plane such that for all points (r,d) above this curve,
there exists a left multiple of order r and degree d of the given operator. We show how desingularization
yields order-degree curves which are extremely accurate in examples. When computed for the generator
of an operator ideal from applications like physics or combinatorics, the resulting bound is usually sharp.

The generator of a left ideal in an Ore polynomial ring is the greatest common right divisor of the ideal
elements, which can be computed by the Euclidean algorithm. Polynomial remainder sequences contain
the intermediate results of the Euclidean algorithm when applied to (non-)commutative polynomials. The
running time of the algorithm is dependent on the size of the coefficients of the remainders. Different meth-
ods have been studied to make these as small as possible. The subresultant sequence of two polynomials
is a polynomial remainder sequence in which the size of the coefficients is optimal in the generic case, but
when taking the input from applications, the coefficients are often larger than necessary. We generalize two
improvements of the subresultant sequence to Ore polynomials, in which we show that the non-removable
factors of the greatest common right divisor appear as content. Based on this result we show how to divide
out this content during the Euclidean algorithm and derive a new bound for the minimal coefficient size of
the remainders. Our approach also yields a new proof for the results in the commutative case, providing
a new point of view on the origin of the extraneous factors of the coefficients.

190

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Recent and Upcoming Fvents

March 31-April 2, 2014
Functional Equations in Limoges (FELIM’14)
Limoges, France

Organizers: Moulay Barkatou, Thomas Cluzeau, and Jacques-Arthur Weil

May 15-17, 2014

6. Tagung Fachgruppe Computeralgebra

Kassel, Germany

Organizers: Wolfram Koepf (local organization)

Dates: Registration with talk: March 15, 2014; Registration without talk: May 1, 2014
Website: http://wuw.fachgruppe-computeralgebra.de/tagung-kassel-2014/

May 21-22, 2014

17th Workshop on Computer Algebra

Dubna, Russia

Organizers: Sergei Abramov, Vladimir Gerdt, Alla Bogolubskaya

Dates: Submission: May 11, 2014 (for visa arrangements: March 20, 2014)
Website: http://compalg. jinr.ru/Dubna2014/index.html

June 18-20, 2014
XIV Encuentro de Algebra Computacional y Aplicaciones (EACA 2014)
Barcelona, Spain

Dates: Submission: February 21, 2014; Notification: April 15, 2014; Final Version: May 10, 2014
Website: http://wuw.ub.edu/eaca2014

June 23-25, 2014
9th GASCom conference on random generation of combinatorial structures
Bertinoro, Italy

Organizers: Marilena Barnabei (scientific chair), Flavio Bonetti (organization chair)

Dates: Submission: February 28, 2014; Notification: April 11, 2014; Final version: May 9, 2014.
Website: http://gascom2014.dm.unibo.it/

July 24, 2014

8th International Workshop on Parallel Matrix Algorithms and Applications (PMAA’14)
Lugano, Switzerland

Organizers: Peter Arbenz, Ahmed Sameh, Rolf Krause, Olaf Schenk

Dates: Session proposals: March 15, 2014; Talk submission: March 30, 2014; Notification: April 6, 2014
Website: http://pmaald.ics.usi.ch/

191

Events

July 7-11, 2014
Conferences on Intelligent Computer Mathematics
Coimbra, Portugal

Organizers: Stephen Watt (general chair)

Dates: Workshop proposals: January 17, 2014; Conference submissions: February 28 (abstracts) and March
7 (full papers)
Website: http://cicm-conference.org/2014/cicm. php

July 23-25, 2014
39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14)
Kobe, Japan

Organizers: Kosaku Nagasaka and Franz Winkler (general chairs), Agnes Szanto (PC chair)

Dates: Submission: January 12, 2014 (abstracts) and January 19, 2014 (full papers), Notification: March 30,
2014, Final Version: April 30, 2014
Website: http://wuw.issac-symposium.org/2014

July 28-31, 2014

Symbolic Numeric Computation (SNC 2014)

Shanghai, China

Organizers: Lihong Zhi (general chair), Stephen Watt (PC chair), Zhengfeng Yang (Local chair)
Dates: Submission: March 24, 2014; Notification: April 28, 2014; Final version: May 19, 2014
Website: http://symbolic-numeric-computation.org/snc-2014/

August 5-9, 2014

The 4th International Congress on Mathematical Software (ICMS)

Seoul, Korea

Organizers: Chee K. Yap (general chair), Hoon Hong (program chair), Deok-Soo Kim (local chair)
Dates: Session proposals: Jan 31 2014

Website: http://voronoi.hanyang.ac.kr/icms2014/

September 8-12, 2014
16th Computer Algebra in Scientific Computing (CASC 2014)
Warsaw, Poland

Organizers: Vladimir P. Gerdt and Werner M. Seiler (General Chairs); Wolfram Koepf and Evgenii V. Vorozhtsov
(PC Chairs)

Dates: Submission: April 06, 2014; Notification: May 25, 2014; Final version: June 08, 2014

Website: http://wwwl4d.in.tum.de/CASC2014/

192

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Call for Papers

39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014)

http://www.issac-symposium.org/2014/
July 23-25 2014, Kobe, Japan

The International Symposium on Symbolic and Algebraic Computation is the premier conference for
research in symbolic computation and computer algebra. ISSAC 2014 is the 39th meeting in the series.
The conference traditionally presents a range of invited speakers, tutorials, poster sessions and software
demonstrations with a centre-piece of contributed research papers.

ISSAC 2014 is held July 23-25, 2014 at Kobe University, Japan. ISSAC 2014 is affiliated with “Kobe
Computing Week 2014”, an event of Academic Exchange Weeks, Graduate School of Human Development
and Environment, Kobe University.

ISSAC 2014 is one of satellite conferences of ICM 2014 (International Congress of Mathematicians),
Korea. Also, SNC 2014 (Symbolic-Numeric Computation), Shanghai, China, is a satellite conference of
ISSAC 2014.

Important Dates
FEvent:

e Workshops and tutorials: July 21-22, 2014
e ISSAC 2014 conference: July 23-25, 2014

Regular papers:

e Paper abstract submission: January 12, 2014

Full paper submission deadline: January 19, 2014
e Notification of acceptance/rejection: March 30, 2014
e Final version due: April 30, 2014

Posters and Software presentations:

e Abstract submission: April 20, 2014
e Notification: May 16, 2014
e Final version: June 6, 2014

Conference Topics:

ISSAC 2014 invites the submission of original research contributions to be considered for publication
and presentation at the conference. All areas of computer algebra and symbolic mathematical computation
are of interest. These include, but are not limited to:

Algorithmic aspects:

e Exact and symbolic linear, polynomial and differential algebra
e Symbolic-numeric, homotopy, perturbation and series methods
e Computational algebraic geometry, group theory and number theory

193

Events

Computer arithmetic
Summation, recurrence equations, integration, solution of ODEs & PDEs

[]
[}
e Symbolic methods in other areas of pure and applied mathematics
e Complexity of algebraic algorithms and algebraic complexity

Software aspects:

Design of symbolic computation packages and systems

Language design and type systems for symbolic computation

Data representation
Considerations for modern hardware

Algorithm implementation and performance tuning
e Mathematical user interfaces

Application aspects:
Applications that stretch the current limits of computer algebra algorithms or systems, use computer
algebra in new areas or new ways, or apply it in situations with broad impact.

Invited Speakers:
Nokiko Arai, David Stoutemyer, and Bernd Sturmfels
Organizers:

General Chairs: Kosaku Nagasaka and Franz Winkler

PC Chair: Agnes Szanto

Local Chair: Kosaku Nagasaka

Publicity: Ekaterina Shemyakova

Treasurer: Akira Terui

Poster Chair: Wen-shin Lee

Software Presentations Chair: Daniel Lichtblau

Tutorial Chair: Tetsu Yamaguchi

Workshop Chair: Takuya Kitamoto

Webmaster: Masaru Sanuki

Program Committee: Shaoshi Chen (Chinese Academy of Sciences, China), Carlos D’Andrea (U. Barcelona,
Spain), Wayne Eberly (U. Calgary, Canada), Ioannis Emiris (U. Athens, Greece), Jean-Charles Faugere
(INRIA, France), Mark Giesbrecht (U. Waterloo, Canada), Jonathan Hauenstein (North Carolina State
University, USA), Evelyne Hubert (INRIA, France), Alexander Hulpke (Colorado State University, USA),
Gabor Ivanyos (MTA SZTAKI, Hungary), Joseph Maurice Rojas (Texas A&M University, USA), Julio Ru-
bio (Universidad de La Rioja, Spain), Mohab Safey el Din (Univ. Pierre and Marie Curie, France), Tateaki
Sasaki (University of Tsukuba, Japan), Yosuke Sato (Tokyo U. of Science, Japan), Josef Schicho (RISC,
Austria), Michael Singer (North Carolina State University, USA), Elena Smirnova (Texas Instruments,
USA), Agnes Szanto (North Carolina State University, USA), Chee Yap (NYU, USA)

194

ACM Communications in Computer Algebra, Vol. 47, No. 4, Issue 186, December 2013

Call for Session Proposals

4th International Congress on Mathematical Software (ICMS 2014)

http://voronoi.hanyang.ac.kr/icms2014
August 5-9 2014, Seoul Korea
Satellite Conference of ICM 2014
http://www.icm2014.org

The 4th International Congress on Mathematical Software will consist of several topical sessions. Each
session will provide an overview of the challenges, achievements and progress in a subfield of mathematical
software research, development and use. The program committee will consist of the session organizers. We
solicit session proposals.

You are invited to propose a session if you

are active in mathematical software research, development and use, want to serve the research commu-
nity by nurturing and facilitating mathematical software work in your area, and would like to focus only
on the scientific matters in the organization (not on other matters such as administrative, logistic, etc).

How to propose a session

e Prepare a session proposal with the following contents.

— title of the session
— name(s) of the organizer(s), with contact addresses and emails

— aim and scope of the session (at most 150 words)
e Submit it

— to the program chair (Hoon Hong)
— by email hong@ncsu.edu
— at latest by Jan 31 2014.

e The decision on the proposal will be made by the program chair, the general chair and the advisory
committee within a week of the submission.

How to organize a session

e Maintain a session web page (a template will be provided).

e Send a call for abstracts to the potential speakers in the topic area of the session (a template will be
provided).

e Review the submitted abstracts and make decision on their acceptance, as soon as each one arrives.

195

Events

e Complete the process by May 15 2014.

e During the meeting, chair the session.

Format of a session

e A session will consist of one or more time slots.

A time slot will consist of about 5 talks.

Each talk will last about 30 minutes (including Q/A).

e We encourage that each session begins with one general overview talk (may be given by a session
organizer).

Topics for sessions
Any mathematical software topics are welcome. For suggestions, see “Call for Session Proposals” at
http://voronoi.hanyang.ac.kr/icms2014

196

