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ABSTRACT
We describe an algorithm to determine representatives of the
conjugacy classes of subgroups of a Trivial-Fitting group,
this case being the one prior algorithms reduce to. As a
subtask we describe an algorithm for determining conjugacy
classes of complements to an arbitrary normal subgroup if
the factor group is solvable.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic Algorithms

Keywords
Subgroups; Complement; Trivial-Fitting; Permutation group;
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1. INTRODUCTION
The question for determining the subgroups of a finite

group is one of the earliest [Neu60] problems considered
by computational group theory. It also is the task most
frequently requested by users [Can11] which gives it extra
prominence.

To save on memory this task is usually performed up to
conjugacy in the group, that is the equivalence relation U ∼
Ug = g−1Ug for g ∈ G. One thus determines for each
such class (called a conjugacy class) a representative U , as
well as its normalizer NG(U). A basic result about group
actions then states that the elements of this class are in
bijection with the cosets of NG(U) in G, in particular there
are exactly [G : NG(U)] subgroups in the conjugacy class.

The method currently in use [CCH01] for determining the
classes of subgroups uses the Trivial-Fitting paradigm: Let
R �G be the largest solvable normal subgroup. First deter-
mine the classes of subgroups of G/R, then lift the result to
G by complement computations. We shall concentrate on
this first step, the subgroups of H = G/R. This group has
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no solvable normal subgroups and is thus called a Trivial-
Fitting group.

The methods that have been suggested for determining
the subgroups of H have been the use of pretabulated data,
reduction to maximal subgroups, or the older method of
cyclic extension; all of which are rather limited in scope.
Instead we will describe a construction that uses the par-
ticular structure of such Trivial-Fitting groups as a sub-
group of a direct product of wreath products. Section 2
summarizes this structure. Our construction has similarities
with the enumeration of transitive subgroups of symmetric
groups [Hul05], though of course here we do not impose any
limiting conditions on the subgroups and face a more general
situation. (In particular complements will arise for normal
subgroups that are not solvable, see section 5.) The process
also can be taken as a model for the problem of describing
subgroups of a wreath product, a problem which sometimes
arises in a combinatorial context.

Indeed the work in this paper has been motivated by
the question of determining Möbius numbers for symmet-
ric groups [Mon12, Sha97]; for settling the still open case of
S18 a list of subgroups of S6 � S3 were desired.

2. TRIVIAL-FITTING GROUPS
Let H be a finite group with no solvable normal subgroup.

Then the following well-known [BB99] facts hold:
Let S = Soc(H) � H be the socle of H , that is the nor-

mal subgroup generated by all minimal normal subgroups.
Then S is the direct product of simple nonabelian groups
and H acts faithfully by conjugation on S, thus we can con-
sider H as a subgroup of Aut(S). If the direct factors of
S are the simple groups Ti (i = 1, . . . , k), each arising with

multiplicity ni (that is S =×
i

ni×
j=1

Ti), then

Aut(S) = Aut(T1) � Sn1 × · · · × Aut(Tk) � Snk

where � denotes a permutational wreath product (that is
A � Sn = (A × · · · × A| {z }

n copies

) � Sn with Sn acting by permuting

the copies of A. We shall assume that we have H represented
as a subgroup of Aut(S) and thus can decompose according
to this product structure. We then can embed

H/S ≤ (Aut(T1)/T1) � Sn1 × · · · × (Aut(Tk)/Tk) � Snk .

By the proof of Schreier’s conjecture [Fei80], each Aut(Ti)/Ti

is solvable and comparatively small. (If Ti is of Lie type
defined over F, then Aut(Ti)/Ti ≤ F

∗
� Gal(F/Fp) � C2;

205



otherwise |Aut(Ti)/Ti| ≤ 4.) Thus if a is a bound for allˆ
Aut(Ti):Ti

˜
, and we set n =

P
ni we have that

[H :S] ≤ an · n! (1)

In practice n has to be comparatively small (it is unlikely
that n will be substantially larger than 5 as the total num-
ber of subgroup classes otherwise becomes infeasibly large
for storage purposes), thus in practice this index [H :S] will
rarely be larger than a few 10000.

We thus see that S constitutes a large part of H and we
shall use this fact in our construction: We first determine
the conjugacy classes of subgroups of S, then fuse these to
H-classes of subgroups of S and finally extend to classes of
subgroups of H .

The structure of H as a subdirect product also means that
it is feasible to represent it as a permutation group [Hu-
lar, Section 3]. In such a representation, we can determine
subgroup normalizers, and test for subgroup conjugacy (con-
structively, that is finding a conjugating element) using stan-
dard backtrack methods [Hol91, Leo97, The97], [HEO05,
Section 4.6].

3. SUBDIRECT PRODUCTS
The first step is to determine S-classes of subgroups of S.

As S is a direct product of simple groups this is straight-
forward, using the concept of a subdirect product [Rem30].
Their computational construction is well understood (for ex-
ample see [HP89] for an earlier application) and a descrip-
tion of how to enumerate their subgroups is found in [Hol10].
The content of this section thus is included only to make this
paper self-contained. The section can easily be skipped by
an experienced reader.

For simplicity we shall describe the case of a direct prod-
uct of two factors. The case of multiple factors follows by
induction by treating a product F ×G×H as (F ×G)×H .

Consider a direct product S = G × H . Then S has two
projections α : S → G and β : S → H . A subgroup U ≤ S
then yields two images A = Uα ≤ G and B = Uβ ≤ H . If
we want to classify subgroups of S up to S-conjugacy, we
clearly can assume that A is chosen up to G-conjugacy and
B chosen up to H-conjugacy, conjugacy thus is reduced to
NG(A) × NH(B).

To describe U further, consider the elements of U that
project trivially on one of the components. Thus let D =
(ker βU )α � A and E = (ker αU )β � B (where αU means
the restriction of α to U). If we denote the natural ho-
momorphisms by ρ : A → A/D and σ : B → B/E then
every element of A/D can be written as (uα)ρ for a suit-
able u ∈ U , similarly βσ maps from U onto B/E. We thus
can define a map ζ : A/D → B/E by (uα)ρ �→ (uβ)σ. As
ker α ∩ kerβ = 〈1〉 this is well defined. It is easily seen that
ζ is an isomorphism.

Clearly conjugates of D and E under NG(A) and NG(B)
will lead to conjugates of U . When fixing D and E we thus
can restrict conjugacy to N × M where N = NNG(A)(D) =
NG(A) ∩ NG(D) and M = NNG(B)(E) = NG(B) ∩ NG(E).

The set of isomorphisms A/D → B/E is parameterized by
Aut(A/D) ∼= Aut(B/E). Conjugation by N induces a sub-
group IN ≤ Aut(A/D), conjugation by M one of Aut(B/E).

If we fix one isomorphism ζ0 : A/D (and also denote the in-
duced isomorphism Aut(A/D) → Aut(B/E) by ζ0), then
conjugacy by N × M corresponds to a double coset in IN \
Aut(A/D)/(IM )ζ−1

0 .
We have thus seen the following parameterization of S-

classes of subgroups of the direct product S:

Theorem 1. [Hul96, Satz 32] For two finite group G, H
let A be a set of representatives of the conjugacy classes
of subgroups of G and B be a set of representatives of the
conjugacy classes of H. Then a set of representatives of the
conjugacy classes of subgroups of G × H is obtained in the
following way:

• For each pair A ∈ A, B ∈ B let D be a set of rep-
resentatives of the NG(A)-conjugacy classes of normal
subgroups of A, E be a set of representatives of the
NH(B)-conjugacy classes of normal subgroups of B.

• For each pair D ∈ D, E ∈ E (with natural homomor-
phisms ρ : A → A/D, σ : B → B/E) such that there is
an isomorphism ζ0 : A/D → B/E let N = NNG(A)(D)
and M = NNG(B)(E). Let Z be a set of representatives

of the double cosets IN \Aut(A/D)/(IM )ζ−1
0 , where IN

are the automorphisms of A/D induced by conjugation
with N , IM the automorphisms of B/E induced by M .

• For each ζ ∈ Z form the subgroup

U :=
n
(a, b) ∈ G × H | a ∈ A, b ∈ B, (aρ)ζ = bσ

o

These subgroups U form representatives of the S-conjugacy
classes of subgroups. The normalizer of U is the subgroup of
N × M which stabilizes ζ via the induced action of IN and
IM .

Proof. The argument before the theorem statement yields
the parameterization of subgroups. For such a subgroup U
to be normalized, clearly the projections A and B, as well
as the kernels E and F , must be stabilized by conjugation,
so NS(U) ≤ N × M . If the isomorphism ζ defining U is
stabilized by an element x ∈ N ×M then Ux ⊂ U , and oth-
erwise not, thus the stabilizer of ζ is exactly the normalizer
of U .

Note that this parameterization leads in an obvious way
to an algorithm to enumerate representatives of the classes
of subgroups of G × H and their normalizers. (We rep-
resent Aut(A/D) as permutation group to determine dou-
ble cosets.) To find possibly pairings for isomorphic factor
groups it can be useful to identify the isomorphism type of
small factor groups first, using invariants obtained from the
explicit list [BEO02].

We run this algorithm iteratively for a direct product of
more than two factors. In the base case we need to obtain the
subgroups of simple groups which we can do either with the
traditional method of cyclic extension [Neu60], or simply use
the large amount of theoretical information available, such
as [Pfe97].

4. SUBGROUPS OF A TRIVIAL-FITTING
GROUP

We now assume again that H is a Trivial-Fitting group
with socle S = Soc(H) � H . We assume that we have de-
termined the S-classes of subgroups of S, using the methods
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of the previous section. We aim to extend this list to a list
of representatives of the H-classes of subgroups of H . (The
process of extension shares some similarities with [NP12].)

First consider subgroups of S: The action of H can fuse
S-classes of subgroups, as S � H the S-classes of subgroups
form blocks for the action of H . If U ≤ S is such a subgroup
then

b =

ˆ
H :NH(U)

˜
ˆ
S:NS(U)

˜ =
[H :S]ˆ

NH(U):NS(U)
˜ ≤ [H :S]

is a bound for the number of blocks. By computing NH(U)
in a backtrack search we obtain b. If b > 1 the fusion of
S-classes of subgroups to H-classes then can be done by
an orbit algorithm [HEO05, Section 4.5.2] on blocks, given
by representatives. In this, if Ui is a representative of an
S-class, and h ∈ H , we determine the S-class of Uh

i and
find s ∈ S such that Uhs

i is the chosen representative of its
S-class.

We thus obtain representatives of the H-classes of sub-
groups in S.

Now consider an arbitrary subgroup V ≤ H . Then U =
V ∩ S � V and clearly U ≤ S and V ≤ NH(U). Conjugates
of V lead to conjugates of U , so it is sufficient to consider U
up to H-conjugacy. We shall classify all subgroups V that
intersect with S in the same subgroup U , up to conjugacy
with NH(U):

Let ϕ : NH(U) → NH(U)/NS(U). As ϕ is the restric-
tion of the natural homomorphism H → H/S with domain
restricted to NH(U) this can be constructed easily. Let
A := NS(U) · V . Then Aϕ ≤ NH(U)ϕ =: Q. We obtain
candidates for A up to conjugacy in NH(U) by determin-
ing representatives of the classes of subgroups of Q. This
group Q in general is comparatively small (its order is again
bounded by [H :S]) and often has a nontrivial radical (from
the factors Aut(Ti)/Ti, so the standard methods mentioned
in the introduction work well.

We now shall classify all subgroups V that lead to the
same U and the same A. As we permit conjugacy of NH (U),
we shall consider A only up to NH(U) conjugacy. These
classes of subgroups are in bijection with the Q-classes of
subgroups of Q. Let A/NS(U) be one such subgroup and
let M = NNH (U)(A) = NH(U)∩NH(A). Then (figure 1) we
have that V/U is a complement to NS(U)/U in A/U , and
every such complement gives a subgroup V with the desired
properties.

We can obtain these classes of complements by first de-
termining the classes of complements under A/U conjugacy
and then fusing representatives under conjugacy by NH (U).
(As in general A ��NH(U) this requires explicit conjugacy
tests.) The representatives obtained are representatives of
the desired subgroups V up to conjugacy in H .

The algorithm for all subgroups then consists of:

1. Take representatives U of the H classes of subgroups
of H .

2. For each such U take representatives A of the sub-
groups of NH(U), containing NS(U).

3. For each pair U, A find subgroups V as complements,
fused under the action of NH(U).

If NS(U)/U is solvable the complements can be obtained
with cohomological methods, see [CNW90] and [HEO05,

〈1〉

H

S

U

V

SV

NS(U)

NH(U)

S·NH(U)

A

Figure 1: Subgroups in NH(U)

Section 7.6.2], using a presentation for A/NS(U). (Such a
presentation can be obtained for example using the methods
of [BGK+97].)

In the situation considered here the group NS(U)/U often
is not solvable. An example of such a situation (which also
indicates why it occurs frequently) is if U projects trivially
on some direct factors of S. In this case all elements in
thes (nonsolvable) direct factors then normalize U and thus
contribute to NS(U)/U .

In many cases however the factor group NH (U)/NS(U)
(and thus the group A/NS(U)) is solvable. This is for ex-
ample the case if U never has the same projection on more
than four components (as S4 is solvable) in particular if each
ni ≤ 4.

We thus describe in section 5 a specific method to find
classes of complements in the case of a solvable factor group.
Section 6 then describes the general case.

5. COMPLEMENTS: SOLVABLE FACTOR
GROUP

In this self-contained section we study the following situ-
ation (variables are not related to their use in the previous
sections):

We are given a finite group G and N � G such that N is
arbitrary but G/N is solvable. We want to determine, up to
G-conjugacy, the subgroups C ≤ G such that C ∩ N = 〈1〉
and NC = G.

As we actually need to determine complements in a fac-
tor group, we consider a slightly generalized situation (see
figure 2):

Definition 2. Given a group G and N, M � G, we say
that that a subgroup M ≤ C ≤ G complements N in G
modulo M if NMC = G and NM ∩ C = M .

We assume that G/NM is solvable and want to determine
these subgroups up to conjugacy by G.

Since we assumed that G/NM is solvable, there exists a
normal subgroup NM ≤ A � G such that A/NM is a p-
group for some prime p. Clearly any complement C in G
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〈1〉

G

N

N∩M

C

B∩NM

M

NM

A

DS∩NM

S

B

B∩A

Figure 2: Complements in the factor group

must contain a normal subgroup D = C∩A, this group D is
a complement to NM in A modulo M . As D/M ∼= A/NM
is a p-group, by the 2nd Sylow theorem we can assume – up
to conjugacy – that any such complement D lies in S, where
S/M is a particular p-Sylow subgroup of A/M . Thus D is
a complement to S ∩ NM in S modulo M .

Given such a complement D, we known that C ≤ B :=
NG(D) and thus that N · B = G. Furthermore C ∩ A = D,
thus C is a complement to B ∩ A in B modulo D.

This motivates the following strategy, given G, N, M :

1. Determine a subgroup A ≥ N , A�G, such that A/NM
is a p-group for some prime p. (See below on how to
construct A.)

2. Determine (for example using [CCH97]) a p-Sylow sub-
group P ≤ A, let S = MP . (So [S:M ] = px.)

3. Using cohomology [CNW90], compute representatives
of the conjugacy classes of complements to S∩NM in S
modulo M . Determine representatives of the G-classes
of these complements. (This is done best by first fusing
under the action of NG(S) which is an action on the
cohomology group, followed by conjugacy tests in G.)

The groups obtained in this step are representatives of
the classes of complements to N in A modulo M , as
every complement is G-conjugate to a complement in
S.

4. For each such complement D determine B := NG(D)
and check whether N · B = G. If not discard D as its
normalizer may not contain a complement to N in G.

5. Otherwise work recursively in B and compute B-classes
of complements C to B ∩ A modulo D.

By the above argument clearly any complement to N mod-
ulo M is conjugate to one of the groups C in this classifi-
cation. We can ensure that no duplicates are constructed if
A/NM is characteristic (i.e. invariant under all automor-
phisms) in G/NM :

Lemma 3. Assume (notation as in the algorithm above)
that A/NM is characteristic in G/NM . Let {Di} be a set
of representatives of G-classes of complements to N in A
modulo M such that N · NG(Di) = G, and for each i let
{Ci,j} be a set of the NG(Di)-classes of complements to N ∩
NG(Di) modulo Di. Then every subgroup C complementing
N modulo M in G is conjugate to exactly one Ci,j .

Proof. The argument above already establishes that ev-
ery subgroup C with the given properties is conjugate to at
least one of the Ci,j .

Assume conversely that two of the Ci,j , call them C1 and
C2 are conjugate: Cg

1 = C2, and that they were obtained
from subgroups D1, respectively D2. The natural homomor-
phism G/M → G/NM induces isomorphisms φi : Ci/M →
G/NM such that Di/M

φi = A/NM .
If Dg

1 = D2 then D1 = D2 by the choice of the Di and
g ∈ NG(D1), contradicting the choice of the C1,j to be rep-
resentatives under the action of NG(D1).

Otherwise consider the isomorphism φ : G/NM → G/NM

given by x �→ ((xφ−1
1 )g)φ2 . We then have that Aφ �= A, con-

tradicting the choice of A being characteristic.

5.1 Choice of normal subgroups
We finally just need to describe how to construct the sub-

group A that leads to a characteristic factor A/NM . For
this we are using standard methods for solvable groups.

Definition 4 ([CELG04]). Let G be a finite solvable
group. The elementary abelian nilpotent-central (EANC) se-
ries

G = G1 � G2 � · · · � Gm+1 = 〈1〉
is obtained by iteratively refining normal series of G:

1. Start with a series

G = N1 � N2 � · · · � Nm+1 = 〈1〉
such that Ni+1 is minimal normal in Ni such that
Ni/Ni+1 is nilpotent.

2. Consider each nilpotent factor as a direct product of p-
groups. For each direct factor take the lower exponent
p-central series, take the direct products for all primes
of subsequent factors of these series (thus the factors
are direct products of elementary abelian p-groups).

3. Refine each of these factors by taking the series given
by direct products of p-Sylow subgroups in order of as-
cending p.

It is shown in [CELG04] that the subgroups in this series
are characteristic and the subsequent factors are elementary
abelian p-groups.

Efficient methods for computing this series are given in
[CELG04] as well.

We thus choose A such that A/NM is the lowest nontrivial
factor in the EANC series of G/NM . As we recurse only if
BNM = G, the EANC series of B/B ∩NM corresponds to
the EANC series of G/NM . Furthermore (by the definition)
we have that for a subgroup Gi � G in the EANC series we
have that in the EANC series for G/Gi consists of the groups
Gj/Gi for j ≤ i.

Therefore this series needs to be computed only once and
the subsequent factors can be used in the recursion.
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Figure 3: General Complement Situation

6. COMPLEMENTS: GENERAL CASE
We finally briefly describe the general situation of deter-

mining classes of complements to a normal subgroup N �G.
The methods from [CNW90] as well as from [CH04, Section
4] and from section 5 indicate the following two reductions
(see figure 3) for the problem:

a) If there is M � G, M ≤ N , any complement C to N will
have MC/M complement N/M in G/M . Furthermore
C complements M in MC. Thus first find classes of
complements to N/M in G/M and then for each sub-
group D ≥ M such that D/M is representative of a
class of complements find complements to M in D.
Fuse under action of N .

b) If there is A � G, N ≤ A, then any complement C to
N in G will contain a subgroup D �C complementing
N in A and C ≤ NG(D). Thus first find complements
to N in A, fuse under the action of G. Then for each
such complement D such that N · NG(D) = G, work
in NG(D): Let Z = A∩NG(D) = D ·NN (D) and find
complements to Z/D in NG(D)/D. Every complement
C arises this way, if A/N is characteristic in G/N the
argument from lemma 3 shows that no further fusion
under action of G can take place.

Thus the only remaining case in which neither reduction
applies is applicable, nor normal subgroup nor factor group
are solvable is that of N elementary nonabelian and G/N
simple. The paper [CH04, Section 4] suggests in this case a
reduction to maximal subgroups which it acknowledges as a
not very efficient method.

In our situation however this means that for at least five
projections Ti the quotient NS(U)/U must have a nonsolv-
able projection image and that these components are per-
muted transitively. This means that the whole group H
already must be rather large and a calculation currently
will likely already face obstacles of memory requirements
for storing the subgroups. Thus this issue of complements,
while being a theoretical problem, is it less of a practical
concern here.

7. IMPLEMENTATION
The algorithm as described has been implemented by the

author in GAP [GAP13] and is available in release 4.6 of the
system. (The complement routine of section 5 is already
available in release 4.5.) Table 1 shows the performance
in comparison with the cyclic extension algorithm used by
default. (For the base case of simple groups the new algo-
rithm still used cyclic extension, and not table lookup, to

Group Order Classes time cyclic ext.
S5 � S2 28800 561 24 10
S5 × S6 86400 3182 162 163
S5 × S7 604800 5913 277 1441
U3(5).S3 756000 244 43 287
S6 � S2 1036800 8147 299 3745
S5 � S3 10368000 29155 1913 261561
U4(3).D8 26127360 3870 5245 319124
M11 � S2 125452800 2048 367 -
S6 � S3 2239488000 7172632 680966 -

Table 1: Some run times of the algorithm

get the classes of subgroups. Doing so would have given a
further speedup.) All groups were represented by permuta-
tions in the smallest degree possible. Column “time” is the
time taken by this new algorithm, column “cyclic extension”
the timing for the default cyclic extension algorithm.

Runtimes are in seconds on an 2.3 GHz AMD Opteron
6276 under Linux with ample memory to allow storage of
all subgroups. In the case of M11 � S2 the cyclic extension
algorithm was provided with a list of all perfect subgroups,
obtained from the prior subdirect product calculation for
M11 ×M11, but still did not finish in weeks. The calculation
for S6 � S3 by cyclic extension is absolutely hopeless.

It is easily seen that the new algorithm is an improvement
except for the smallest cases. One reason for this is the large
number of conjugacy tests the cyclic extension algorithm
needs to do to eliminate duplicates.
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