
Constructing a Single Open Cell in a Cylindrical Algebraic
Decomposition

Christopher W. Brown
Computer Science Department, Stop 9F

United States Naval Academy
572M Holloway Road
Annapolis, MD 21402

wcbrown@usna.edu

ABSTRACT
This paper presents an algorithm that, roughly speaking,
constructs a single open cell from a cylindrical algebraic de-
composition (CAD). The algorithm takes as input a point
and a set of polynomials, and computes a description of an
open cylindrical cell containing the point in which the input
polynomials have constant non-zero sign, provided the point
is sufficiently generic. The paper reports on a few example
computations carried out by a test implementation of the
algorithm, which demonstrate the functioning of the algo-
rithm and illustrate the sense in which it is more efficient
than following the usual “open CAD” approach. Interest in
the problem of computing a single cell from a CAD is mo-
tivated by a 2012 paper of Jovanovic and de Moura that
require solving this problem repeatedly as a key step in NL-
SAT system. However, the example computations raise the
possibility that repeated application of the new method may
in fact be more efficient than the usual open CAD approach,
both in time and space, for a broad range of problems.

Categories and Subject Descriptors
G.4 [Mathematics of Computation]: Mathematical soft-
ware—Algorithm design and analysis

Keywords
cylindrical algebraic decomposition; polynomial inequalities

1. INTRODUCTION
In a 2012 paper [3], Jovanovic and de Moura present NL-

SAT, a novel algorithm that uses Conflict-Driven Clause
Learning (CDCL)-style search to decide the satisfiability of
systems of polynomial equalities and inequalities over the
real numbers. An essential step in this algorithm is to take
an assignment of real values that does not satisfy the origi-
nal system, and generalize it to a larger region in which all
points fail to satisfy the original system. They do this by

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
ACM 978-1-4503-2059-7/13/06.

constructing a single cell in a Cylindrical Algebraic Decom-
position (CAD) defined from a set of polynomials — namely
the cell that contains the unsatisfying assignment. This
problem of constructing a single cell in a CAD efficiently
has not, to the best of our knowledge, been addressed in
the literature prior to Jovanovic and de Moura’s work. The
problem is important in light of the success NLSAT has al-
ready demonstrated, but also, as will be described later in
the paper, it is a problem that has the potential to be im-
portant in other contexts as well. This paper takes the first
steps towards a dedicated study of this problem, providing
an efficient algorithm for constructing and computing with
individual open cells in CADs, and reporting on the perfor-
mance of a test implementation of this algorithm. Adapting
and extending the algorithm to lower-dimensional cells is an
interesting subject for future work.

Roughly speaking, the problem we consider is this: given
a set P of polynomials in R[x1, . . . , xn] and a point α ∈ Rn,
compute the full dimensional cell from the CAD defined by
P that contains point α, assuming α is not a zero of any
of the polynomials in P . Jovanovic and de Moura gain an
advantage over a straight-forward application of CAD to de-
termine the satisfiability of a formula in several ways, but
the two that are relevant here are that: 1) the set of polyno-
mials they start with when they build a single CAD cell to
generalize conflicting assignment is often smaller than the
full set of polynomials in the input formula1, and 2) in lift-
ing they only lift above the one cell at each level contain-
ing the given point α. The fundamental idea behind this
paper is that the projection operator can be substantially
improved when we restrict ourselves to constructing a single
cell containing the point α. In particular, the present paper
describes how this can be done when the goal is to construct
an open CAD cell containing α. Restricting the problem to
open cells simplifies the algorithm, correctness proof, and
implementation. However, the approach should be general-
izable to constructing cells of lower dimension, and such a
generalization is planned as future work.

A precise formulation of the problem appears below. One
of the issues that must be addressed in a precise formula-
tion is that smaller projection factor sets generally result
in larger CAD cells. Thus, the cell that we construct is
often a superset of the cell containing α in the full CAD

1A more strictly correct statement of this requires compar-
ing the projection closure of the set of polynomials appear-
ing in the input formula to the set of polynomials they start
with in building the single CAD cell.

133



constructed in the usual way from the same initial set of
polynomials. Although this complicates the description of
the problem, it is a good thing! In the context of Jovanovic
and de Moura’s NLSAT procedure, for instance, a larger
cell means a stronger generalization of the conflicting as-
signment.

1.1 The precise problem
This paper assumes some familiarity with CAD (Cylindri-

cal Algebraic Decomposition) on the part of the reader. In
particular, the paper requires the concepts behind and algo-
rithms for constructing an “Open CAD” for a set of polyno-
mials (see for example [4] and [6]), which are actually much
simpler than their counterparts for standard CADs. Those
unfamiliar with the subject of CAD, may wish to look at
the introduction given in [1] which, though quite old, pro-
vides a clearly-written, well-explained starting point for the
subject. For those familiar with CAD, but not Open CAD,
we give a very brief overview.

Generally, CAD construction starts with a set A of input
polynomials over some ordered set of variables, x1 ≺ x2 ≺
· · · ≺ xn. The goal is to construct a decomposition of Rn

into cells in which the elements of A have constant sign, and
to do it in such a way that the regions in the decomposition
have a special “cylindrical” arrangement with respect to the
variable ordering. In the case of an Open CAD all cells are
open sets, and we do not require Rn to be decomposed in the
strict sense, rather we allow some points to be “missed”, as
long as the set of points in Rn that are not contained in any
cell has measure zero. Usually, CAD construction proceeds
in two stages: projection, and lifting. Projection produces a
set P ⊆ A, called the projection factor set, that implicitly
defines a CAD. Lifting produces an explicit data structure
representing the CAD implicitly defined by P . This data
structure can be queried to provide a sample point from
each cell in the CAD, and a semi-algebraic description of
each cell in the CAD.

The projection process is usually defined in terms of a
projection operator, which eliminates a variable from a set
of projection factors, thereby creating new projection fac-
tors. The projection operator is applied recursively until all
but one variable is eliminated, and the set of input polyno-
mials along with all the polynomials created by applications
of the projection operator is the projection factor set. In
the case of Open CAD we would use the “Open-McCallum
projection” operator, which is defined as follows:2 If Pk is
a set of irreducible polynomials in R[x1, . . . , xk] of positive
degree in xk, then ProjMOpenk(Pk) is the set of irreducible
factors of⋃

p∈Pk

ldcfxk (p) ∪
⋃

p∈Pk

discxk (p) ∪
⋃

p,q∈Pk,p6=q

resxk (p, q).

The closure of a set of polynomials P ⊂ R[x1, . . . , xn] under
the Open-McCallum projection is the set P ∗ computed as
follows:

P ∗ := P
for k from n down to 2 do

P ∗ := P ∗ ∪ ProjMOpenk({p ∈ P ∗|the level of p is k})

Given a finite set of input polynomials P ⊂ R[x1, . . . , xn],
an Open CAD for P is constructed by computing P ∗, the

2This description uses the term level (see Definition 1).

closure of P under the Open-McCallum projection, and fol-
lowing the usual CAD lifting procedure with projection fac-
tor set P ∗ with the restriction that lifting is only done over
full-dimensional cells, i.e. cells whose level and dimension
are equal. The full-dimensional cells of level n comprise the
cells of the Open CAD.

We are now ready to give a precise statement of the prob-
lem we want to solve:
The Open-Cell Problem Given a set P of polynomials in
R[x1, . . . , xn] and a point α ∈ Rn, compute a description of
an open cylindrical algebraic cell C ⊆ Rn containing point
α and in which the elements of P have constant, non-zero
sign such that, if F is the projection closure of P under the
Open-McCallum projection, C contains at least one open
maximal connected region in which the elements of F have
constant non-zero sign. If any element of F is zero at α,
Fail is an acceptable result.

1.2 This paper’s contribution
The problem of constructing a single cell of a CAD does

not seem to have been considered in the literature prior Jo-
vanovic and de Moura’s paper. As described earlier, the
approach we take goes beyond what they describe in their
paper because it actually reduces the size of the set of pro-
jection polynomials, which both speeds up the process of
constructing the cell and produces a larger cell — both of
which are improvements. The specific contributions of this
paper are:

1. OC-Construct a simple, efficient algorithm for the
Open-Cell problem,

2. a formal proof of correctness for OC-Construct, and

3. empirical examples of the operation of OC-Construct
based on a test implementation.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the basic ideas that lead to the algorithms
presented later in the paper. An intuitive feeling for these
ideas will aid in reading the remainder of the paper. Sec-
tion 3 describes the OpenCell data structure — which is
what the Open-Cell Problem is asking us to produce. Some
important properties of this data structure are proved. Sec-
tion 4 gives the Algorithm OC-Construct and proves its
correctness. Finally, Section 5 provides some example com-
putations with our test implementation that illustrate how
OC-Construct works, and why it has the real potential
to be the basis for more efficient algorithms to solve some
problems than the usual CAD approach can provide.

2. THE BASIC IDEA
The fundamental idea behind the algorithms proposed in

this paper is best understood from a simple example. Sup-
pose that we want to construct a single open cell from the
point α = (−1/2, 1/2) and input polynomials P = {y2−1−
x2, y − x− 4, y + x− 5}. The CAD that would normally be
constructed from this set, is shown on the left in Figure 1,
with the cell containing (−1/2, 1/2) highlighted.

The three input polynomials appear as the line with pos-
itive slope, the line with negative slope and the “hour glass”
curve. The vertical lines are defined by the zeros of the
polynomials resulting from the projection of the input poly-
nomials.

134



Figure 1: On the left is the full CAD. On the right
is the single open cell constructed by OC-Construct.
In both plots, the point α is shown by a black dot.

The important observation is that the right boundary of
the cell containing α is defined by the intersection of the
two non-vertical lines, but that intersection point lies out-
side of any region containing α in which the signs of the
input polynomials stay constant. The algorithm we present
recognizes that neither V (y−x−4) nor V (y+x−5) are part
of the boundary of the cell containing α we will ultimately
construct, and therefore their intersections with one another
are irrelevant. Thus the algorithm deduces that the resul-
tant of y−x−4 and y+x−5 can be left out of the projection.
The right side of Figure 1 shows the cell OC-Construct
constructs from this input. The cell is larger, and fewer
distinct polynomials are required to define its boundaries.

Making this optimization requires us to be able to recog-
nize which polynomials form the boundaries of the cell we
are constructing. This is easy to do because we start with the
point α that identifies which particular cell we want to con-
struct. Continuing with our example problem, we substitute
all but the last coordinate of α into our input polynomials
to get univariate polynomials in the main variable – y in this
case. We isolate the roots of the three resulting univariate
polynomials, and order them and the last coordinate of α.
The result is shown in Figure 2.

Figure 2: Ordered roots of the input polynomials
(circles) and α (filled dot).

The roots immediately above and below the final coordi-
nate of α identify which of the original input polynomials
will form the upper and lower boundary of the cell we ul-
timately construct. (In higher dimensions, we can do the
exact same thing — still only ever requiring univariate root
isolation.) Generalizing the example, intersections of the va-
rieties of polynomials that do not define the upper and/or
lower boundaries of the cell we are trying to construct are

irrelevant, and therefore pairwise resultants of those poly-
nomials need not be included in the projection.

3. THE OPENCELL DATA STRUCTURE
Our goal is to construct a representation of a single open

cell containing the point α. Before we can give an algorithm
for computing this, we must define the representation — we
must define the data structure we will use to represent the
cell. We call this the OpenCell data structure, and in this
section we define the structure and prove several important
properties about it.

CADs are defined with respect to some variable ordering.
In this paper, without loss of generality, we assume the order
x1 ≺ x2 ≺ · · · ≺ xn.

Definition 1. The level of a non-constant polynomial
p ∈ R[x1, . . . , xn] is the largest k such that degxk

(p) > 0.

Definition 2. For p ∈ R[x1, . . . , xn] and non-negative
integer i, we define the indexed root expression root(p, i, xk)
at the point γ = (γ1, . . . , γn) as the ith distinct real root of
p(γ1, . . . , γk−1, xk) (ordered smallest to largest). If the level
of p is not k, if polynomial p(γ1, . . . , γk−1, xk) is the zero
polynomial or if it has fewer than i distinct real roots, the ex-
pression has value Undef. Note that this is a more restricted
notation than the notation introduced in [2]. We also al-
low the special indexed root expressions root(+∞, 1, xk) and
root(−∞, 1, xk) to represent positive and negative infinity,
respectively. We won’t do any arithmetic with these expres-
sions, so those semantics won’t be addressed.

We formally extend the usual relational operators {<,>
,≤,≥,=, 6=} to be false if either the left or right hand sides
is undef , and we allow the expressions root(+∞, 1, xk) and
root(−∞, 1, xk) on the left and right side of the relational
operators with the obvious semantics.

Definition 3. A RealAlgNum is a 4-tuple (p, I, t, j) where
p is a squarefree univariate polynomial, I is an isolating in-
terval for the jth distinct real root of p ordered from smallest
to largest, and t is the trend of p at the root in I, i.e. the
sign of p′ at the root. If A is a RealAlgNum we adopt the no-
tation A.p, A.I, A.t and A.j to refer to the four components
of the tuple. We refer to the real number that is the A.jth
distinct real root of A.p as val(A). To simplify the presen-
tation below, we allow A.p to be +∞ or −∞, in which case
val(A) is +∞ or −∞, respectively.

Definition 4. An OpenCell Data Structure D contain-
ing rational point α = (α1, . . . , αk) ∈ Rk is a list D[1], . . . ,
D[k] of 4-tuples (l, L, u, U), where l ∈ R[x1, . . . , xk] and L
is a RealAlgNum or l = −∞, and u ∈ R[x1, . . . , xk] and U
is a RealAlgNum or u = +∞, and the following additional
requirements hold: Note: S(D) and F (D) are defined below,
but used in this definition.

1. D[1], . . . , D[k−1] is an Open Cell Data Structure con-
taining the point (α1, . . . , αk−1).

2. D[k].l = −∞ and D[k].L = (−∞, [0, 0], 0, 1) or

(a) D[k].l is irreducible and of positive degree in xk
and D[k].l(α1, . . . , αk−1, xk) = D[k].L.p(xk).

(b) discxk (D[k].l) and ldcfxk
(D[k].l) have constant non-

zero sign on S(D[1], . . . , D[k − 1]).

135



α

root(D[1].l(x),D[1].L.j,x) < x < root(D[1].u(x),D[1].U.j,x)

root(D[3].l(x,y,z),D[3].L.j,z) < z < root(D[3].u(x,y,z),D[3].U.j,z)

root(D[2].l(x,y),D[2].L.j,y) < y < root(D[2].u(x,y),D[2].U.j,y)

root(u(x,y,z),U.j,z)

root(l(x,y,z),L.j,z)

α

}

}

U.I

L.I

U.jth root of U.p

L.jth root of L.p

Figure 3: The diagram on the left shows how the elements of an OpenCell data structure D taken together
define an open cell. The shaded regions are S(D[1]), S(D[1], D[2]) and S(D[1], D[2], D[3]). The diagram on the
right shows how univariate root isolation and the components of the OpenCell data structure identify which
sections of which polynomials define the upper and lower boundaries of the open cell defined by the data
structure.

(c) D[k].L.p has no root in the interval
(val(D[k].L), val(D[k].U)).

3. D[k].u = +∞ and D[k].U = (+∞, [0, 0], 0, 1) or

(a) D[k].u is irreducible and of positive degree in xk
and D[k].u(α1, . . . , αk−1, xk) = D[k].U.p(xk).

(b) discxk (D[k].u) and ldcfxk
(D[k].u) have constant

non-zero sign on S(D[1], . . . , D[k − 1]).

(c) D[k].U.p has no root in the interval
(val(D[k].L), val(D[k].U)).

4. If D[k].l 6= −∞ and D[k].u 6= +∞, resxk (D[k].l, D[k].u)
has constant non-zero sign on S(D[1], . . . , D[k − 1]).

5. The following formula is satisfied at point α:

root(D[k].l, D[k].L.j, xk) < αk < root(D[k].u,D[k].U.j, xk)

Figure 3 provides two diagrams that illustrate how the
OpenCell data structure defines an actual open cell contain-
ing point α.

Definition 5. Let D be an OpenCell data structure con-
taining point α ∈ Rk. We define F (D) to be true if D is the
empty list, and otherwise

F (D[1], . . . , D[k − 1]) ∧
root(D[k].l, D[k].L.j, xk) < xk < root(D[k].u,D[k].U.j, xk).

We define S(D) as R0 if D is the empty list, and otherwise

S(D) = {γ ∈ Rn | F (D) is satisfied at γ}.

Theorem 1. Let D be an OpenCell data structure con-
taining point α = (α1, . . . , αk) ∈ Rk. The following proper-
ties hold:

1. D[k].l and D[k].u are delineable over S(D[1], . . . , D[k−
1]).

2. S(D) is an open cylindrical subset of Rk containing α.

3. S(D) is the maximal connected region containing α in
which D[1].l, D[1].u, . . . , D[k].l, D[k].u have constant,
non-zero sign.

Proof. We proceed inductively on k. Consider the case
k = 1. Univariate polynomials are by definition delineable,
which takes care of Property 1. When k = 1, S(D) is an
open interval, which is an open cylindrical subset of R1.
This takes care of Property 2. Finally, when k = 1, S(D) is
precisely the interval (val(D[k].L), val(D[k].U)) in which, by
definition, neither D[k].L.p = D[k].l nor D[k].U.p = D[k].u
are zero. Since the zeros of D[k].l and D[k].u are the end-
points of this interval, it is a maximal connected region in
which D[k].l and D[k].u have constant non-zero sign. This
takes care of Property 3.

Suppose k > 1. We will only consider the case in which
D[k].l 6= −∞ and D[k].u 6= +∞, since the other three cases
are similar but easier. By induction, all three points hold
for the OpenCell data structure D[1], . . . , D[k−1] containing
point (α1, . . . , αk−1). By definition, the leading coefficients
and discriminants of D[k].l and D[k].u, as well as their re-
sultant, all have constant non-zero sign in S(D[1], . . . , D[k]),
which is an open cylindrical cell and, since by Property 3 its
boundaries are semi-algebraic, it is an open cylindrical alge-
braic cell — in fact, an analytic submanifold. By Theorem 2
of McCallum’s paper defining his projection operator ([5]),
D[k].l andD[k].u are delineable over S(D[1], . . . , D[k]). This
takes care of Property 1. McCallum’s Theorem also assures
us that the sections root(D[k].l, D[k].L.j, xk) and
root(D[k].u,D[k].U.j, xk) are the graphs of non-intersecting
real-valued algebraic functions over S(D[1], . . . , D[k]), so the

136



fact that (by the definition of the OpenCell data-structure)

root(D[k].l, D[k].L.j, xk) < root(D[k].u,D[k].U.j, xk)

at (α1, . . . , αk−1) implies that the same inequality holds over
the entire region S(D[1], . . . , D[k − 1]). This proves that
S(D) is an open cylindrical subset of Rk which, since it’s
obvious that α ∈ S(D), proves Property 2.

Finally, we prove Property 3. Since we have shown that
S(D) is an open cylindrical subset of Rk containing α, it
suffices to show that if a sequence of points in S(D) con-
verges to a point γ /∈ S(D), then some polynomial in the list
D[1].l, D[1].u,D[2].l, D[2].u, . . . , D[k].l, D[k].u vanishes at γ.

Suppose there is an infinite sequence γ1, γ2, . . . of points
in S(D) that converges to point γ not in S(D). Let πk−1

denote the projection of a point in real n-dimensional space,
where n ≥ k, onto (k − 1)-dimensional space. We have two
cases. First, suppose πk−1(γ) /∈ S(D[1], . . . , D[k−1]). Then
since πk−1(γ1), πk−1(γ2), . . . converges to πk−1(γ), we are
guaranteed by induction that one of D[1].l, D[1].u, D[2].l,
D[2].u, . . ., D[k− 1].l, D[k− 1].u is zero at πk−1(γ). So the
second case is πk−1(γ) ∈ S(D[1], . . . , D[k− 1]). In this case,
γ /∈ S(D) implies that

root(D[k].l, D[k].L.j, xk) < xk < root(D[k].u,D[k].U.j, xk)
(1)

fails to hold at γ. Since (1) holds for all points in the se-
quence γ1, γ2, . . ., this implies that either D[k].l or D[k].u is
zero at γ, which completes the proof of Property 3.

4. THE OC-CONSTRUCT ALGORITHM
In this section we describe OC − Construct, a simple,

efficient algorithm for the Open-Cell problem. The majority
of work is done by a sub-algorithm O-P-Merge which we
define first.

Theorem 2. Algorithm O-P-Merge meets its specifica-
tion.

Proof. We fix n and proceed inductively on k. Clearly,
in Step 1, Fail is returned if P (α) = 0 as required by the
specification. So we continue under the assumption that
P (α) 6= 0. As in the proof of Theorem 1, we will assume
that D[k].l 6= −∞ and D[k].u 6= +∞, since the proof for
cases in which this does not hold is similar but simpler.

Case k = 0 and k = 1. If k = 0, P is a non-zero con-
stant, so returning D′ = D meets the specification. When
k = 1 we skip Steps 4–7. Those steps basically refine the
cell defined by D′ to ensure the delineability of P , D[k].l,
and D[k].u. Since 1-level polynomials are always deline-
able, those steps aren’t needed. When k = 1 the cell rep-
resented by D is an open interval. Steps 8–10 orders the
roots of P , D[1].l and D[1].u and chooses the nearest root
below α1 as the (possibly new) lower bound, and the near-
est root above α1 as the (possibly new) upper bound. Thus
Point 1 of the output requirements is satisfied. When k = 1,
F = {P,D[1].l, D[1].u} and, as discussed above D′[1].l and
D′[1].u are taken from this set, so Point 3 of the output re-
quirements is satisfied. It is also clear from the way D′[1].l
and D′[1].u are chosen that Point 2 also holds. Finally,
we must be sure that D′ has the properties required of an
OpenCell data structure. All but parts 2c, 3c and 5 of Def-
inition 4 hold trivially, because they deal with properties of
D[1], . . . , D[k − 1], which is the empty list when k = 1. We

Algorithm 1 OpenCell–Polynomial Merge (O-P-Merge)

Input:
α : a rational point in Rn, α = (α1, . . . , αn)
D : an OpenCell data structure containing α
P : an integral polynomial of level k, where k < n

Output:
D′ : an OpenCell data structure containing α such that
(denote by F is the closure under the Open-McCallum
projection of {P,D[1].l, D[1].u, . . . , D[k].l, D[k].u})

1. S(D′) ⊆ S(D)

2. S(D′) contains at least one maximal connected re-
gion in which the elements of F have constant,
non-zero sign, and

3. {D′[1].l, D′[1].u, . . . , D′[k].l, D′[k].u} ⊆ F
-or-
Fail whenever P (α) = 0. Outputting Fail is also al-
lowed, but not required, whenever any element of F is
zero at α.

1: if P (α) = 0 return Fail
2: set D′ to a copy of D
3: if k = 0 return, if k = 1 goto Step 8
4: set F = {ldcfxk (P ), discxk (P )}
5: if D[k].l 6= −∞ set F = F ∪ {resxk (P,D[k].l)}
6: if D[k].u 6= +∞ set F = F ∪ {resxk (P,D[k].u)}
7: for each f from the set of irreducible factors of the ele-

ments of F do
set R = O-P-Merge(α,D′, f)
if R = Fail return Fail, else set D′ = R

8: isolate the real roots of P (α1, . . . , αk−1, xk) obtaining
the ordered list of RealAlgNum’s B1, . . . , Bs, and merge
D[k].L, D[k].U and αk into that list.

9: if, for some i, Bi, αk appear consecutively in the list, set
D′[k].l = P and D′[k].L = Bi

10: if, for some j, αk, Bj appear consecutively in the list,
set D′[k].u = P and D′[k].U = Bj

11: return

choose D′[1].l, D′[1].L to be the nearest root below α1 and
D′[1].u,D′[1].U to be the nearest root above α1. So S(D′)
is the interval (val(D′[1].L), val(D′[1].U)) and α1 is in that
interval. This shows that part 5 of Definition 4 holds, and
since we chose the nearest roots as upper and lower bounds
for this interval, parts 2c and 3c hold as well.

Case k > 0. Denote by f1, . . . , fr the irreducible factors
of the elements of F , in the order in which they are added
in Step 7.3 Each of the fi’s is of level less than k, since they
are resultants, discriminants and coefficients, so by induction
we may assume that the calls to O-P-Merge return results
meeting its specification.

Suppose that i − 1 iterations of the loop in Step 7 have
completed without Fail having been returned, and consider
the call O-P-Merge(α,D′, fi) in the ith iteration. Denote
by F ′ the closure under the Open-McCallum projection of{

fi, D
′[1].l, D′[1].u, . . . , D′[k − 1].l, D′[k − 1].u

}
.

3Notice that the order in which these factors are added is
not specified by the algorithm. Different choices of order can
result in different cells — some larger, some smaller, some
more quickly computed, some more slowly. Investigating
good orders is a possible avenue for future work.

137



Polynomial fi is a factor of resxk (P,D[k].l), resxk (P,D[k].u),
discxk (P ), or ldcfxk (P ), which are all elements of the Open-
McCallum projection of

{P,D[1].l, D[1].u,D[2].l, D[2].u, . . . , D[k].l, D[k].u}

from which it follows that F ′ ⊆ F .
Suppose Fail is returned by the recursive call. This means

that some element F ′ vanishes at α, which in turn means
that some element of F vanishes at α, in which case the
specification allows the result of O-P-Merge(α,D, P ) to be
Fail.

Next, suppose that the recursive call does not return Fail,
but instead returns the OpenCell data structure R. By in-
duction, S(R[1], . . . , R[k−1]) ⊆ S(D′[1], . . . , D′[k−1]) which
means that any polynomial that has constant non-zero sign
in S(D′[1], . . . , D′[k− 1]) also has constant non-zero sign in
S(R[1], . . . , R[k − 1]).

Assuming that all iterations of the loop at Step 7 are com-
pleted without Fail being returned, we are left after Step 7
with the OpenCell data structure D′ such that discxk (P ),
ldcfxk (P ), resxk (P,D[k].l) and resxk (P,D[k].u) all have con-
stant non-zero sign in S(D′[1], . . . , D′[k−1]). Thus, by The-
orem 2 of McCallum’s paper on projection [5], the zeros of
D[k].l, D[k].u and P over S(D′[1], . . . , D′[k − 1]) are delin-
eable, i.e. their zeros define a finite set of non-intersecting
graphs of real-valued algebraic functions over S(D′[1], . . . , D′[k−
1]). Steps 8,9,10 simply use this fact to deduce which sec-
tion of D[k].l, D[k].u and P is immediately below α and
which section is immediately above α based on which root
of D[k].l(α1, . . . , αk−1, xk),
D[k].u(α1, . . . , αk−1, xk) and P (α1, . . . , αk−1, xk) is immedi-
ately below αk and which is immediately above. This is, in
fact, the usual concept of a “sample point” in CAD. Step 9
sets D′[k].l and D′[k].L to the nearest lower-bound, which
guarantees us that

root(D[k].l, D[k].L.j, xk) ≤ root(D′[k].l, D′[k].L.j, xk) < αk.

Step 10 sets D′[k].u andD′[k].U to the nearest upper-bound,
which guarantees us that

αk < root(D′[k].u,D′[k].U.j, xk) ≤ root(D[k].u,D[k].U.j, xk).

Combining these facts with

S(D′[1], . . . , D′[k − 1]) ⊆ S(D[1], . . . , D[k − 1])

which we know by induction, shows that S(D′) ⊆ S(D).
Thus Point 1 of the output requirements has been shown
to hold. To address Point 3 of the output requirements, we
note that we have already shown that{

D′[1].l, D′[1].u, . . . , D′[k − 1].l, D′[k − 1].u
}
⊆ F

and that D′[k].l and D′[k].u are both elements of
{D[k].l, D[k].u, P} ⊆ F .

At this point we note that the preceding observations also
show that the structure D′ returned in this case satisfies the
five properties enumerated in Definition 4 as requirements
of an OpenCell data structure — which, of course, is also a
requirement of the algorithm.

Finally, we consider Point 2 of the output requirements.
Since S(D′) is an open set, it must contain a point at which
all elements of F are non-zero in which all elements of F are
non-zero. Let T be a maximal connected region containing
such a point. The polynomials defining the boundaries of

the cell S(D′) are all elements of F , from which it follows
that T ⊆ S(D′).

Algorithm 2 OpenCell Construct (OC-Construct)

Input:
α : a rational point in Rn, α = (α1, . . . , αn)
P : a set {p1, . . . , pr} of irreducible elements of
R[x1, . . . , xn]

Output:
D : an OpenCell data structure containing α such
that (denoting by F the closure of P under the Open-
McCallum projection operator)

1. {D[1].l, D[1].u, . . . , D[n].l, D[n].u} ⊆ F

2. the elements of P have constant, non-zero sign in
S(D)

-or-
Fail whenever any element of P is zero at α. Outputting
Fail is also allowed, but not required, whenever any
element of F is zero at α.

1: if P = ∅ and n = 0 return the empty list
2: if P = ∅ and n > 0

set D′ = OC-Construct ((α1, . . . , αn−1), ∅)
set B = (−∞, (−∞, (0, 0), 0, 1),+∞, (+∞, (0, 0), 0, 1))
set D = D′[1], . . . , D′[n− 1], B

3: if P = {pr} ∪ {p1, . . . , pr−1}, where r > 0
set D′ = OC-Construct(α, {p1, . . . , pr−1})
if D′ = Fail return Fail
set D = O-P-Merge(α,D′, pr)

4: return D

Theorem 3. Algorithm OC-Construct meets its spec-
ification.

This we state without proof, since the correctness of Algo-
rithm OC-Construct follows quite directly from the cor-
rectness of Algorithm O-P-Merge.

The Algorithm OC-Construct solves the Open-Cell prob-
lem. In particular, if it returns an OpenCell data structure
D, the formula F (D) describes a cell with the required prop-
erties.

5. EXAMPLE COMPUTATIONS
In this section we present a few example computations.

These are for the purpose of explaining the algorithm and
illustrating where and how it avoids some computations and
produces larger — i.e. more general — cells than would be
produced computing a complete CAD in the usual way.

This paper does not attempt to provide an exhaustive
comparison of the efficiency of OC-Construct versus Open-
CAD construction. For starters, an investigation of the or-
der in which polynomials are added should be made first.
Right now, OC-Construct and O-P-Merge add polyno-
mials in an arbitrary order. Secondly, it is not clear that
comparing the two algorithms outside of the context of a
particular application is possible. Jovanovic and de Moura’s
NLSAT algorithm is an example of one such context.

5.1 A 2D problem
Consider the Open-Cell Problem:(
−1

3
,

1

3

)
,

{
x2 + y2 − 1, 2y2 − x2(2x+ 3), y +

1

2
x− 1

2

}
.

138



The OC-Construct algorithm constructs a OpenCell data
structure for α and x2 +y2−1, then merges 2y2−x2(2x+3)
with that OpenCell, and then merges the resulting Open-
Cell with the polynomial y+ 1/2x− 1/2. This is illustrated
in the sequence of diagrams in Figure 4. The important

Figure 4: The sequence of OpenCell’s constructed
by OC-Construct for this example. Each is su-
perimposed on the full CAD that would have been
constructed from the polynomials involved at that
point. Especially important to note is that the tran-
sition from the middle to the right-most OpenCell
(i.e. merging y + 1/2x − 1/2) does not change the
OpenCell data-structure.

thing to see in this example is that merging y + 1/2x− 1/2
with the current OpenCell in the final step (going from the
middle to the right-most OpenCell in Figure 4) does not ac-
tually change the OpenCell. In this step it is deduced that
y + 1/2x − 1/2 has constant non-zero sign in the current
OpenCell, so something is gained, but the OpenCell itself is
not refined. Moreover, we did not even have to compute the
resultant of x2 + y2 − 1 and y + 1/2x− 1/2, which is some-
thing the regular CAD algorithm would have constructed
given the same polynomials.

Another important observation to be made about this ex-
ample is that adding the polynomials in a different order
makes a difference in which polynomials get computed and
which computations can be avoided. Although it is not the
case here, examples can be constructed in which the actual
cell that gets computed is affected by the order in which the
OC-Construct and O-P-Merge add polynomials. Inves-
tigating the impact of different criteria for ordering polyno-
mials to add is a direction for future work.

5.2 A 4D example
Next we consider the 4-variable polynomial p

b4t41t
4
2 + 2a2b2t41t

4
2 − b2t41t42 + a4t41t

4
2 − a2t41t42 + 2b4t21t

4
2+

2a2b2t21t
4
2 − 2b2t21t

4
2 + b4t42 − b2t42 + 4ab3t31t

3
2 + 4a3bt31t

3
2+

4ab3t1t
3
2 + 2a2b2t41t

2
2 + 2a4t41t

2
2 − 2a2t41t

2
2 + 6a2b2t21t

2
2+

4a3bt31t2 + a4t41 − a2t41

and variable order b ≺ a ≺ t2 ≺ t1. This example is for
purpose of illustration, so there’s no claim that we can ex-
trapolate much from this problem, just that it helps un-
derstand what the algorithm does. This polynomial/order
was chosen because a) it comes from an application, b) it
is a 4-variable problem, which allows us to observe behav-
ior that only occurs when there are repeated projections,
and c) this polynomial is small enough that that a full open
CAD can be relatively easily computed for it. With a single
input polynomial the first projection step performed by OC-
Construct is identical to first projection step performed in
constructing a complete open CAD. That means there is no
obvious reason why fewer projection factors would be com-

puted by OC-Construct — unlike the 2D example from
the previous section.

The program QepcadB computes a complete Open-CAD
for this problem in 88s — almost all of this time is spent
computing and factoring resultants and discriminants. That
CAD consists of 824 full-dimensional cells. The projection
factor set consists of 23 one-level polynomials, 9 two-level
polynomials, 3 three-level polynomials and 1 four-level poly-
nomial.

Consider the Open-Cell Problem instance
(
2
7
, −3

11
, 5
9
, 12
23

)
, p.

(This point was chosen arbitrarily, and has no special signif-
icance.) Our test implementation constructs an Open-Cell
data structure for this in .57s, with description

−∞ < t1 < +∞
0 < t2 < +∞

root(q, 1, a) < a < 0
0 < b < 1

where q = a6 + 3b2a4 − 3a4 + 3b4a2 + 21b2a2 + 3a2 + b6 −
3b4 + 3b2 − 1. Comparing times is of limited meaning at
this point, because of the many implementation differences
that may obscure algorithmic differences. For example, the
test implementation uses Maple to factor and compute re-
sultants and discriminants, while QepcadB uses Singular.
Moreover, OC-Construct computes a lot less than Qep-
cadB, because QepcadB computes all open cells, there be-
ing no way to instruct it to only compute what is needed
to construct the cell with sample point α. However, one
meaningful comparison is the number of projection factors
that get computed. There are only five projection factors in
the OpenCell data structure that the test implementation
produces. However, projection factors are constructed and
then discarded. Accounting for that, the test implementa-
tion computes 10 one-level, 8 two-level, 3 three-level and 1
four-level projection factors. This is substantially less than
is required to construct a complete open CAD. It should be
noted that the number of four and three-level projection fac-
tors is necessarily the same for this example, because there
is a single input polynomial.

As previously noted, comparing QepcadB and OC-Con-
struct as in the above example is not terribly meaning-
ful, because QepcadB computes so much less. To better
understand how they really compare, we performed the fol-
lowing test. We called the test implementation on polyno-
mial p for the sample points of each of the 824 open cells
constructed by QepcadB. This took a combined total of
15s.4 The results show that the set of all projection fac-
tors constructed in the 824 calls to the test implementation
consists of 15 one-level polynomials, 9 two-level polynomi-
als, 3 three-level polynomials and 1 four-level polynomial.
In other words, eight of the 23 one-level projection factors
constructed by the usual Open-McCallum projection were
never produced at any point by the 824 calls to the test im-
plementation. Hand-in-hand with this, close inspection of
the cells constructed by the test implementation shows that
most of them contain multiple open cells from the complete
open CAD. In fact, there are only 352 distinct cells con-
structed, and they combine to cover the same space as the
824 open cells in the complete open CAD. All of this raises

4The test implementation memoizes discriminant, resultant
and factorization computations, so that time isn’t wasted in
such a scenario recomputing the same factors.

139



the possibility that covering R4 — up to some lower dimen-
sional set — with (possibly overlapping) open cells might be
accomplished faster and with fewer cells using an approach
based on OC-Construct than by computing a complete
open CAD in the usual way.

6. CONCLUSION & FUTURE WORK
This paper has considered the Open-Cell Problem which,

roughly speaking, is the problem of starting with a point α
and set P of irreducible polynomials, and computing from
them a description of an open cylindrical cell containing α
in which the elements of P have constant non-zero sign.
Even more roughly speaking, it could be described as con-
structing a single open cell from a CAD. The algorithm OC-
Construct, which solves this problem, was introduced and
proved correct. Finally, some example computations using a
test implementation were described. They demonstrated the
algorithm, and illustrated how OC-Construct constructs
its one cell more efficiently than does applying open CAD
techniques naively, and how the cell constructed by OC-
Construct is often larger (“more general”) than the cell
from the complete open CAD that contains the point α.
The last example computation illustrated why it may be
more efficient to apply OC-Construct over and over to
cover (up to a measure zero set) the input space with open
cells than to apply the usual open CAD, which offers some
exciting possibilities.

This paper has introduced a new approach to constructing
CAD cells — basically allowing us to compute CAD projec-
tion “locally”, meaning around the input point α. The orig-
inal motivation to even consider the problem was the paper
by Jovanovic and de Moura [3] that introduced NLSAT. A
natural starting point for future work building on the present
paper would be to try to formulate an “open-NLSAT” and
base it around OC-Construct. Other applications could
also be considered. The approach itself could most likely
be improved in a number of ways, the one highlighted here
being the order in which polynomials are “merged” with the
OpenCell data structure. Indeed, the approach could be
formulated in terms of merging OpenCell data structures
rather than merging a polynomial and an OpenCell data
structure, which would provide even more choices. Finally,
this paper has demonstrated that the approach followed by
OC-Construct works, meaning that we gain both in effi-
ciency and quality of solution. The approach needs to be
extended to lower-dimensional cells so that the same gains
can be made in those cases. These last two points will be
explained in more detail below.

Choices and Merging Step 7 of Algorithm 1 refines the
OpenCell data structure D′ by iteratively merging the ele-
ments of F . The order in which the elements of F are chosen
affects the OpenCell resulting from the process. Therefore,
one should investigate ordering criteria. In fact, many vari-
ations on Algorithm 1 might be considered. An interesting
variation is to recast the process as merging two OneCell
data structures, rather than a polynomial and a OneCell
data structure. In this case, we arrive at a natural divide
& conquer algorithm that does a projection step, produces
OneCell data structures recursively for each of the resulting
projection factors (using the same point for all of them),
and then merges all the OneCell data structures together.
Preliminary work on this approach shows promise.

Generalizing to Lower-Dimensional Cells
Algorithms 1 & 2 return Fail if point α is a zero of a projec-
tion factor. A generalization of this work would have them
return a lower-dimensional cell in which projection factors
have constant sign, but not necessarily non-zero sign. This
necessitates considering a more complicated projection op-
erator, and performing root isolation with algebraic num-
bers. However, it also offers far more opportunities for im-
provements in efficiency compared to the standard CAD ap-
proach.

Replacing the Usual CAD Approach As already noted,
constructing a OneCell data structure for each of the sam-
ple points in a CAD can be substantially faster and more
memory efficient than constructing a regular CAD of Rn. In
many applications it would be possible to replace the usual
CAD construction with the construction of many, possibly
overlapping, OneCell data structures — as long as it could
be demonstrated that Rn was covered by the union of these
cells (at least up to some measure zero set). To make this
work, some kind of control must be provided that chooses
points and applies OC-Construct in such a way that it
terminates after a finite number of steps having provably
covered Rn, up to a measure zero set. Jovanovic and de
Moura approach provides such a control, though it would
be interesting to consider other, more geometric rather that
logic-oriented ways of doing it.

7. ACKNOWLEDGEMENTS
This work arose out of discussions at the Schloss Dagstuhl

Seminar 12462, Symbolic Methods for Chemical Reaction
Networks, held in November 2012. I would like to thank
the organizers of the event and Leibniz Zentrum für Math-
ematik for a wonderful scientific program. Particularly, I
would like to thank Thomas Sturm and Marek Kosta for
introducing me to Jovanovic and de Moura’s paper, and for
helping me understand it during our several discussions at
Schloss Dagstuhl along with Carsten Conradi and Andreas
Eggers.

8. REFERENCES
[1] Arnon, D. S., Collins, G. E., and McCallum, S.

Cylindrical algebraic decomposition I: The basic
algorithm. SIAM Journal on Computing 13, 4 (1984),
865–877.

[2] Brown, C. W. Solution Formula Construction for
Truth Invariant CAD’s. PhD thesis, University of
Delaware, 1999.

[3] Jovanovic, D., and de Moura, L. M. Solving
non-linear arithmetic. In IJCAR (2012), pp. 339–354.

[4] McCallum, S. Solving polynomial strict inequalities
using cylindrical algebraic decomposition. The
Computer Journal 36, 5 (1993), 432–438.

[5] McCallum, S. An improved projection operator for
cylindrical algebraic decomposition. In Quantifier
Elimination and Cylindrical Algebraic Decomposition
(1998), B. Caviness and J. Johnson, Eds., Texts and
Monographs in Symbolic Computation,
Springer-Verlag, Vienna.

[6] Strzebonski, A. Solving systems of strict polynomial
inequalities. Journal of Symbolic Computation 29
(2000), 471–480.

140




