
Sparse Multivariate Function Recovery from
Values with Noise and Outlier Errors*

Erich L. Kaltofen
Department of Mathematics

North Carolina State University
Raleigh, NC 27695-8205, USA

kaltofen@math.ncsu.edu www.kaltofen.us

Zhengfeng Yang
Shanghai Key Laboratory of Trustworthy Computing

East China Normal University
Shanghai 200062, China

zfyang@sei.ecnu.edu.cn

ABSTRACT

Error-correcting decoding is generalized to multivariate sparse
rational function recovery from evaluations that can be nu-
merically inaccurate and where several evaluations can have
severe errors (“outliers”). The generalization of the Berlekamp-
Welch decoder to exact Cauchy interpolation of univariate
rational functions from values with faults is by Kaltofen and
Pernet in 2012 [to be submitted]. We give a different univari-
ate solution based on structured linear algebra that yields a
stable decoder with floating point arithmetic. Our multivari-
ate polynomial and rational function interpolation algorithm
combines Zippel’s symbolic sparse polynomial interpolation
technique [Ph.D. Thesis MIT 1979] with the numeric algo-
rithm by Kaltofen, Yang, and Zhi [Proc. SNC 2007], and
removes outliers (“cleans up data”) through techniques from
error correcting codes. Our multivariate algorithm can build
a sparse model from a number of evaluations that is linear
in the sparsity of the model.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; G.1.1 [Numerical
Analysis]: Interpolation—smoothing

Keywords: error correcting coding, fault tolerance, Cauchy
interpolation, rational function

1. INTRODUCTION

Reed-Solomon error correcting coding uses evaluation of
a polynomial as the encoding device, and interpolation as
the decoding device. The polynomial is oversampled, and
k ≤ E errors in the evaluations are corrected via an addi-
tional 2E sample points. Blahut’s decoding algorithm [1], for
evaluations at consecutive powers of roots of unity, locates
the erroneous evaluations by sparse interpolation. Berle-
kamp/Welch decoding, for any set of distinct input argu-
ments, reconstructs the error-corrected polynomial via Be-
zout coefficients in a polynomial extended Euclidean algo-
rithm [23]. In [4] we address the situation when the polyno-

∗
This research was supported in part by the National Science Foun-

dation under Grant CCF-1115772 (Kaltofen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

mial is sparse: our decoding algorithm requires 2T (2E + 1)
evaluations for a polynomial with t non-zero terms, when
bounds T ≥ t and E ≥ k are input. Here k is again the
number of faulty evaluations, whose locations are unknown.
We use the Prony/Blahut sparse interpolation algorithm and
correct k errors in a linearly generated sequence of evalua-
tions; thus we perform T 1+o(1)E arithmetic operations. Our
algorithm is deployed on numerical data [4, Section 6] via
the floating-point versions of the Prony/Blahut algorithm
[8, 9, 18].

In [14] we have generalized the Berlekamp/Welch proce-
dure to reconstructing a rational number or a univariate
rational function over a field from multiple residues or eval-
uations, under the assumption that some residues and values
are faulty. Again, we use the extended Euclidean algorithm.
Our algorithms are for exact arithmetic.

In [17] we generalize Zippel’s interpolation algorithm for
sparse multivariate polynomials [24] to sparse multivariate
rational functions (cf. [6, Section 4]). We present a worst
case analysis for exact arithmetic [17, Section 4.1], which
for rational functions is more difficult than for polynomials,
and implement the algorithm for noisy data with floating
point arithmetic. The algorithm is numerically stable be-
cause 1. univariate rational recovery is accomplished by a
structured total least norm algorithm on the original data,
not by the extended Euclidean algorithm on derived data,
and 2. multivariate recovery is performed on sparse candi-
dates which constitute well-constrained models for loosely
fitting data. As it turned out in [14], Berlekamp/Welch de-
coding is Cauchy interpolation, and the Euclidean algorithm
computes an unreduced rational function.

We combine the insights from [17] and [14] and obtain the
following:
1. a numerical, noise tolerant Berlekamp/Welch-like univari-

ate polynomial and rational function interpolation algo-
rithm that can remove outlier errors: our algorithm re-
covers the full coefficient vectors and for a sparse polyno-
mial f with t ≤ T terms requires deg(f) + 2E + 1 eval-
uations compared to the 2T (2E + 1) evaluations of the
algorithm in [4, Section 6]. However, we can work with
evaluations at arbitrary input arguments and can recover
rational functions. Note that in [2, Section 3] we have
shown stability for a numerical version of Blahut’s error-
correcting polynomial interpolation algorithm for E = 1.

2. an exact interpolation algorithm for sparse multivariate
polynomials and rational functions à la Zippel which can
correct errors in the evaluations: in Section 2 we give
an analysis which allows for evaluations at poles of the

219

rational function. Errors in the evaluations may indicate
false poles, and evaluations may falsely produce a value
at a pole.

3. a numerical, noise tolerant interpolation algorithm for
sparse multivariate polynomials and rational functions that
can remove outlier errors. In least squares fitting of known
models (note that our sparse models are computed by
our algorithm), outliers can be identified by their leverage
scores derived from the pseudo-inverse (projection matrix)
of the normal equations. Our approach is entirely differ-
ent, even for polynomial models. We locate those outliers
via numerical error-correcting decoding, using structured
linear algebra algorithms. Our computer experiments in
Section 4 demonstrate that our approach is very feasible.

Remark 1.1. Reed-Solomon decoding reconstructs the co-
efficients of a polynomial f by interpolation where some of
the evaluations are faulty. In fact, for d coefficients, i.e.,
deg(f) ≤ d− 1 and k errors, one needs L = d+ 2E evalua-
tions, where E ≥ k bounds the number of faults a-priori. In
our algorithms, we will as substeps perform several interpo-
lations, where each is designed to tolerate a given number
E of errors. Since we view the acquisition of evaluations as
probing a black box for the function f , the error rate of the
black box can be related to E: Suppose the black box for
any L ≥ Lmin evaluations produces faulty values for no more
than k ≤ L/q inputs, where q > 2. Here 1/q is the error rate,
and Lmin is a minimum on the number of each batch of eval-
uations: obviously, one cannot suppose that for L = 1 evalu-
ation one always gets a correct answer. Then E = ⌊d/(q−2)⌋
yields L/q = (d+2E)/q ≤ (d+2d/(q−2))/q = d/(q−2), so
k ≤ E as required. For our multivariate algorithm, the sit-
uation is somewhat different, and the error rate of the black
box for f/g cannot be too high: see Remark 2.6. ✷

Remark 1.2. Since our evaluations are numerically inaccu-
rate, a question arises at what point a noisy value becomes
an outlier. Outliers give rise to a common univariate pol-
ynomial factor, the error locator polynomial, in the sparse
multivariate rational function reconstruction of the model
(see the discussion after Assumption 5). If sufficiently large
in magnitude, they markedly increase the numerical rank of
the corresponding matrix (15). Their locations can be deter-
mined by their corresponding black box inputs being roots
of the error locator polynomial factor (22), which must be
present. See also Remark 3.1 below. ✷

As in [17], our multivariate algorithm takes advantage of
multivariate sparsity, and a stable univariate algorithm for
dense fractions, now with error correction. Cauchy interpo-
lation [14] recovers the reduced fraction (f/GCD(f, g))/(g/
GCD(f, g)). It was first observed in [19] that an unreduced
fraction, e.g., (xd − yd)/(x − y), can yield a much sparser
model for the black box. Such models can be constructed
by interpolation, both for exact and for numeric data. In
[19] we give an exact univariate algorithm. In Kaltofen’s
ISSAC 2011 presentation at the FCRC in San Jose the use
of [3] on numeric data was introduced. Example 4.1 shows
the feasibility of that approach. Note that the number of
evaluations in [19] depends logarithmically on the degrees.

2. ERROR-CORRECTING MULTIVARIATE

RATIONAL FUNCTION INTERPOLATION

Here we generalize the analysis for exact arithmetic in
[17, Section 4.1]. Consider the rational function f/g ∈

K(x1, . . . , xn), where the numerator and denominator are
represented as

f =

tf∑

j=1

aj~x
~dj , g =

tg∑

m=1

bm~x
~em , aj , bm ∈ K \ {0}, (1)

where K is an arbitrary field and the terms are denoted by

~x
~dj = x

dj,1
1 · · ·x

dj,n
n and ~x~em = x

em,1

1 · · ·x
em,n
n . We analyze

our variant of Zippel’s sparse interpolation technique to re-
cover the numerator and denominator. Zippel’s technique
[12, Section 4] determines the support of fi = f(x1, . . . , xi,
αi+1, . . . , αn) and gi = g(x1, . . . , xi, αi+1, . . . , αn) iteratively
from the support of fi−1 and gi−1, where α2, . . . , αn ∈ K is
a random anchor point. We will use Zippel’s probabilistic
assumption.

Assumption 1. Each term x
dj,1
1 · · ·x

dj,i−1

i−1 , where 1 ≤ j ≤

tf , and each term x
em,1

1 · · ·x
em,i−1

i−1 , where 1 ≤ m ≤ tg, has
a non-zero coefficient in fi−1 and gi−1.

Note that for different j’s and different m’s one may have
the same term prefix in i − 1 variables. At this point we
do not assume that f and g are relatively prime, but we
will introduce relative primeness as Assumption 5 below for
decoding; see also Remark 2.7.

We wish to recover fi and gi from the sparse supports of
fi−1 and gi−1 and evaluations of fi(x1, . . . , xi)/ gi(x1, . . . ,
xi) = f(x1, . . . , xi, αi+1, . . . , αn)/ g(x1, . . . , xi, αi+1, . . . ,
αn). We chose ξ1, . . . , ξi ∈ K and evaluate at powers ξℓ1,
. . . , ξℓi , where ℓ = 0, 1, 2, . . . We will obtain

βi,ℓ = γi,ℓ+γ
′

i,ℓ, where γi,ℓ =
fi(ξ

ℓ
1, . . . , ξ

ℓ
i)

gi(ξℓ1, . . . , ξ
ℓ
i)
∈ K∪{∞} (2)

and where γ′

i,λκ
6= 0 exactly at the k ≤ E unknown indices

0 ≤ λ1 < λ2 < · · · < λk for ℓ, that is γ′

i,ℓ = 0 for all
ℓ 6∈ {λ1, . . . , λk}.
Assumption 2. We assume that we have the upper bound,

E, on the number of erroneous evaluations, but not the ac-

tual count of errors, k, and not their locations λκ.

If gi(ξ
ℓ
1, . . . , ξ

ℓ
i) = 0 we have γi,ℓ = ∞, but βi,ℓ can be er-

roneously ∈ K. Similarly, if gi(ξ
ℓ
1, . . . , ξ

ℓ
i) 6= 0 we may erro-

neously have βi,ℓ =∞.
Following the Berlekamp/Welch strategy, we attempt to

recover (fiΛi)/(giΛi) where

Λi = (x1 − ξ
λ1

1) · · · (x1 − ξ
λk
1) (3)

is an error locator polynomial. The set of possible terms in
fiΛi and giΛi can now be restricted to

Df,i,E={x
dj,1+ν

1 x
dj,2
2 · · ·x

dj,i−1

i−1 x
δj
i | 1≤j≤tf , 0≤ν≤E,

0≤δj≤min(deg(f)−dj,1− · · · −dj,i−1, degxi
(f))}, (4)

Dg,i,E={x
em,1+ν

1 x
em,2

2 · · ·x
em,i−1

i−1 xηmi | 1≤m≤tg, 0≤ν≤E,

0≤ηm≤min(deg(g)−em,1− · · ·−em,i−1, degxi
(g))}. (5)

Note again that not all of the terms enumerated in (4)
and/or (5) are distinct. See Remark 2.4 below for somewhat
smaller candidate term sets. Here we make the assumption
that the fi−1 and gi−1, as said earlier, contain the full set of
possible terms, that with high probability as we will induc-
tively argue.
Assumption 3. We assume that we know deg(f), degxi

(f),
deg(g) and degxi

(g).
Let ~y and~z be the coefficient vectors of fiΛi and giΛi for the
(distinct) terms in Df,i,E and Dg,i,E . For any ℓ = 0, 1, 2, . . .

220

and any point ξ1, . . . , ξi ∈ K each value βi,ℓ in (2) constitutes
a linear equation for the coefficient vector,

∑

j,ν,δ

yj,ν,δ(ξ
dj,1+ν

1 ξ
dj,2
2 · · · ξ

dj,i−1

i−1 ξδi)
ℓ

= βi,ℓ
∑

m,ν,η

zm,ν,η(ξ
em,1+ν

1 ξ
em,2

2 · · · ξ
em,i−1

i−1 ξηi)
ℓ. (6)

Errors in the βi,λκ are tolerated because fiΛi and giΛi are

both = 0 at x1 = ξλκ
1 . Note again that coefficients/indeter-

minates can be the same, yj1,ν1,δ = yj2,ν2,δ, for instance, if
corresponding terms are the same.
With ℓ = 0, . . . , L − 1, where L is yet to be determined,

the equations (6) form a homogeneous linear system in the
unknowns yj,ν,δ and zm,ν,η,

Vi,L(ξ1, . . . , ξi)~y
T = Γi,LWi,L(ξ1, . . . , ξi)~z

T , (7)

where Γi,L is a diagonal matrix of rational function values
βi,ℓ and Vi,L and Wi,L are (transposed) Vandermonde ma-
trices, with possible zero rows. If βi,ℓ = ∞ then the ℓ-th
row in Vi,L is set to a zero row, and (Γi,L)ℓ,ℓ is set to 1.
Provided the term supports of fi−1 and gi−1 were cor-

rectly computed in the previous iterations, the coefficient
vector [~y , ~z] of fiΛi and giΛi solves (7). For the term sets
in (4) and (5) let

Df,i,EDg,i,E = {τf · τg | τf ∈ Df,i,E , τg ∈ Dg,i,E}, (8)

with |Df,i,EDg,i,E |≤|Df,i,E |·|Dg,i,E |. Now set L ≥ |Df,i,E ×
Dg,i,E | in (7). We argue that for random ξ1, . . . , ξi, the poly-
nomials f̄ and ḡ, which correspond to any non-zero solution
vector [~y ,~z], respectively, of the linear system (7), with high
probability satisfy f̄giΛi = ḡfiΛi.
We shall first assume that the random choices for ξ1, . . . ,

ξi ∈ S ⊂ K are such that no two distinct terms in Df,i,E

and no two distinct terms in Dg,i,E evaluate at xµ ← ξµ,
1 ≤ µ ≤ i, to the same element in K. Because

∀ℓ, 0≤ℓ≤L−1:

{
(fiΛi)(ξ

ℓ
1, . . . , ξ

ℓ
i)=βi,ℓ (giΛi)(ξ

ℓ
1, . . . , ξ

ℓ
i),

f̄(ξℓ1, . . . , ξ
ℓ
i)=βi,ℓ ḡ(ξℓ1, . . . , ξ

ℓ
i),

we have

∀ℓ, 0≤ℓ≤L−1: (fiΛiḡ)(ξ
ℓ
1, . . . , ξ

ℓ
i)=(f̄giΛi)(ξ

ℓ
1, . . . , ξ

ℓ
i). (9)

Note that if βi,ℓ = 0 then (fiΛi)(ξ
ℓ
1, . . . , ξ

ℓ
i) = f̄(ξℓ1, . . . , ξ

ℓ
i) =

0 and if βi,ℓ =∞ then (giΛi)(ξ
ℓ
1, . . . , ξ

ℓ
i) = ḡ(ξℓ1, . . . , ξ

ℓ
i) = 0.

The possibly occurring terms of the polynomial fiΛi ḡ −
f̄ giΛi are contained inDf,i,EDg,i,E of (8). Note that for i =
1 we have L = |Df,1,EDg,1,E | = degx1

(f)+degx1
(g)+1+2E;

see Remark 2.5 below.
Assumption 4. Finally, we assume that the random choices

for ξ1, . . . , ξi ∈ S are such that no two terms in Df,i,EDg,i,E

evaluate to the same value, which subsumes our earlier as-

sumption on the distinctness of term evaluations.

For L ≥ |Df,i,EEg,i,E | we then must have

fiΛi ḡ − f̄ giΛi = 0, f̄ 6= 0, ḡ 6= 0, (10)

because the coefficient vector of fiΛi ḡ − f̄ giΛi is by (9)
a kernel vector in a square non-singular (transposed) Van-
dermonde matrix and therefore must be zero. Since fi 6= 0,
gi 6= 0 and Λi 6= 0 and [~y ,~z] 6= 0 both f̄ and ḡ are non-zero.
We have concluded the analysis of the error correction prop-
erty of our linear system. Next, we discuss the recovery of
a sparse rational interpolant for fi/gi.
In [17] we have excluded 0 and ∞ from the evaluations

γi,ℓ in (2), but here we show that those values are perfectly

allowable. Our (generalized) Berlekamp/Welch decoding al-
gorithm concludes as follows, at least for reduced fractions
(1); see also Remark 2.7.
Assumption 5. GCD(f, g) = 1 in K[x1, . . . , xn] in (1).
Suppose now the fi and gi are relatively prime in K[x1, . . . ,
xi]. For random anchor points α2, . . . , αn, this will be true
with high probability. In fact, fi and gi are then random
projections of the primitive parts of f and g after removing
their contents in K[xi+1, . . . , xn]; see Remark 2.4. So we
obtain from (10) fi/gi = f̄/ḡ, (11)

by removing a common factor h ∈ K[x1] of f̄ and ḡ. Because
of the degree constraints in the term supports in (4) and (5),
no additional polynomial factors in the variables x2, . . . , xi
are possible. We thus have hfi = f̄ and hgi = ḡ. All
x1 − ξ

λκ
1 for all κ = 1, . . . , k divide h(x1), because by (11)

f̄(ξλκ
1 , . . . , ξλκ

i) = βi,λκ ḡ(ξ
λκ
1 , . . . , ξλκ

i), but fi(ξ
λκ
1 , . . . , ξλκ

i)

6= βi,λκgi(ξ
λκ
1 , . . . , ξλκ

i). Because we estimate the number of
errors by E in (4) and (5), f̄ and ḡ can have common factors
in K[x1] in addition to Λi(x1). Those common factors give
the nullspace of (9) a dimension 1 + E − k, and the kernel
vectors corresponding to the lowest degree polynomials f̄
and ḡ in x1 are the coefficient vectors of f̄ = cfiΛi and
ḡ = cgiΛi for a c ∈ K, c 6= 0.
Remark 2.1. Note that for g = 1 we obtain a sparse mul-
tivariate polynomial interpolation algorithm with error-cor-
rection, and Assumption 5 is satisfied. For the exact prob-
lem for multivariate polynomials, say with K a finite field,
we also mention [22], where the minimum number of points
is studied for unique recovery. There encoding/decoding is
performed by combinatorial search for the erroneous evalu-
ations. ✷

Remark 2.2. The linear system (7) of linear constraints (6)
may yield fi and gi for smaller L. In [17] we have suggested
to increment L until a 1-dimensional kernel is achieved. If
k = E such a strategy would work here. The system (7)
has M = |Df,i,E |+ |Dg,i,E | variables, so at least L ≥M − 1
equations are needed. In fact, from earlier iterations one has
additional linear constraints for µ = 1, 2, . . . , i− 1:

∑

j,ν,δ

yj,ν,δ(ξ
dj,1+ν

1 ξ
dj,2
2 · · · ξ

dj,µ
µ)ℓα

dj,µ+1

µ+1 · · ·αδ
i = γµ,ℓ ×

∑

m,ν,η

zm,ν,η(ξ
em,1+ν

1 ξ
em,2

2 · · · ξ
em,µ
µ)ℓα

em,µ+1

µ+1 · · ·αη
i . (12)

Note that after fµ and gµ have been computed, the errors
in the βµ,λκ can be corrected.

If k < E, one may simultaneously grow E = k = 0, 1, . . . in
Df,i,E and Dg,i,E (see (4) and (5)), that is, add new columns
to (7). The objective is to produce a single non-zero solution
f̄ and ḡ with the property that the evaluations have k errors
located by h(x1) = Λi(x1). The constraints (12) guarantee
that the corresponding fi = f̄/Λi and gi = ḡ/Λi project to
fµ and gµ for µ = 1, 2, . . . , i− 1.

There is merit in not using some or all constraints (12).
First, the system (7) retains its block Vandermonde struc-
ture and a fast solver can be deployed [21]. Second, if our as-
sumptions hold, we must have fµ = cfi(x1, . . . , xµ, αµ+1, . . . ,
αi) and gµ = cgi(x1, . . . , xµ, αµ+1, . . . , αi) for some non-zero
scalar c ∈ K. Thus, unlucky anchor points (α2, . . . , αn) may
be diagnosed via testing the projections.

In general, there is a trade-off of optimizing the number
of evaluations against the arising cost of solving the linear
systems. Note that instead of powers (ξℓ1, . . . , ξ

ℓ
i) in (6) one

221

also could use fresh values (ξ1,ℓ, . . . , ξi,ℓ). The proof of prop-
erty (10) then uses the idea that for symbolic values ξµ = vµ
the property is true over the function field K(v1, . . . , vi). ✷

Remark 2.3. At iteration i we have arbitrarily chosen the
variable x1 for our error-locator polynomial Λi. We could
also have chosen x2, or x3, . . ., or xi. Again, one may select
that variable xµ for which the sets Df,i,E and Dg,i,E have
the fewest elements. Clearly, if x1 occurs sparsely and x2
densely, x2 is likely a better choice. Note that if xi is chosen,
one gets no overlap in the terms in Df,i,E or Dg,i,E .
The variable-by-variable interpolation depends on a vari-

able order. Different orders may lead to a different number
of evaluations. For numerical reasons, one should process
the variables with smaller degrees first; see Remark 2.7.
For the record, we give an explicit worst case estimate

for the exact algorithm. If we denote by tf,i = |Df,i,0| and
tg,i = |Dg,i,0|, the number of terms in fi and gi respectively,
with tf,0 = tg,0 = 1, and if we chose the variable xi for
Λi, one provably needs at most

∑n

i=1 tf,i−1tg,i−1(degxi
(f)+

degxi
(g) + 2E + 1) ≤ ((n − 1)tf tg + 1)(maxi{degxi

(f) +
degxi

(g)}+ 2E + 1) values βi,ℓ (with high probability). ✷

Remark 2.4. The term setsDf,i,E in (4) for fiΛi andDg,i,E

in (5) for giΛi should be as small as possible. One may re-
strict δj in (4) and ηm in (5) by δj ≤ deg(fi)− dj,1 − · · · −
dj,i−1, ηm ≤ deg(gi) − em,1 − · · · − em,i−1. This adds ad-
ditional pairs of degrees (deg(fi), deg(gi)) to Assumption 3.
Under Assumption 5, all degrees can be estimated by uni-
variate rational recovery.
First, we show that fi and gi are relatively prime with

high probability. We consider the substitutions fi,u,x =
f(x1, x2 + u2x1, . . . , xi + uix1, xi+1, . . . , xn) and gi,u,x =
g(x1, x2+u2x1, . . . , xi+uix1, xi+1, . . . , xn) over the function
field Ku = K(u2, . . . , ui). The map xµ 7→ xµ + uµx1, were
2 ≤ µ ≤ i, constitutes a ring isomorphism on Ku[x1, . . . , xn].
Therefore the polynomials fi,u,x and gi,u,x are relatively
prime, because their pre-images f and g are relatively prime
(extending to Ku cannot change this). Let ρi ∈ Ku[x2, . . . , xn]
be the Sylvester resultant of fi,u,x and gi,u,x with respect
to the variable x1. We have ρi 6= 0 (relative primeness in
Ku(x2, . . . , xn)[x1]), and if ρ(x2, . . . , xi, αi+1, . . . , αn) 6= 0,
the pair fi,u = f(x1, x2 + u2x1, . . . , xi + uix1, αi+1, . . . , αn)
and gi,u = g(x1, x2+u2x1, . . . , xi+uix1, αi+1, . . . , αn) is rel-
atively prime in Ku(x2, . . . , xi)[x1]. But the leading coeffi-
cients of fi,u and gi,u with respect to x1 are in Ku, so relative
primeness persists in Ku[x1, . . . , xi], and their pre-images fi
and gi under the inverse isomorphism xµ 7→ xµ − uµx1 are
relatively prime over Ku, and also over the field K, which
contains all coefficients of fi and gi.
We finally show how to compute deg(fi) and deg(gi) by

randomization. Cauchy interpolation recovers fi,u and gi,u
over Ku(x2, . . . , xi), and also with high probability the im-
ages under evaluation xµ ← φµ, uµ ← θµ for random ele-
ments φµ, θµ ∈ S ⊆ K (2 ≤ µ ≤ i). The evaluations φ2, . . . ,
θi must preserve a non-zero leading subresultant coefficient.
We compute (with high probability) degx1

(f) as deg(f1)
and degx1

(g) as deg(g1). Similarly, we compute (with high
probability) degxi

(f) and degxi
(g) by rational function re-

covery (with outlier errors) of f(α1, . . . , αi−1, xi, αi+1, . . . ,
αn)/g(α1, . . . , αi−1, xi, αi+1, . . . , αn), where 2 ≤ i ≤ n. As
a side consequence, we recover (with high probability) the

term exponents of xi in f and g in (1), namely D
[i]
f =

{x
dj,i
i | 1 ≤ j ≤ tf} and D

[i]
g = {x

em,i

i | 1 ≤ m ≤ tg}.

Thus, we can further restrict δj in (4) and ηm in (5) by

δj ≤ deg(fi)− dj,1 − · · · − dj,i−1, x
δj
i ∈ D

[i]
f , ηm ≤ deg(gi)−

em,1 − · · · − em,i−1, x
ηm
i ∈ D

[i]
g . ✷

Remark 2.5. Our initialization for i = 1 uses for f1 all
terms xδ1, where δ = 0, 1, . . . , degx1

(f), and for g1 all terms
xη1 , where η = 0, 1, . . . ,degx1

(g). By our definitions (4), (5)

and (8) we evaluate the fraction at ξℓ1 for ℓ = 0, 1, . . . , L− 1
with L = degx1

(f) + degx1
(g) + 1 + 2E. We suppose that

ξℓ1 6= ξℓ2 in the range for ℓ. Our algorithm in the initializa-
tion phase essentially implements Berlekamp/Welch decod-
ing at Blahut points for rational functions, and in the above
we have proved that the errors are removed, that without
appealing to the Euclidean algorithm. The linear system
approach for Berlekamp/Welch decoding is also introduced
in [21]. ✷

Remark 2.6. As in Remark 1.1 for univariate interpola-
tion, we can determine E from the error rate 1/q of the
black box for f/g. For L(E) ≥ |Df,i,EDg,i,E | or, in practice,
L(E) ≥ |Df,i,E |+ |Dg,i,E |+ L0, which we use in Sections 3
and 4 with L0 = 10, we must attain k ≤ L(E)/q ≤ E. Note
that the latter may for i ≥ 2 not have a solution for E if
the rate 1/q is not sufficiently small. We have |Df,i,E | ≤
(E + 1)|Df,i,0| and |Dg,i,E | ≤ (E + 1)|Dg,i,0| in (4) and (5),
so in practice in the worst case L(E) ≤ (E + 1)|Df,i,0| +
(E + 1)|Dg,i,0|+ L0 ≤ qE =⇒ q > |Df,i,0|+ |Dg,i,0|. ✷

Remark 2.7. The first algorithm for recovering a sparse
rational function without Assumption 5 is described in [19].
As an example, the unreduced fraction (xd − yd)/(x− y) is
much sparser than the reduced polynomial. In fact, in [19]
univariate fractions are recovered as sparse fractions, not
using dense Cauchy interpolation; the number of evaluation
points in the algorithms is proportional to log(deg(f)). Here
we have followed the idea of lifting an unreduced fraction by
delaying Assumption 5 until after establishing the key Berle-
kamp/Welch property (10), which is fi/gi = f̄/ḡ. If fi/gi
is unreduced, the error corrected f̄ and ḡ may not be equal
to the sparse projections fi and gi. As we have supposed
in [19], the sparsest possibly unreduced fraction f/g of low-
est degree can be unique, hence liftable via f̄ and ḡ. The
initial sparse f1 and g1 can be also obtained by comput-
ing a sparse polynomial multiple [10]. Numerically, it may
also be possible to recover a sparse unreduced fraction for
i = 1 by optimizing the 1-norm of the solution vector via
linear programming [3]. Example 4.1 below demonstrates
such a recovery. Such sparse unreduced recovery is also use-
ful when the evaluations at αµ (see Remark 2.4) do not yield
a numerically relatively prime univariate pair f1, g1.

In the exact case, there are other ways of determining the
coefficients in K[xi] of fi and gi, for example by interpo-
lating or sparsely interpolating xi, which yields a smaller
linear system and possibly fewer evaluations (cf. [24]). One
may also reconstruct the fraction using Strassen’s removal
of divisions approach: see [5] (cf. [11, end of Section 7] and
[13, Section 4]). [5] recovers the sparse homogeneous parts
from highest to lowest degree. Since their algorithm and Al-
gorithm Black Box Numerator and Denominator in [15] are
based on univariate Cauchy interpolation, any black box er-
ror rate 1/q < 1/2 can be handled by those methods.

[5] does not address the problem of projections leading to
a reducible univariate fraction. Especially in the numeric
setting, approximate relative primeness of the projections
is difficult to maintain throughout each univariate Cauchy

222

recovery (see [16, End of Section 6]). Our sparse system (7)
is set up to avoid the reducedness requirement all together.
The sparsity constraints numerically stabilize the algorithm,
provided one starts with a correct term support for f1 and
g1. By using more than one random anchor αµ, where 2 ≤
µ ≤ n, one can improve the probability that no occurring
term is falsely dropped from the term sets for fi and gi. ✷

Remark 2.8. After recovering the K[xi] coefficients of fi
and gi, one may sparsify those coefficients by shifting xi =
xi + σi, where σi is either in K or algebraic over K. See [7]
for computing such a sparsifying shift exactly, and [2] for an
algorithm that tolerates numerical noise (and outlier). ✷

Remark 2.9. One may interpolate several sparse rational
functions with a known common denominator (or numer-
ator) simultaneously with fewer evaluations by the above
method. An algorithm for the exact univariate dense recov-
ery problem (without erroneous values) is in [20]. ✷

3. NUMERICAL INTERPOLATION WITH

OUTLIER ERRORS

Based on the discussion in Section 2, we present a modi-
fied Zippel’s sparse interpolation approach to recover sparse
rational function from values with noise and outlier errors.
In the approximate case, Θ is introduced to measure whether
the evaluation is an outlier error, that is, we say the eval-
uation β at the point (ζ1, . . . , ζn) ∈ C

n is an outlier er-
ror, if β = γ + γ′, where γ = fi(ζ1, . . . , ζn)/gi(ζ1, . . . , ζn) ∈
C∪{∞}, and |β/γ| ≥ Θ. Again false poles and non-poles are
allowed; see explanation immediately after Assumption 2.
Consider the rational function f/g ∈ C(x1, . . . , xn), where
f, g are represented as (1). Suppose a black box for f/g with
noise and outlier errors at a known error rate is given. The
upper bound on the number of erroneous evaluations E can
be determined from the error rate; see Remark 1.1. In this
Section, we at first present a method to interpolate a uni-
variate rational function, and then discuss how to recover fi
and gi when fi−1 and gi−1 are already computed.

Let f [i] = f(α1, . . . , αi−1, xi, αi+1, . . . , αn) =
∑d̄f

j=1 ψ
[i]
j x

j
i ,

g[i] = g(α1, . . . , αi−1, xi, αi+1, . . . , αn) =
∑d̄g

m=1 χ
[i]
mx

m
i , and

assume that (with high probability) the sets D
[i]
f and D

[i]
g at

the end of Remark 2.4 are the corresponding nonzero terms
of f [i] and g[i]. Here we have a-priori total degree bounds
d̄f ≥ deg(f) and d̄g ≥ deg(g). Now let us show how to

compute those term supports D
[i]
f and D

[i]
g of the univariate

polynomials f [i] and g[i] with respect to the variable xi. Our
discussion is for i = 1. Given a random root of unity ζ ∈ C,
we compute the evaluations with outlier errors, that is, for
ℓ = 0, 1, . . . , d̄f + d̄g + 2E + 1 we compute

βℓ = γℓ+γ
′

ℓ, where γℓ =
f(ζℓ, α2, . . . , αn)

g(ζℓ, α2, . . . , αn)
∈ C∪{∞}, (13)

where γ′

ℓ denotes noise or possibly an outlier error. We have
the upper bound of the number of erroneous evaluations
E, which means that the number of ℓ, such that |βℓ/γℓ| ≥
Θ, is ≤ E. Having (13), we construct the following linear
equations for ℓ = 0, 1, . . . , d̄f + d̄g + 2E,

d̄f+E∑

j=0

yjζ
ℓ j − βℓ

d̄g+E∑

m=0

zmζ
ℓm = 0, (14)

The above equations form a linear system

G
[
~y ~z

]T
= [V1, −Γ1W1]

[
~y ~z

]T
= 0, (15)

where Γ1 = diag(β0, β1, . . . , βd̄f+d̄g+2E), and where V1,W1

are Vandermonde matrices generated by the vectors [1, ζ, . . . ,

ζ d̄f+E]T and [1, ζ, . . . , ζ d̄g+E]T. The numerical rank defi-
ciency of G, denoted by ρ, can be computed by checking the
number of small singular values of G or finding the largest
gap among the singular values. Suppose

s = min(d̄f − degx1
(f), d̄g − degx1

(g)).
According to the discussion following Assumption 5 in Sec-
tion 2, we know that ρ = 1+E−k+ s. Having ρ, the linear
equations (14) are transformed into the following reduced
linear equations by removing some unknown coefficients of
higher degree in (14), namely, for ℓ = 0, 1, . . . , d̄f + d̄g + 2E

d̄f+E−ρ+1∑

j=0

yjζ
ℓ j − βℓ

d̄g+E−ρ+1∑

m=0

zmζ
ℓm = 0, (16)

whose matrix form is

G̃
[
~y ~z

]T
= [Ṽ1, −Γ1W̃1]

[
~y ~z

]T
= 0. (17)

Note that the numerical rank deficiency of G̃ is 1, since
d̄ + E + 1 − ρ = d̄ − s + k. The coefficient vector ~y T of
f [1]Λ1 and the coefficient vector of g[1]Λ1 are achieved from

the last singular vector of G̃. Note that Λ1 should have the
form Λ1 = (x1 − ζλ1

1) · · · (x1 − ζ
λk
1). In that case, every

root ζλκ , 1 ≤ κ ≤ k, of Λ1 can be detected by checking for
ℓ = 0, 1, . . . , d̄f + d̄g + 2E with a preset tolerance ǫroot:

ℓ ∈ {λ1, . . . , λk} ⇐⇒ |(f
[1]Λ1)(ζ

ℓ)|+ |(g[1]Λ1)(ζ
ℓ)| ≤ ǫroot.

Having Λ1, we obtain f [1] by applying the approximate uni-
variate polynomial division technique between f [1]Λ1 with
Λ1. Similarly, g[1] can be obtained by approximate poly-

nomial division. In the end, the actual supports D
[1]
f and

D
[1]
g corresponding to f [1] and g[1] can be obtained by re-

moving the terms whose coefficients are in absolute value
≤ ǫcoeff. Performing the above technique for each variable

xi, 2 ≤ i ≤ n, one may obtain all the nonzero terms D
[i]
f and

D
[i]
g of f [i] and g[i].

Remark 3.1. The preset tolerance measures ǫroot and ǫcoeff
require that the singular solution vector [~y ,~z]T is normal-
ized. We normalize the Euclidean 2-norm to 1. Because
we oversample by d̄f − degxi

(f) + d̄g − degxi
(g) evaluations

in (16), noisy evaluations can be taken as extra outliers. The

justification that f [1](ζℓ) and/or g[1](ζℓ) is separated from 0
for (almost) all ℓ 6= λκ is from [17, Section 3, Lemma 3.1]. As
in [17], we use the same justification for correctly identify-
ing non-zero terms via ǫcoeff, but here an incorrectly dropped
term cannot be reintroduced later. Therefore ǫcoeff should
be tight, and falsely kept terms will be removed later. ✷

Remark 3.2. The arising linear systems can be solved by
structured linear solvers: e.g., the coefficient matrix in (17)
is that in [21, Equ. (10)], provided βℓ 6∈ {0,∞} for all ℓ.
However, the values in Γ1 are deformed by noise. In [17] we
have used a structured total least norm (STLN) iteration to
compute the optimal deformation of the diagonal of Γ1 to
achieve a rank deficiency of 1. The arising linear systems in
the STLN iterations again have structure and are amenable
to a displacement rank approach. How to deal with zeros
and poles and the STLN iterations using structured solvers
has yet to be worked out. ✷

223

We now turn to the main task, namely to interpolate fi
and gi when fi−1 and gi−1 are computed. Suppose the ac-
tual supports of fi−1 and gi−1 are Df,i−1 and Dg,i−1 (note
Assumption 1). In this case, the possible terms in fi, gi are

D̄f,i = {x
dj,1
1 · · ·x

dj,i−1

i−1 x
δj
i | x

dj,1
1 · · ·x

dj,i−1

i−1 ∈ Df,i−1,

x
δj
i ∈ D

[i]
f , 0 ≤ δj ≤ d̄f − dj,1 − · · · − dj,i−1}, (18)

D̄g,i = {x
em,1

1 · · ·x
em,i−1

i−1 xηmi | x
em,1

1 · · ·x
em,i−1

i−1 ∈ Dg,i−1,

xηmi ∈ D[i]
g , 0 ≤ ηm ≤ d̄g − em,1 − · · · − em,i−1}. (19)

Described in Remark 2.4, the new variable xi is chosen
among xi, . . . , xn such that the terms sets Df,i,E in (4)
for fiΛi and Dg,i,E in (5) for giΛi are as small as pos-
sible. We designate the possible terms in fiΛi and giΛi,

represented as (4) and (5), as Df,i,E = {x
d̄j,1
1 · · ·x

d̄j,i
i |

j = 1, 2, . . . , t̄f,E} and Dg,i,E = {x
ēm,1

1 · · ·x
ēm,i

i | m =
1, 2, . . . , t̄g,E}. The unknown polynomials fiΛi and giΛi

are represented as fiΛi =
∑t̄f,E

j=1 yjx
d̄j,1
1 · · ·x

d̄j,i
i , giΛi =

∑t̄g,E
m=1 zmx

ēm,1

1 · · ·x
ēm,i

i , where yj and zk are indeterminates.
Let b1, . . . , bi ∈ Z>0 be sufficient large distinct prime num-

bers and sj be random integers with 1 ≤ sj < bj . We choose
ζj = exp(2πi /bj)

sj ∈ C for 1 ≤ j ≤ i (cf. [9]). In the exact
case, discussed in Section 2 above, we know that the dimen-
sion of the nullspace of (7) is 1 + E − k for L ≥ t̄f,E t̄g,E
evaluations. In fact, t̄f,E t̄g,E is an upper bound which guar-
antees that the dimension of the nullspace of (7) is 1+E−k.
For the random examples shown in Table 1 and Table 2, our
algorithm only needs L = t̄f,E + t̄g,E + 10 probes to ob-
tain fiΛi and giΛi. In the noisy case, we start from the
approximate evaluations for ℓ = 0, . . . , L− 1,

βi,ℓ=γi,ℓ+γ
′

i,ℓ, with γi,ℓ=fi(ζ
ℓ
1,...,ζ

ℓ
i)/gi(ζ

ℓ
1,...,ζ

ℓ
i), (20)

where γ′

i,ℓ is noise or an outlier error. With yj and zm
unknown, (20) yield the following linear system:

G

[
~y T

~z T

]
=[Vi,L(ζ1,...,ζi),−Γi,LWi,L(ζ1,...,ζi)]

[
~y T

~z T

]
=0 (21)

(cf. (7)), where L = t̄f,E + t̄g,E + L0 with L0 ≥ 1 constant,
Vi,L,Wi,L are Vandermonde matrices, and Γi,L = diag(βi,0,
..., βi,L−1). One may estimate the numerical rank deficiency
of G, denoted by ρ, by computing its SVD. In consequence,
the actual count of errors k = 1 + E − ρ is obtained.
Now let us show how to compute the coefficients of fiΛi

and giΛi. Having the actual count of errors k, the possible
terms in fiΛi and the possible terms in giΛi are represented
precisely by Df,i,k and Dg,i,k instead of Df,i,E , Dg,i,E . Fur-

thermore, the numerical rank deficiency of G̃, produced by
(20) with fewer terms, is 1. In the sequel, the coefficient
vector of fiΛi and giΛi is achieved from the last singular

vector of G̃. Because all roots of Λi have the form of ζλκ
1 ,

1 ≤ κ ≤ k, similarly to the univariate case all roots can be
identified by checking the evaluations ℓ ∈ {λ1, . . . , λk}

⇐⇒ |(fiΛi)(ζ
ℓ
1, . . . , ζ

ℓ
i)|+ |(giΛi)(ζ

ℓ
1, . . . , ζ

ℓ
i)| ≤ ǫroot. (22)

The remaining task is to compute fi and gi from the
three polynomials Λi, fiΛi, giΛi, which constitutes an ap-
proximate polynomial division problem. Since Λi(x1) is a
univariate polynomial, Λi is the content of fiΛi and giΛi

w.r.t. the variables x2, . . . , xi, and the corresponding primi-
tive parts are fi and gi, respectively (note that fi and gi are

assumed to be relatively prime—see Remark 2.4). Thus ap-
proximate univariate polynomial division can be employed
to compute fi and gi. We then further get the exact sup-
ports of fi and gi by removing terms whose coefficients are
in absolute value ≤ ǫcoeff. Remark 3.1 is relevant again, now
with oversampling by L0 = 10.

Alternatively, one may compute fi, gi from Λi via the error
locations. In fact, λκ is the location of an outlier error if ζλκ

i

is a root of Λi. In this case, all error locations λ1, . . . , . . . λk

can be determined by (22). By removing all the evaluations
at λ1, . . . , λk, one gets the approximate evaluations without
outlier errors, that is, for ℓ = 0, . . . , L− 1, ℓ 6∈ {λ1, . . . , λk},

βi,ℓ ≈ fi(ζ
ℓ
1, . . . , ζ

ℓ
i)/gi(ζ

ℓ
1, . . . , ζ

ℓ
i). (23)

In this situation, the remaining problem can be transformed
as the problem of interpolating fi, gi from their possible
terms D̄f,i and D̄g,i and the approximate evaluations (23).
One algorithm presented in [17], for interpolating sparse ra-
tional functions from noisy values, is applied to obtain fi
and gi. More details will be found in [17].
Algorithm Numerical Interpolation of Rational Func-

tions with Outlier Errors

Input: ◮
f(x1,...,xn)
g(x1,...,xn)

∈ C(x1, . . . , xn) input as a black box

with noise and outlier errors, the latter at a given rate (see
Remark 1.1).
◮ (x1, . . . , xn): an ordered list of variables in f/g.
◮ d̄, ē: total degree bounds d̄ ≥ deg(f) and ē ≥ deg(g).
◮ ǫcoeff > 0 (for “forcing underflow” of terms), ǫroot > 0 (for
zero detection), the given tolerance.
Output: f(x1, . . . , xn)/c and g(x1, . . . , xn)/c, where c ∈ C.
1. Initialize the anchor points and the support of f and

g: choose α1, α2, . . . , αn as random roots of unity, let
Df,0 = {1} and Dg,0 = {1}.

2. For i = 1, 2, . . . , n do:
Interpolate the univariate polynomials f [i] and g[i] and

get their supports D
[i]
f and D

[i]
g :

(a) Choose a random root of unity ζ and get the evaluations
βi,ℓ with the noise and the outlier errors as (13).

(b) Construct the matrixG in (15) from βi,ℓ and ζ. Compute
the SVD of G and find its numerical rank deficiency r. A
relative tolerance ǫrank for a jump in the singular values
can be provided as an additional input.

(c) Get the matrix G̃ from the reduced linear system (16)

with r, and then obtain f [i]Λi and g[i]Λi from the last

singular vector of G̃.
(d) Get the error locator polynomial Λi by checking (22).

(e) Obtain f [i] and g[i] by applying univariate polynomial

division, and then get the actual support D
[i]
f of f [i] by

rounding coefficients that are absolutely ≤ ǫcoeff to 0.

Similarly, get the actual support D
[i]
g of g[i].

3. Let Df,1 = D
[1]
f and Dg,1 = D

[1]
g . For i = 2, . . . , n do:

Interpolate the polynomials fi and gi as follows:
(a) Choose the variable xµ from x1, . . . , xi such that Df,i,E

and Dg,i,E have the fewest elments.
(b) Compute fiΛi and giΛi:
(b.1) Choose random roots of unity ζ1, . . . , ζi. For ℓ =

0, 1, 2, . . ., compute the evaluations βi,ℓ with the noise
and the outlier errors as (20).

(b.2) Construct the matrixG in (21) from βi,ℓ andDf,i,E , Dg,i,E .
(b.3) Compute the SVD of G and get the actual count of

errors k from the numerical rank deficiency of G.

224

(b.4) Reconstruct the possible terms Df,i,k, Dg,i,k in fiΛi

and giΛi.

(b.5) Get the shrunk matrix G̃ from βi,ℓ and Df,i,k, Df,i,k.

(b.6) Obtain fiΛi, giΛi from the last singular vector of G̃.
(c) Obtain fi and gi
(c.1) Find the error location λ1, . . . , λk, for which ζ

λκ
µ is the

root of Λi.
(c.2) Get the approximate evaluations without outlier errors

by removing ones correspond to λκ.
(c.3) Interpolate fi and gi by the structured total least norm

technique presented in [17], and then get their actual
supports Df,i, Dg,i.

4. With the support of fn and gn, interpolate f(x1, . . . , xn)
/c and g(x1, . . . , xn)/c again to improve the accuracy of
the coefficients:

(a) Construct the linear system from the approximate βn,ℓ

as (23) and the exact terms Df,n and Df,n.
(b) Compute the refined solution ~y and ~z by use of STLN

method.
(c) Obtain f(x1, . . . , xn)/c and g(x1, . . . , xn)/c from ~y ,~z

and Df,n, Dg,n. ✷

4. EXPERIMENTS

Our algorithm has been implemented in Maple and the
performance is reported in the following three tables. All
examples in Table 1 and Table 2 are run in Maple 15 under
Windows for Digits:=15. In Table 1 we exhibit the perfor-
mance of our algorithm for recovering univariate rational
functions from a black box that returns noisy values with
outlier errors. For each example, we construct two rela-
tively prime polynomials with random integer coefficients
in the range −5 ≤ c ≤ 5. Here Random Noise denotes
the range of relative noise randomly added to the black box
evaluations of f/g; d̄f ≥ deg(f) and ḡg ≥ deg(g) denote
the degree bound of the numerator and the denominator,
respectively; tf and tg denote the number of terms of the
numerator and denominator, respectively; 1/q denotes the
error rate of the outlier error; Rel. Error is the relative error,
namely (‖cf̃ − f‖22 + ‖cg̃− g‖

2
2)/(‖f‖

2
2 + ‖g‖

2
2), where f̃/g̃ is

the fraction computed by our algorithm and c is optimally
chosen to minimize the error. For each example, the out-
lier error is the relative error of the evaluation, which is in
the range of 0.01 × [100, 200] or 0.01 × [200, 300]. Running
times serve to give a rough idea on the efficiency, and are
for SONY VAIO laptops with 8GB of memory and 2.67GHz
and 2.80GHz Intel i7 processors.

Ex. RandomNoise d̄f , d̄g
deg(f),
deg(g)

tf , tg 1/q E
Time
(secs.)

Rel.
Error

1 10−4
∼ 10−2 10, 10 3, 3 1, 3 1/3 37 5.9 6.0e–7

2 10−5
∼ 10−3 6, 6 4, 5 2, 4 1/3 39 4.4 3.1e–6

3 10−6
∼ 10−4 18, 13 8, 3 4, 3 1/4 26 1.5 2.3e–8

4 10−5
∼ 10−3 20, 20 10, 10 4, 4 1/3 52 8.4 2.6e–4

5 10−6
∼ 10−4 18, 30 3, 15 2, 6 1/4 30 9.9 8.8e–8

6 10−6
∼ 10−4 40, 40 20, 20 5, 5 1/4 48 32 6.2e–9

7 10−6
∼ 10−4 50, 30 30, 7 6, 3 1/5 34 24 8.6e–6

8 10−7
∼ 10−5 30, 70 5, 40 4, 7 1/4 61 57 2.7e–9

9 10−7
∼ 10−5 80, 80 50, 50 5, 5 1/5 52 29 7.2e–10

10 10−7
∼ 10−5 80, 80 50, 50 51, 51 1/8 31 23 3.2e–7

Table 1: Performance: univariate case

Remark 4.1. In our tests, the k outlier errors are intro-
duced in random locations after the bound E ≥ k is derived
from the error rate 1/q. However, our algorithm also makes

random choices, the anchor points α and the random roots
of unity ζ (see Step 2(a)). We perform 20 trials of the ζ’s
before giving up with recovery. Running times can fluctuate
as a new random choice for ζ has a new number of outlier
errors k in different places. For instance, Example 8 in Ta-
ble 1 is a case where 10 trials are needed before success.
Because our error rates are quite large, the tests cannot suc-
ceed simply because the batches have few outlier errors (see
the column for E in Table 1). Example 10 in Table 1 is
a dense rational function. Our algorithm currently fails to
recover the fraction with an error rate of 1/q = 1/4. ✷

E
x

Random
Noise

d̄f , d̄g
deg(f),
deg(g)

tf ,tg n 1/q E N
time
secs.

Rel.
Error

1 10−5
∼10−3 3, 3 1, 1 2, 2 2 1/10 12 403 6.2 7.3e–7

2 10−5
∼10−3 5, 5 2, 2 3, 3 2 1/12 21 306 6.0 4.5e–8

3 10−5
∼10−3 2, 5 1, 4 2, 4 3 1/15 13 561 13 4.7e–7

4 10−6
∼10−4 8, 8 5, 2 10, 6 3 1/40 12 616 47 3.6e–6

5 10−7
∼10−5 10, 10 7, 7 10,10 5 1/90 7 1508 197 5.1e–11

6 10−7
∼10−5 15, 10 10, 3 15, 5 8 1/90 7 2423 273 7.4e–11

7 10−7
∼10−5 10, 15 5, 13 4, 6 10 1/80 2 1289 24 8.1e–10

8 10−7
∼10−5 25, 25 20, 20 7, 7 15 1/100 3 2890 137 2.9e–10

9 10−8
∼10−6 35, 35 30, 30 6, 6 20 1/80 2 3881 230 5.5e–13

10 10−8
∼10−6 45, 45 40, 40 6, 6 5 1/80 6 2080 219 3.7e–12

11 10−8
∼10−6 85, 85 60, 60 7, 7 4 1/100 11 2787 1479 3.7e–13

12 10−8
∼10−6 85, 85 80, 80 3, 3 5 1/30 4 1773 83 4.5e–12

13 10−9
∼10−7 70, 0 40, 0 6, 1 15 1/70 2 2284 75 7.5e–18

14 10−8
∼10−6 25, 25 20, 20 5, 5 102 1/80 1 10191 272 6.1e–12

Table 2: Performance: multivariate case

In Table 2 we exhibit the performance of our algorithm on
multivariate inputs. For each example, we construct two rel-
atively prime multivariate polynomials with random integer
coefficients in the range −5 ≤ c ≤ 5. Here Random Noise

denotes the noise in this range randomly added to the black
box of f/g; d̄f ≥ deg(f) and ḡg ≥ deg(g) denote the degree
bound of the numerator and the denominator, respectively;
tf and tg denote the number of terms of the numerator and
denominator, respectively; n denotes the number of vari-
ables of the rational functions; N denotes the number of the
black box probes needed to interpolate the approximate mul-
tivariate rational function; E denotes the maximum number
of outliers for each individual interpolation step, 1/q the
resulting error rate of the outlier error; finally, Rel. Error

denotes the relative backward error computed by our algo-
rithm. About the setting of the outlier error, it is the same
as the univariate case. Example 13 is one polynomial test
which shows that our algorithm can also deal with the multi-
variate polynomial interpolation from values with noise and
outlier errors.

Example 14 in Table 2 warrants further discussion, as the
number of probes for a fraction with 5 terms in both the
numerator and denominator takes over 10000 evaluations.
There are n = 102 variables. Estimating the degree in each
variable, using as upper bounds d̄f and d̄g, consumes (d̄f +
d̄g+2E+L0)·102 probes, about 5000. We then use xi as the
variable in the error locator polynomial Λi; see Remark 2.3.
We have for each i the estimates |Df,i,E | = tf (degxi

(f) +
1+E) = 5(3+ 1+ 1) and |Dg,i,E | = tg(degxi

(g) + 1+E) =
5(2 + 1 + 1), that is 45 + L0 evaluations, or about 5000 in
total. Using sharper upper bounds for degxi

(f) and degxi
(g)

one could reduce the number of probes to about 6000. The
fact remains that 102 variables constitute a large recovery
problem, with (5 + 5)× 102 individual exponents dj,µ, em,µ

to be determined.

225

E
x

Random
Noise

Rel. Outlier
Error Θ

deg(f),
deg(g)

tf ,tg n 1/q E N
time
secs

Rel.
Error

1 10−4
∼10−2 1∼2 5, 5 2, 3 1 1/4 24 94 0.8 8.1e–4

2 10−5
∼10−3 0.1∼0.2 15, 15 3, 5 1 1/10 9 84 1.5 3.3e–4

3 10−7
∼10−5 0.001∼0.002 20, 10 4, 3 1 1/15 5 74 0.6 9.3e–10

4 10−6
∼10−4 0.01∼0.02 30, 25 4, 4 1 1/7 12 84 0.8 9.4e–9

5 10−7
∼10−5 0.001∼0.002 50, 40 5, 4 1 1/40 3 288 3.0 8.1e–4

6 10−5
∼10−3 0.1∼0.2 5, 8 1, 3 2 1/30 2 200 1.9 1.8e–2

7 10−6
∼10−4 0.01∼0.02 10, 15 3, 3 4 1/40 2 860 8.2 9.5e–9

8 10−7
∼10−5 0.01∼0.02 10, 10 3, 2 15 1/40 2 2433 18 3.0e–12

9 10−8
∼10−6 0.01∼0.02 8, 8 4, 3 30 1/50 2 3236 35 1.2e–12

10 10−9
∼10−7 0.01∼0.02 15, 15 3, 3 50 1/60 1 5299 50 2.5e–10

Table 3: Performance: small outliers

In Table 3 we give first tests with small outlier errors; see
Remark 3.1. Outlier Error denotes the relative outlier error
Θ, which is randomly selected in the given range.
Example 4.1. We now demonstrate the Candes-Tao recov-
ery of unreduced sparse rational functions discussed in Re-
mark 2.7, that on a small example with no outlier errors
(k = E = 0): let f = (x11 + 1)(x − 1) = x12 − x11 + x − 1,
d̄f = 12, and g = (x+1)(x5−1), d̄g = 6, L = d̄f+d̄g+1 = 19.
We have f/g =

x12
−x11+x−1

x6+x5
−x−1

= x10
−x9+x8

−x7+x6
−x5+x4

−x3+x2
−x+1

x4+x3+x2+x+1
. (24)

We compute βℓ = γℓ = (f/g)(ζℓ+1) for ζ = exp(2πi /31) and
ℓ = 0, 1, . . . , L − 1 in hardware precision complex floating
point arithmetic. The shift in the exponent to ℓ + 1 avoids
g(1) = 0. Now we solve the linear system (15) for a real
vector [~y ,~z]T ∈ R

19 with the following constraint: y12 = 1,
meaning the numerator polynomial f is monic of degree 12.
By separating real and imaginary parts of the matrix G in
(15) we have the linear equational constraints
[
Realpart(V1),−Realpart(Γ1W1)
Imagpart(V1),−Imagpart(Γ1W1)

] [
~y T

~z T

]
=0, y12=1. (25)

The linear system (25) has a higher dimensional solution set
because f and g are not relatively prime. We wish to dis-
cover a sparse solution by minimizing

∑
j |yj |+

∑
m |zm| =

‖[~y ,~z]‖1 via Tshebysheff’s linear programming formulation.
In our case, Maple 16’s call to Optimization[’LPSolve’]

with method = activeset produces the solution f = x12 −
1.0x11−1.78×10−10 x10+1.72×10−10 x9+1.72×10−10 x7−
1.78× 10−10 x6 +1.82× 10−10 x5 − 1.88× 10−10 x4 +1.92×
10−10 x3 − 1.88 × 10−10 x2 + 1.0x − 1.0 and g = 1.0x6 +
1.0x5 − 5.83× 10−12 x3 − 2.07× 10−12 x2 − 1.0x− 1.0 with
an objective value of 6.99999999999878. The rounded poly-
nomials give the unreduced form in (24).
For some examples of lesser unreduced sparsity, the unre-

duced fraction can be recovered by oversampling at L0 addi-
tional values. Without oversampling, the Maple 16 LPSolve

call falsely reports infeasibility of the linear program.
We plan to study sparse unreduced recovery in the pres-

ence of outlier errors à la [19] and with Zippel lifting to
several variables in the near future.

5. REFERENCES

[1] Blahut, R. E. A universal Reed-Solomon decoder. IBM J. Res.
Develop. 18, 2 (Mar. 1984), 943–959.

[2] Boyer, B., Comer, M. T., and Kaltofen, E. L. Sparse
polynomial interpolation by variable shift in the presence of
noise and outliers in the evaluations. In Electr. Proc. Tenth
Asian Symposium on Computer Mathematics (ASCM 2012)
(2012). .

[3] Candes, E., and Tao, T. Decoding by linear programming.
IEEE Trans. Inf. Theory it-51, 12 (2005), 4203–4215.

[4] Comer, M. T., Kaltofen, E. L., and Pernet, C. Sparse
polynomial interpolation and Berlekamp/Massey algorithms
that correct outlier errors in input values. In ISSAC 2012
Proc. 37th Internat. Symp. Symb. Alg. Comput. (New York,
N. Y., July 2012), J. van der Hoeven and M. van Hoeij, Eds.,
ACM, pp. 138–145. .

[5] Cuyt, A., and Lee, W. Sparse interpolation of multivariate
rational functions. Theoretical Comput. Sci. 412 (2011),
1445–1456.

[6] de Kleine, J., Monagan, M., and Wittkopf, A. Algorithms for
the non-monic case of the sparse modular GCD algorithm. In
ISSAC’05 Proc. 2005 Internat. Symp. Symb. Alg. Comput.
(New York, N. Y., 2005), M. Kauers, Ed., ACM Press,
pp. 124–131.

[7] Giesbrecht, M., Kaltofen, E., and Lee, W. Algorithms for
computing sparsest shifts of polynomials in power, Chebychev,
and Pochhammer bases. J. Symbolic Comput. 36, 3–4 (2003),
401–424. .

[8] Giesbrecht, M., Labahn, G., and Lee, W. Symbolic-numeric
sparse interpolation of multivariate polynomials (Ext.
Abstract). In Proc. 9th Rhine Workshop Comput. Alg.
(RWCA’04), Univ. Nijmegen, the Netherlands (2004),
pp. 127–139.

[9] Giesbrecht, M., Labahn, G., and Lee, W. Symbolic-numeric
sparse interpolation of multivariate polynomials. J. Symbolic
Comput. 44 (2009), 943–959.

[10] Giesbrecht, M., Roche, D. S., and Tilak, H. Computing sparse
multiples of polynomials. In Proc. Internat. Symp. on
Algorithms and Computation (ISAAC 2010) (2010).

[11] Kaltofen, E. Greatest common divisors of polynomials given
by straight-line programs. J. ACM 35, 1 (1988), 231–264. .

[12] Kaltofen, E. Factorization of polynomials given by
straight-line programs. In Randomness and Computation,
S. Micali, Ed., vol. 5 of Advances in Computing Research. JAI
Press Inc., Greenwhich, Connecticut, 1989, pp. 375–412. .

[13] Kaltofen, E., and Koiran, P. Expressing a fraction of two
determinants as a determinant. In ISSAC 2008 (New York, N.
Y., 2008), D. Jeffrey, Ed., ACM Press, pp. 141–146. .

[14] Kaltofen, E., and Pernet, C. Cauchy interpolation with errors
in the values. Manuscript in preparation, Jan. 2013.

[15] Kaltofen, E., and Trager, B. Computing with polynomials
given by black boxes for their evaluations: Greatest common
divisors, factorization, separation of numerators and
denominators. J. Symbolic Comput. 9, 3 (1990), 301–320. .

[16] Kaltofen, E., and Yang, Z. On exact and approximate
interpolation of sparse rational functions. In ISSAC 2007
Proc. 2007 Internat. Symp. Symb. Alg. Comput. (New York,
N. Y., 2007), C. W. Brown, Ed., ACM Press, pp. 203–210. .

[17] Kaltofen, E., Yang, Z., and Zhi, L. On probabilistic analysis
of randomization in hybrid symbolic-numeric algorithms. In
SNC’07 Proc. 2007 Internat. Workshop Symb.-Numer.
Comput. (New York, N. Y., 2007), J. Verschelde and S. M.
Watt, Eds., ACM Press, pp. 11–17. .

[18] Kaltofen, E. L., Lee, W., and Yang, Z. Fast estimates of
Hankel matrix condition numbers and numeric sparse
interpolation. In SNC’11 Proc. 2011 Internat. Workshop
Symb.-Numer. Comput. (New York, N. Y., June 2011),
M. Moreno Maza, Ed., ACM, pp. 130–136. .

[19] Kaltofen, E. L., and Nehring, M. Supersparse black box
rational function interpolation. In Proc. 2011 Internat. Symp.
Symb. Alg. Comput. ISSAC 2011 (New York, N. Y., June
2011), A. Leykin, Ed., ACM, pp. 177–185. .

[20] Olesh, Z., and Storjohann, A. The vector rational function
reconstruction problems. In Proc. Waterloo Workshop on
Computer Algebra: devoted to the 60th birthday of Sergei
Abramov (WWCA) (2007), pp. 137–149.

[21] Olshevsky, V., and Shokrollahi, M. A. A displacement
approach to decoding algebraic codes. In Algorithms for
Structured Matrices: Theory and Applications. AMS,
Providence, RI, 2003, pp. 265–292. Contemp. Math., vol. 323.

[22] Saraf, S., and Yekhanin, S. Noisy interpolation of sparse
polynomials, and applications. In Proc. 26th Annual IEEE
Conf. Comp. Complexity (2011), IEEE Comp. Soc., pp. 86–92.

[23] Welch, L. R., and Berlekamp, E. R. Error correction of
algebraic block codes. US Patent 4,633,470, 1986. Filed 1983;
see http://patft.uspto.gov/.

[24] Zippel, R. Interpolating polynomials from their values. J.
Symbolic Comput. 9, 3 (1990), 375–403.

226

