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ABSTRACT
Truncated Fourier Transforms (TFTs), first introduced by
van der Hoeven, refer to a family of algorithms that attempt
to smooth “jumps” in complexity exhibited by FFT algo-
rithms. We present an in-place TFT whose time complex-
ity, measured in terms of ring operations, is asymptotically
equivalent to existing not-in-place TFT methods. We also
describe a transformation that maps between two families of
TFT algorithms that use different sets of evaluation points.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computation of
transforms; G.4 [Mathematical Software]: Algorithm de-
sign and analysis

Keywords
Truncated Fourier Transform; in-place algorithms

1. INTRODUCTION
Let R be a ring containing an N -th principal root of unity

ω. Given two polynomials f, g ∈ R[z], deg(fg) < N , we
can compute fg by way of the Discrete Fourier Transform
(DFT): a linear, invertible map which evaluates a given poly-
nomial at the powers of ω.

Computing the DFT naively is quadratic-time. However,
if N is strictly comprised of small prime factors, one can
compute a DFT using O(N logN) arithmetic operations by
way of the Fast Fourier Transform (FFT). The most widely-
known FFT, the radix-2 FFT, requires that N is a power of
two. To compute the DFT of an input of arbitrary size,
one typically appends zeros to the input to give it power-of-
two length, and then applies a radix-2 FFT. This method
exhibits significant jumps in its time and memory costs.

Truncated Fourier Transforms (TFTs) flatten these jumps
in complexity. A TFT takes an input of length n ≤ N
and returns a size-n subset of its length-N DFT, with time
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complexity that grows comparatively smoothly with n logn.
Typically one chooses the first n entries of the DFT, with the
DFT sorted in bit-reversed order. This is a natural choice as
it comprises the first n entries of the output of an in-place
FFT. We will call such a TFT the bit-reversed TFT.

Van der Hoeven [11] showed how one can obtain a polyno-
mial f(z) from its bit-reversed TFT, provided one knows the
terms of f(z) with degree at least n. This allows for faster
FFT-based polynomial multiplication, particularly for prod-
ucts whose degree is a power of two or slightly larger. Harvey
and Roche showed further in [5] how the bit-reversed TFT
can be computed in-place, at the cost of a constant factor
additional ring multiplications.

Mateer [7] devised a TFT algorithm based on a series of
modular reductions, that acts as a preprocessor to the FFT.
Mateer’s TFT algorithm, which we discuss in section 3, re-
duces f(z), deg(f) < n, modulo cyclotomic polynomials of
the form zk+1, k a power-of-two. We will call this TFT the
cyclotomic TFT.

In [9], Sergeev shows how the cyclotomic TFT can be
made in-place with cost asymptotically equivalent to not-in-
place TFT algorithms. In section 4, we describe Sergeev’s
algorithm. In section 5, we give an in-place algorithm of sim-
ilar cost, related to Sergeev’s, for computing the cyclotomic
TFT. One incremental improvement of this new TFT algo-
rithm is that, for input sizes n of low Hamming weight, it
requires fewer passes through our input array than Sergeev’s
algorithm in order to produce the polynomial images.

One caveat of the cyclotomic TFT is that different-sized
inputs may use entirely different sets of evaluation points.
This is problematic in applications to multivariate polyno-
mial multiplication. In section 6, we show how an algorithm
that computes the cyclotomic TFT can be modified to com-
pute a bit-reversed TFT by way of an affine transformation.

As a proof of concept we implemented the algorithms in-
troduced in this paper in Python. These implementations
can be found at http://cs.uwaterloo.ca/~a4arnold/tft.

2. PRELIMINARIES

2.1 The Discrete Fourier Transform
The Discrete Fourier Transform (DFT) [4] of a polyno-

mial f(z) is its vector of evaluations at the distinct powers

of a root of unity. Specifically, if f(z) =
∑N−1
i=0 aiz

i is a poly-
nomial over a ring R containing an order-N root of unity ω,
then we define the Discrete Fourier Transform of f(z) as

DFTω(f) =
(
f(ω0), . . . , f(ωN−1)

)
.
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We treat the polynomial f and its vector of coefficients
a = (a0, a1, . . . , aN−1) as equivalent and use the notation
DFTω(a) and DFTω(f) interchangeably. If we take addition
and multiplication component-wise in RN , then the map
DFTω : R[z]/(zN − 1) → RN forms a ring homomorphism.
Throughout this paper we will assume ω is a principal root
of unity, that is, for j not divisible by N , the order of ω,∑N−1
i=0 ωij = 0. In such case DFTω has an inverse map

IDFTω : RN →R[z]/(zN − 1), defined by

IDFTω(â) = 1
N

DFTω−1(â),

where â ∈ RN and we again treat a polynomial as equivalent
to its vector of coefficients. This suggests a multiplication
algorithm for f , g ∈ R[z].

Theorem 1 (The Convolution Theorem). Let f , g
be polynomials over a ring R containing an N-th principal
root of unity ω. Then

fg mod (zN − 1) = IDFTω (DFTω(f) ·DFTω(g)) ,

where “ ·” is the vector component-wise product, and, given
two polynomials s(z), t(z) ∈ R[z], s(z) mod t(z) denotes the
unique polynomial r(z) such that t(z) divides r(z)−s(z) and
deg(r) < deg(t) throughout.

Thus to multiply f and g, we can choose N > deg(fg) and
an N -th principal root of unity ω ∈ R, compute the length-
N DFTs of f and g, take their component-wise product, and
take the inverse DFT of that product.

2.2 The Fast Fourier Transform
We can compute the Discrete Fourier Transform of f(z),

f reduced modulo (zN −1), by way of a Fast Fourier Trans-
form (FFT). The FFT is believed to have been first dis-
covered by Gauss, but did not become well known until it
was famously rediscovered by Cooley and Tukey [1]. For a
detailed history of the FFT we refer the reader to [6].

The simplest FFT, the radix-2 FFT, assumes N = 2p

for some p ∈ Z≥0. We describe the radix-2 FFT in terms
of modular reductions. We break f into images modulo
polynomials of decreasing degree until we have the images
f mod (z−ωi) = f(ωi), 0 ≤ i < N . At the start of the first
iteration we have f reduced modulo zN − 1. At the start of
the i-th iteration, we will have the 2i−1 images

f mod (z2u − ω2uj) for 0 ≤ j < 2i−1,

where u = N/2i. If i = p + 1 this gives us the DFT of
f . Consider then the image f ′ = f mod (z2u − ω2uj) =∑2u−1
k=0 bkz

k, for some j, 0 ≤ j < 2i−1. We break this image
into two images f0 and f1, where

f0 = f ′ mod (zu − ωuj), and

f1 = f ′ mod (zu + ωuj) = f ′ mod (zu − ωuj+N/2).

We can write f0 and f1 in terms of the coefficients bk:

f0 =

u−1∑
k=0

(bk + ωujbk+u)zk, f1 =

u−1∑
k=0

(bk − ωujbk+u)zk.

Thus, given an array containing the coefficients bk of f ′, we
can write f0 and f1 in place of f ′ by way of operations[

bk
bk+u

]
←−

[
1 ωuj

1 −ωuj
] [

bk
bk+u

]
, 0 ≤ i < u. (1)

The pair of assignments (1) are known as a butterfly op-
eration, and can be performed with a ring multiplication
by the twiddle factor ωuj , and two additions. Note f0 and
f1 are in a similar form as f ′, and if u > 1 we can break
those images into smaller images in the same fashion. Start-
ing this method with input f mod (zN − 1), will give us
f mod (z − ωj) = f(ωj), for 0 ≤ j < N .

If the butterfly operations are performed in place, the re-
sulting evaluations f(ωj) will be written in bit-reversed or-
der. More precisely, if we let [j]p denote the integer resulting
from reversing the p bits of j, 0 ≤ j < 2p, we have that f(ωj)
will be written in place of ak, where k = [j]p. As an example,

[13]5 = [011012]5 = 101102 = 16 + 4 + 2 = 22.

We can make the FFT entirely in-place by computing the
powers of ωu sequentially at every iteration. This entails
traversing the array in a non-sequential order. Procedure
FFT describes such an implementation.

If we observe that[
1 ωuj

1 −ωuj
]−1

=
1

2

[
1 1

ω−uj −ω−uj
]
,

then we can implement an inverse FFT by inverting the but-
terfly operations in reversed order. We can, moreover, delay
multiplications by powers of 1

2
until the end of the inverse

FFT computation. This entails multiplying the result by 1
N

.

Procedure FFT(a, N), an in-place implementation of
the radix-2 FFT

Input: a, a length N = 2p array containing f ∈ R[z].
Result: DFTω(f) is written to a in bit-reversed order.

for i←− 1 to p do
u←− N/2i
for j ←− 0 to N

2u
− 1 do

t←− 2[j]iu
for k ←− 0 to u− 1 do

// Butterfly operations (1)[
at+k

at+k+u

]
←−

[
1 ωuj

1 −ωuj
] [

at+k
at+k+u

]

Theorem 2. Let N be a power of two and ω an N-th
root of unity. Then FFT computes a length-N DFT in place
using no more than 1

2
N logN + O(N) ring multiplications

and N logN + O(N) ring additions, where log is taken to
be base-2 throughout. The inverse FFT can be computed in-
place with asymptotically equivalent cost.

Using the radix-2 FFT, if d = deg(fg), we choose N to be
the least power of 2 exceeding d. This entails appending ze-
ros to the input arrays containing the coefficients of f and g
respectively. By this method, computing a product of degree
2p costs at least double that a product of degree less than
2p. Crandall’s “devil’s convolution” algorithm [2] somewhat
flattens these jumps in complexity, though not entirely. It
works by reducing a discrete convolution of arbitrary length
into more easily computable convolutions. More recently,
Truncated Fourier Transform (TFT) algorithms, described
hereafter, have addressed this issue.
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2.3 Truncated Fourier Transforms
In many applications, it is useful to compute a pruned

DFT, a subset of a length-N DFT, at a cost less than that
to compute a complete DFT. In 2004, van der Hoeven [10]
showed that, given some knowledge of the form of the in-
put, one can invert some pruned DFTs. The inverse trans-
form relies on the observation that, given any two of the
inputs/outputs to a butterfly operation (1), one can com-
pute the other two values. Suppose n ∈ Z>0 is arbitrary
and N is the least power of two at least n. For ω, a primi-
tive root of unity of order N = 2p, van der Hoeven showed
how to invert the length-n Truncated Fourier Transform,

TFTω,n(f) =
(
f(ω[i]p)

)
0≤i<n

,

when we know the terms of f(z) of degree at least n (e.g.,
when deg(f) < n ). To distinguish this particular TFT we
will call it the bit-reversed TFT.

Theorem 3 (Van der Hoeven, [11]). Suppose f is a
polynomial over R of degree less than n. TFTω,n(f) can be
computed using n logn+O(n) ring additions and 1

2
n logn+

O(n) multiplications by powers of ω.
f(z) can be recovered from TFTω,n(f) using n logn+O(n)

shifted ring additions and 1
2
n logn+O(n) multiplications.

A shifted ring addition in this context merely means an ad-
dition plus a multiplication by 2±1. Van der Hoeven’s algo-
rithm generalizes to allow us to compute arbitrary subsets of
the DFT. Given subsets S, T ⊆ {0, 1, . . . , N − 1}, we define

TFTω,S,T (f) =
(
f(ω[i]p)

)
i∈T

,

where we now assume f is of the form f(z) =
∑
i∈S aiz

i.
However, such a transform may have a greater complexity
than stated in theorem 3, taking n = #S. Moreover, such a
map is not necessarily invertible, even in the case S = T .

Example 4. Let N = 8. Taking an 8-th principal root of
unity ω with S = T = {0, 3, 4, 5} gives an uninvertible map.
To see that the map TFTω,S,T is not invertible, one can
check that the polynomial f(z) = (1+ω2)z5−z4+(1−ω2)z3−
1 evaluates to 0 for z = ωk, k ∈ {[0]3, [3]3, [4]3, [5]3} =
{0, 6, 1, 5}.

Van der Hoeven’s method still exhibits significant jumps in
space complexity, as it requires space for N ring elements
regardless of n. In 2010, Harvey and Roche [5] introduced
an in-place TFT algorithm, requiring n+O(1) ring elements
plus an additional O(1) bounded-precision integers to com-
pute TFTω,n(f). Their method potentially requires evalu-
ating polynomials using linear-time methods. This adds an
additional constant factor to the algorithm’s worst-case cost.

Theorem 5 (Roche, Theorem 3.5, [8]). Let N , n, f
and ω be as in theorem 3. Then TFTω,n(f) can be computed
in-place using at most 5

6
n logn + O(n) ring multiplications

and O(n logn) ring additions.

The inverse in-place transform entails similarly many ring
multiplications and O(n logn) shifted ring additions. As an
application, Harvey and Roche used this transform towards
asymptotically fast in-place polynomial multiplication.

3. THE CYCLOTOMIC TFT

3.1 Notation
We use the following notation throughout section 3 and

thereafter. Suppose now that we have a polynomial f(z) =∑n−1
j=0 ajz

j ∈ R[z], where n is not necessarily a power of two.

For the remainder of this paper, we write n as n =
∑s
i=1 ni,

where ni = 2n(i), n(i) ∈ Z≥0 and ni > nj for 1 ≤ i < j ≤ s.
Here we let N be the smallest power of two exceeding n. For
1 ≤ i ≤ s, we let

Φi = zni + 1.

The TFT algorithms of sections 3 and thereafter will com-
pute the evaluations of f(z) at the roots of Φi. Namely, if we
fix a canonical root ω = ω1 of Φ1, and then let, for 2 ≤ i ≤ s,
ωi = ω

n1/ni
1 , a root of Φi, these algorithms will compute

f(ω2j+1
i ) for 0 ≤ j < ni, 1 ≤ i ≤ s, (2)

the evaluation of f(z) at the roots of the cyclotomic polyno-
mials Φi. As such, we will call it here the cyclotomic TFT
and denote it by TFT′ω,n(f). The choice of our order-N root
ω only affects the ordering of the elements of the cyclotomic
TFT. If we let

T (n) = {k : ni ≤ k < 2ni for some i, 1 ≤ i ≤ s},

then we have that TFT′ω,n uses the same set of evaluation
points as TFTω,S,T (n)(f).

We define, for 1 ≤ i ≤ s, the images

fi = f mod Φi.

The algorithms for computing a cyclotomic TFT all follow a
similar template: we will produce the images fi sequentially,
and then evaluate f at the roots of Φi in place of each image
fi.

3.2 Discrete Weighted Transforms
Given the images fi = f mod Φi, one can evaluate f at

the roots of Φi by way of a Discrete Weighted Transform
(DWT), which comprises an affine transformation followed
by an FFT [3].

In a more general setting, suppose we have an image
f∗ = f mod (zK − c), where K is a power-of-two. Assuming
c has an K-th root over our ring R, the roots of zK − c are
all of the form c1/Kγi, 0 ≤ i < K, where γ is an order-K
root of unity. Thus to evaluate f at the roots of (zK − c)
one can replace f∗(z) with f∗(c1/Kz), and then compute

DFTγ(f∗(c1/Kz)). Replacing f∗(z) with f∗(c1/Kz) itera-
tively term-by-term entails fewer than 2K ring multiplica-
tions.

To evaluate f at the roots of Φi(z) = zni−ωni
i , one would

write fi(ωiz) in place of fi(z), then compute DFTω2
i
(fi(ωiz))

by way of the FFT. As both the FFT and the affine trans-
formation are invertible, a Discrete Weighted Transform is
easily invertible as well.

Procedure DWT(a, K, v), the Discrete Weighted
Transform
Input: a, a length-K array; v ∈ R, a weight.
for i←− 0 to K − 1 do ai ←− viai
FFT(a,K)
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3.3 Mateer’s TFT algorithm
Procedure MateerTFT below gives a short description of

Mateer’s algorithm [7] for computing TFT′ω,n(f). Given ar-
ray a and integer k we let the array a + k denote the array
b such that a`+k and b` refer to the same element for all `.
MateerTFT will write fi to a + ni.

Mateer’s algorithm computes the images f mod (zK + 1)
for K = 2`, n(s) ≤ ` ≤ n(1), and the image f mod (zns−1).
For the images f mod (zK + 1) where K = ni, 1 ≤ i ≤ s,
we perform a DWT to evaluate f at the roots of Φi. The
remaining images we can simply discard.

Procedure MateerTFT(a, n)

Input: a, a length N = 2blognc+1 array containing
f ∈ R[z].

Result: TFT′ω,n(f) is written to a.
K ←− N/2
while K > ns do

for e←− 0 to K do
(ae,ae+K)←− (ae + ae+K ,ae − ae+K)

K ←− K/2
for i←− 1 to s do DWT(a + ni, ni, ωi)

On input we are given f(z) reduced modulo zN−1. Given

f mod (z2K−1) =
∑2K−1
d=0 bdz

d, Mateer’s TFT breaks f mod

(z2K − 1) into the images

f mod (zK − 1) =

K−1∑
d=0

(bd + bd+K)zd, and (3)

f mod (zK + 1) =

K−1∑
d=0

(bd − bd+K)zd. (4)

Performing the aforementioned modular reductions for K =
N/2, . . . , ns amounts toO(n) additions. The number of mul-
tiplications required to perform the DWTs is bounded by

s∑
i=1

1
2
ni logni + cni ≤ 1

2
n logn+O(n), (5)

for some constant c. A similar analysis for the ring additions
due to the DWTs gives us the following complexity:

Lemma 6 (Mateer). Procedure MateerTFT computes
TFT′ω,n(f) from f using 1

2
n logn+O(n) ring multiplications

and n logn+O(n) ring additions.

Mateer gives a method of inverting the cyclotomic TFT
with asymptotically equivalent cost, the details of which we
omit here. MateerTFT is not in-place as the images f mod
(zN/2−1) and f mod (zN/2 +1) may have maximal degree.

4. COMPUTING THE CYCLOTOMIC TFT
WITHOUT ADDITIONAL MEMORY

In order to compute the cyclotomic TFT in-place, it ap-
pears, unlike the Mateer TFT, that we need to use some
of the information from the images f1, . . . , fi towards pro-
ducing the image fi+1. Both Sergeev’s TFT and the new
algorithm presented thereafter work in this manner.

For 1 ≤ i ≤ s, let

Γi(z) =

i∏
j=1

Φj(z) and Ci = f mod Γi.

We call Ci the combined image of f , as it is the result of
Chinese remaindering on the images f1, . . . , fi. We also de-
fine

qi =

{
f if i = 0,
f quo Γi if 1 ≤ i ≤ s,

the quotient produced dividing f by Γi, as well as

n∗i =

{
n if i = 0,
n mod ni if 1 ≤ i ≤ s.

Note that, as Φi mod Φj = 2 for j > i, we also have Γi mod
Φj = 2i for j > i. Similarly, Γi mod (zK − 1) = 2i for K, a
power of two at most ni.

For any choice of 1 ≤ i ≤ s, we have

f(z) = Ci + Γiqi.

It is straightforward to obtain qi, given f . Note that the
degrees of any two distinct terms of Γi differ by at least ni,
and that deg(qi) < ni. Thus, as Γi is monic, we have that
the coefficients of qi merely comprise the coefficients of the
higher-degree terms of f . More precisely,

qi =

n∗i−1∑
e=0

an−n∗i +ez
e.

By a similar argument, we also have that, for 1 ≤ i ≤ s,

qi = qi−1 quo Φi.

We note that qs = 0.

4.1 Computing images of Ci without explic-
itly computing Ci

We will express the combined image Ci, Ci reduced mod-
ulo zm ± 1, m a power of two, in terms of the coefficients of
the images f1, . . . , fi. To this end we introduce the following
notation. Given an integer e, we will let e[i] refer to the i-th
bit of e, i.e.,

e =

blog(e)c∑
i=0

e[i]2i, e[i] ∈ {0, 1}.

Sergeev’s TFT relies on the following lemma, albeit stated
differently here than in [9].

Lemma 7. Fix i and j such that 1 ≤ j ≤ i ≤ s. Suppose
that fj = ze and that f` = 0 for all ` 6= j, 1 ≤ ` ≤ i. Let
m be a power of two at most ni. Then Ci mod (zm − 1) is
non-zero only if e[n(`)] = 1 for all ` ∈ {j + 1, j + 2, . . . , i},
in which case

Ci mod (zm − 1) = 2i−jze mod (zm − 1), (6)

= 2i−jze mod m.

Lemma 7 can be derived from lemma 1 in [9]. As Φk, k >
i, divides zni − 1, lemma 7 gives us the following corollary.

Corollary 8. Fix i, j and k such that 1 ≤ j ≤ i <
k ≤ s. Suppose that fj = ze and that f` = 0 for all ` 6= j,
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1 ≤ ` ≤ i. Then Ci mod Φk is non-zero only if e[n(`)] = 1
for all ` ∈ {j + 1, j + 2, . . . , i}, in which case

Ci mod Φk = 2i−jze mod Φk.

Given that znk mod Φk = −1, we have that

2i−jze mod Φk = (−1)e[n(k)]2i−jz(e mod nk),

where e mod nk is the integer e∗ such that nk | (e− e∗) and
0 ≤ e∗ < nk. The values e[n(`)] can be determined from

n` = 2n(`) and e by way of a bitwise “and” operation.

Example 9. Suppose the input size is n = 86 (n = 64 +
16 + 4 + 2), and suppose that

f1 = f mod (z64 + 1) = ze, f2 = 0, f3 = 0.

In this example,

C3 = f mod
[
(z64 + 1)(z16 + 1)(z4 + 1)

]
.

Let g = C3 mod (z2 + 1). Then by corollary 8,

g =


0 if e ∈ [0, 20) ∪ [24, 28) ∪ [32, 52) ∪ [56, 60),
4 if e = 20, 28, 52, or 56,
4z if e = 21, 29, 53, or 57,
−4 if e = 22, 30, 54, or 58,
−4z if e = 23, 31, 55, or 59.

Remark 10. Let 1 ≤ j ≤ i ≤ s. A proportion of 2j−i

terms of fj have an exponent satisfying the non-zero crite-
rion of lemma 7 and corollary 8.

Proof of lemma 7. We fix e and j and prove the lemma
by induction on i.

Base case: Suppose i = j, in which case the non-zero
criterion of the lemma always holds and we need only to
show (6). We have that Ci mod Φi = ze and Ci mod Φ` = 0
for ` < i. Chinese remaindering gives us

Ci = Ci−1 + Γi−1

(
Γ−1
i−1(ze − Ci−1) mod Φi

)
.

Furthermore, as f` = 0 for 1 ≤ ` < i, we have Ci−1 = 0, and
Ci = 21−iΓi−1z

e. Reducing this modulo zm − 1, we have
Ci = ze mod m as desired.

Inductive step: Suppose now that the lemma holds for a
fixed i ≥ j, and consider Ci+1 mod (zm − 1), m a power of
two dividing ni+1. We suppose that f` = 0 for 1 ≤ ` 6= j ≤
i+ 1 and fj = ze. By Chinese remaindering,

Ci+1 = Ci − Γi
(
Γ−1
i Ci mod Φi+1

)
. (7)

We prove the inductive step by cases:
Case 1: If e[n(`)] = 0 for some `, j < ` ≤ i, then by the

induction hypothesis, Ci mod (zni − 1) = 0. As Φi+1 and
zm − 1 both divide zni − 1, the images Ci mod Φi+1 and
Ci mod (zm−1) are necessarily zero as well. It follows from
(7) that Ci+1 mod (zm − 1) is also zero.

Case 2: If e[n(`)] = 1 for all `, j < ` ≤ i, then by the
induction hypothesis,

Ci mod (zni − 1) = 2i−jze mod (zni − 1).

Reducing (7) modulo zm − 1, and again using that zm − 1

and Φi+1 divide zni − 1, we have

Ci+1 mod (zm − 1),

= 2i−jze − Γi
(

Γ−1
i 2i−jze mod Φi+1

)
mod (zm − 1),

= 2i−jze mod m − 2i−j (ze mod Φi+1) mod (zm − 1),

= 2i−j
(

1− (−1)e[n(i+1)]
)
ze mod m.

Since 1− (−1)e[n(i+1)] evaluates to 2 if e[n(i+ 1)] = 1 and 0
otherwise, this completes the proof.

4.2 Sergeev’s in-place cyclotomic TFT
In [9], Sergeev describes an algorithm for computing a

length-n cyclotomic TFT requiring space for n +O(1) ring
elements, with cost asymptotically equivalent to van der
Hoeven’s algorithm for the bit-reversed TFT. This algo-
rithm, like Mateer’s, breaks f into the images fi with linear
cost, and then applies a DWT on each image. Procedure
SergeevBreakIntoImages gives Sergeev’s algorithm for com-
puting the images fi in place of f . Using our array notation,
we let a(i) = a + n1 + · · ·+ ni−1 and write fi to ai.

Procedure SergeevBreakIntoImages(a, n)

Input: a, a length-n array containing f ∈ R[z].
Result: f1, . . . , fs is written in place of f .
a(1) ←− a
for i←− 1 to s− 1 do a(i+1) ←− a(i) + ni

N ←− 2blognc+1

(K, i)←− (N/2, 0)
while K ≥ ns do

if K > ni+1 then
for d←− 0 to n∗i − 1 do

a
(i+1)
d +=

i∑
j=1

2i−j
nj−1∑
e=0

e=d+K mod 2K
e[n(`)]=1,j<`≤i

a(j)
e

else
for d←− n∗i+1 to ni+1 − 1 do

a
(i+1)
d -=

i∑
j=1

2i−j
nj−1∑
e=0

e=d+K mod 2K
e[n(`)]=1,j<`≤i

a(j)
e

for d←− 0 to n∗i+1 − 1 do[
a
(i+1)
d

a
(i+1)
d+K

]
←−

[
a
(i+1)
d − a

(i+1)
d+K

a
(i+1)
d + a

(i+1)
d+K

]
i←− i+ 1

K ←− K/2

At the start of an iteration of the while loop of Sergeev’s
TFT, we have a(j) containing fj for 1 ≤ j ≤ i, and a(i+1)

containing the first n∗i coefficients of f mod (z2K − 1), for
a power of two K ∈ [ni+1, ni). If K > ni+1, the algorithm

writes the first n∗i coefficients of f mod (zK−1) to a(i+1). If

K = ni+1, the algorithm writes fi+1 to a(i+1) and the first
n∗i+1 coefficients of f mod (zK − 1) to a(i+2).

Consider then the case K > ni. Write f mod (z2K −
1) =

∑2K−1
d=0 bdz

d and fj =
∑nj

e=0 a
(j)
e ze. The coefficients of
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f mod (zK−1) are given by (3), as is used in Mateer’s algo-
rithm. To write the length-n∗i truncation of f mod (zK − 1)
in place of f mod (z2K − 1) we merely add bd+K to bd for
0 ≤ d < n∗i . Since

f mod (z2K − 1) = Ci + 2iqi mod (z2K − 1)

and deg(qi) < n∗i < K, it follows that bd+K depends strictly
on Ci mod (z2K − 1). Thus by lemma 7,

bd+K =

i∑
j=1

2i−j
∑
e∈Sd

j,i

a(j)e , (8)

where

Sdj,i =

e ∈ [0, nj) : 2K | (e− d−K),

i∏
`=j+1

e[n(`)] = 1

 .

We call the sum (8) the contributions of f1, . . . , fi towards
bd+K .

For the case K = ni+1, the coefficients of fi+1 = f mod
(zK + 1) are given by (4). We compute the first n∗i+1 coef-
ficients of f mod (zK ± 1), bd ∓ bd+K , in place of the stored
values bd and bd+K , for 0 ≤ d < n∗i+1. For the remaining
coefficients of fi+1 we compute bd+K using (8) as in the first
case.

If we compute (8) in an intelligent order, then the cost
of Sergeev’s algorithm amounts to linearly many additions
and multiplications by powers of 2, plus the cost of the Dis-
crete Weighted Transforms. Sergeev measured the cost of
his approach for computing the images fi in terms of ring
additions and multiplications by powers of 2:

Theorem 11. Let f ∈ R[z] have degree less than n. Then
one can compute f1, . . . , fs in place of f using 4n−6n1 ring
multiplications by powers of 2 and 4n− 4n1 ring additions.

This linear cost is absorbed into the O(n) factor appear-
ing in the cost bound (5) of the Discrete Weighted Trans-
forms. Thus Sergeev’s algorithm is asymptotically equiva-
lent to Mateer’s and van der Hoeven’s TFT algorithms.

In order to compute a new coefficient of an image of f
in Sergeev’s algorithm, one effectively has to make a pass
through the array in order to sum the contributions (8), for
every coefficient computed in this manner. This is because,
in order to keep things in-place without increasing the cost,
one has to compute the entire sum (8) before adding it back
into the array. One improvement is to instead work with the
weighted images

f∗j = 2−j+1fj

instead of fj , and 2−i−1f mod (z2K − 1) instead of f mod

(z2K−1), where K ∈ (ni+1, ni]. If we now let a
(j)
d and bd be

the coefficients of these weighted images, our equation (8)
for bd+K becomes

bd+K =

i∑
j=1

∑
e∈Sd

j,i

a(j)e .

This allows us to progressively add bd+K to another value
in our array without having to compute bd+K in entirety
first. We use such weighted images in our implementation of
Sergeev’s algorithm, as well as in the algorithm we describe
in the next section, where for that method we describe the
reweighting in greater detail.

5. A NEW IN-PLACE CYCLOTOMIC TFT
ALGORITHM

We present an algorithm related to Sergeev’s algorithm,
also in-place, with asymptotically equivalent cost. Unlike
Sergeev’s algorithm, we will forego producing part of the
images f mod (zK −1), K a power of two. We will compute
fi+1 immediately after producing fi. An advantage of such
an approach is, we require fewer passes through our array
for input sizes n of low Hamming weight, i.e., n containing
few non-zero bits.

We write f1, . . . , fs in place of f in three steps: we first
compute the remainders produced by dividing qi−1 by Φi,

ri = qi−1 mod Φi, 1 ≤ i ≤ s,

in place of f ; we then iteratively write f∗i in place of ri for
i = 1, 2, . . . , s; lastly we reweight f∗i to get fi. After we have
the images fi we again compute a DWT of each image fi
separately to give us the weighted evaluation points.

5.1 Breaking f into the remainders ri
We first break f = q0 into its quotient and remainder

dividing by zn1 + 1,

r1 = f mod (zn1 + 1) =

n1−1∑
i=0

(ai − ai+n1) zi,

q1 = f quo (zn1 + 1) =

n∗1−1∑
i=0

ai+n1z
i,

where ai = 0 for i ≥ n. This can be done in place with
n∗1 subtractions in R. We then similarly break q1 into r2
and q2, then q2 into r3 and q3, and continue until we have
r1, . . . , rs−1 and qs−1. Since deg(qs−1) < ns = deg(Φs), rs
is exactly qs−1.

For the purposes of the inverse transform, computing f
from the remainders ri is equally uncomplicated. Given qi+1

and ri+1, we recompute qi in place of qi+1 and ri+1 as qi =
qi+1(zni+1 + 1) + ri+1.

5.2 Computing f∗
i in place of ri

We first note that f∗1 is precisely r1. We will iteratively
produce the remaining weighted images. Suppose, at the
start of the i-th iteration, we have f∗j , and rk, for 1 ≤ j ≤
i < k ≤ s. We want to write f∗i+1 in place of ri+1. We have

f∗i+1 = 2−if mod Φi+1,

= 2−i (Γiqi + Ci) mod Φi+1,

=
(
qi + 2−iCi

)
mod Φi+1,

= ri+1 +
(

2−iCi mod Φi+1

)
. (9)

Unfortunately, we do not have the combined image Ci, but
rather the weighted images f∗j , 1 ≤ j ≤ i, from which we
can reconstruct Ci. We would like to be able to compute the
sum (9) in place from the remainder ri+1 and the weighted
images f∗j .

Corollary 8 tells us the contribution of f∗i towards sub-
sequent images. If e satisfies the non-zero criterion of the
corollary, then by (9), a term cj,ez

e of f∗j , j ≤ i will con-

tribute 1
2
(−1)e[n(i+1)]z(e mod ni+1) to f∗i+1. In order to make

the contributions have weight ±1, we instead first reweight
ri by 2 and compute 2f∗i , and then divide by 2 thereafter.
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We note that this cost of reweighting by 2±1 requires fewer
multiplications than instead introducing a factor 1

2
into all

the contributions. AddContributions describes how we add
the contributions of f∗1 , . . . , f

∗
i to f∗i+1.

Procedure AddContributions(a, n, i)

Input: a, a length-n array containing f∗1 , . . . , f
∗
i and

2ri+1, in that order.
Result: The contributions of f∗1 , . . . , f

∗
i towards 2f∗i+1

are added to 2ri+1. As a result we will have
2f∗i+1 in place of 2ri+1.

a(1) ←− a
for j ←− 1 to i do a(j+1) ←− a(j) + nj

for j ←− 1 to i do
// Add contribution of f∗j to f∗i
for e←− 0 to nj − 1 do

if e[n(`)] = 0 for all `, j < ` ≤ i then
a
(i+1)
e mod ni+1

+= (−1)e[n(i+1)]a
(j)
e

According to corollary 8, only a proportion of 2j−i of the
terms of f∗j will have a non-zero contribution to f∗i+1. Thus
the total cost of adding contributions of f∗j towards f∗` , for
all ` > j, is less than 2#f∗j = 2nj . It follows that the total
additions and subtractions in R required to add all these
contributions are bounded by 2n. Since AddContributions
only scales array ring elements by ±1, we have the following
complexity:

Lemma 12. Calling AddContributions(a, n, i) for 1 ≤ i <
s entails no more than 2n ring additions and no ring multi-
plications.

In the manner we have chosen to add these contributions,
we will have to make s− 1 passes through our array to add
them all. One way we could avoid this is to instead add
all the contributions from f∗1 , and then all the contributions
from f∗2 , and so forth, adding up all the contributions from
a single term at once. We could use that a term cj,ez

e of f∗j
that does not contribute towards f∗i+1 will not contribute to
f∗k for any k > i. This would reduce the number of passes
we make through the larger portion of the array, though the
cache performance of potentially writing to s− 1 images at
once raises questions.

When adding contributions to f∗i+1, we need only inspect
the non-zero criterion of one exponent e in a block of expo-
nents kni ≤ e < (k + 1)ni. Similarly, we need only inspect
one exponent in a block of ni+1 consecutive exponents in or-
der to determine their shared value of (−1)e[n(i+1)]. There
may appear long segments of consecutive exponents not sat-
isfying the non-zero criterion. To avoiding traversing such
segments unnecessarily, our implementation computes the
next exponent that satisfies the non-zero criterion by way of
bit operations.

We note here that, for the purposes of the inverse trans-
form, we can as easily reobtain ri from f∗i . We merely mul-
tiply f∗i by 2, instead subtract the contributions to get 2ri,
and then multiply by 1

2
to get ri.

Procedure BreakIntoImages breaks f into the images fi,
after which we can again use Discrete Weighted Transforms
to compute TFT′n,ω(f).

Procedure BreakIntoImages(a, n)

Input: a, a length-n array containing f ∈ R[z].
Result: The images f1, . . . , fs are written in place of

f .

a(1) ←− a
for i←− 1 to s− 1 do a(i+1) ←− a(i) + ni

// 1: Write r1, . . . , rs in place of f
for i←− 1 to s− 1 do

for e←− 0 to n∗i − 1 do

a
(i)
e ←− a

(i)
e − a

(i)
e+ni

// 2: Write f∗i+1 in place of ri+1

for i←− 1 to s− 1 do

for e←− 0 to ni+1 − 1 do a
(i+1)
e ←− 2a

(i+1)
e

AddContributions(a, n, i)

for e←− 0 to ni+1 − 1 do a
(i+1)
e ←− 1

2
a
(i+1)
e

// 3: Reweight f∗i to get fi
for i←− 1 to s− 1 do

for e←− 0 to n∗i − 1 do a
(i+1)
e ←− 2a

(i+1)
e

5.3 Cost analysis
Procedure BreakIntoImages effectively has three parts. In

the first part of the algorithm, we break f into the remain-
ders ri. Producing ri entails n∗i < ni additions, and so
producing all the ri entails less than

∑s
i=1 ni = n ring ad-

ditions.
In the second part we write the weighted images f∗i in

place of the ri. Adding all the contributions, per lemma 12,
requires 2n additions. We reweight the last n − n1 coeffi-
cients of f by 2, then by 1

2
. This constitutes less than n

multiplications in total.
In the third part we reweight the weighted images f∗i to

get the images fi. This entails less than n multiplications
by 2. This gives us the following complexity:

Lemma 13. Procedure BreakIntoImages(a, n) requires at
most 3n ring additions and 2n ring multiplications by 2±1.

Thus, like Mateer’s and Sergeev’s algorithms, the TFT
algorithm suggested in this section requires a linear cost to
separate f into the images fi, and again has cost asymptot-
ically equivalent to van der Hoeven’s bit-reversed TFT.

We briefly mention that it is reasonably straightforward
to invert BreakIntoImages. We have described in sections 5.1
and 5.2 how to reverse the first two parts of the algorithm.
Reversing the third part is trivial. Without giving a detailed
analysis of the inverse transform, we remark that computing
f from f1, . . . , fs also has a linear cost.

6. A LINK BETWEEN BIT-REVERSED &
CYCLOTOMIC TFT METHODS

The bit-reversed TFT has the property that, for m <
n, TFTω,m(f) is merely the first m entries of TFTω,n(f),
whereas the cyclotomic TFT does not, in general, have this
property. Hence the bit-reversed TFT lends itself more read-
ily to multivariate polynomial arithmetic. We show how an
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algorithm for computing the cyclotomic TFT may be mod-
ified to compute a bit-reversed TFT.

As before, let n =
∑s
i=1 ni =

∑s
i=1 2n(i) and let N = 2p

be the least power of two exceeding n. Let ω = ω1 be a root
of Φ1 and ωi = ωn1/ni be a root of Φi. Define

Ωi =

i∏
`=1

ω` and Ψj(z) = znj − Ω
nj

j−1,

for 0 ≤ i ≤ s and 1 ≤ j ≤ s. TFTω,n(f) is comprised of the
evaluation of f(z) at the roots of the polynomials Ψj(z). If

n1 + · · · + nj−1 ≤ ` < n1 + · · · + nj , we have that ω[`]p is
a root of Ψj . To see this, write ` = n1 + · · · + nj−1 + `′,
0 ≤ `′ < nj , and observe that

ω[`]pnj = ω(N/(2n1)+···+N/(2nj−1))njω[`′]pnj ,

= (ω1 · · ·ωj−1)njω[`′]pnj ,

= Ω
nj

j−1ω
[`′]pnj . (10)

Every nj-th root of unity in R is of the form ω[k]p , where

0 ≤ k < nj . In particular, ω[`′]p is an nj-th root of unity.
Thus (10) is precisely (Ωj−1)nj and ω[`]p is a root of Ψj .

Consider the affine transformation z 7→ Ωsz. Then

Ψi(Ωsz) = Ωni
s z

ni − Ωni
i−1,

= Ωni
i−1

[(
s∏
j=i

ωni
j

)
zni − 1

]
,

= −Ωni
i−1(zni + 1) = −Ωni

i−1Φi.

Thus, for a polynomial f(z), f(z) mod Φi(z) = f(z) mod
Ψi(Ωsz). We can break f(z) into its images modulo the
polynomials Φi as follows:

1. Replace f(z) with f(Ωsz).

2. Break f(Ωsz) into its images modulo Φi(z) per a cy-
clotomic TFT method. Equivalently, this gives us the
images f(Ωsz) mod Ψi(Ωsz).

3. Apply transformation z 7→ Ω−1
s z to every image to give

us f(z) mod Ψi(z) in place of f(Ωsz) mod Ψi(Ωsz).

Note that the affine transformations of steps 1 and 3 both
have complexity O(n). We can get TFTω,n(f) from the
images f mod Ψi by applying a DWT with weight Ωi−1 to
each image f mod Ψi. As each step here is invertible, we
can invert a bit-reversed TFT using an inverse cyclotomic
TFT algorithm. We can similarly use a bit-reversed TFT
algorithm to compute a cyclotomic TFT.

7. CONCLUSION
We have presented a method of computing a cyclotomic

TFT in-place, with cost, in terms of ring multiplications,
asymptotically equivalent to out-of-place TFT methods. We
have also shown a means of using a cyclotomic TFT algo-
rithm to compute a bit-reversed TFT.

As future work, we would like to make fine-tuned im-
plementations of Sergeev’s TFT algorithm and the TFT
method presented here, to gauge how well they perform com-
pared to existing competitive TFT implementations.

We also would like to better understand exactly which
families of Truncated Fourier Transforms are equivalent by
way of transformations as in section 6.
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