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ABSTRACT
Recently, the notion of“letterplace correspondence”between
ideals in the free associative algebra K〈X〉 and certain ide-
als in the so-called letterplace ring K[X | N] has evolved.
We continue this research direction, started by La Scala
and Levandovskyy, and present novel ideas, supported by
the implementation, for effective computations with general
non-graded ideals in the free algebra by utilizing the gener-
alized letterplace correspondance. In particular, we provide
a direct algorithm to compute Gröbner bases of non-graded
ideals. Surprizingly we realize its behavior as ”homogenizing
without a homogenization variable”. Moreover, we develop
new shift-invariant data structures for this family of algo-
rithms and discuss about them.

Furthermore we generalize the famous criteria of Gebauer-
Möller to the non-commutative setting and show the benefits
for the computation by allowing to skip unnecessary criti-
cal pairs. The methods are implemented in the computer
algebra system Singular. We present a comparison of per-
formance of our implementation with the corresponding im-
plementations in the systems Magma [BCP97] and GAP
[GAP13] on the representative set of nontrivial examples.

Categories and Subject Discriptors:
G.4 [Mathematical Software]: Algorithm design and
analysis; Certification and testing;
I.1.2 [Algorithms]

General Terms:
Algorithms, Theory
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1. INTRODUCTION
Let K be an arbitrary field and F = K〈X〉 be the free
associative algebra. Consider P = K[X | N] the correspond-
ing letterplace ring as introduced in [LL09]. Hereby the
set of variables or letters X is blended with another struc-
ture, so-called places from N. We denote the generators by
xi(k) with xi resp. k being the letter resp. the place. The
letterplace monoid [X | N] contains the neutral element 1
and all finite products xi1(k1) . . . xid(kd) for xij ∈ X and
kj ∈ N. The corresponding monoid ring is called the letter-
place ring K[X | N]. It is an infinitely-generated commuta-
tive K-algebra, generated by the set {xi(j) : xi ∈ X, j ∈ N}.
Note, that K[X | N] is not Noetherian and hence its ideals
have usually infinite generating sets.

The monoid N acts on P by shifting the places, thus provid-
ing an important additional structure. We call the number
s(m) = min{ki | m = xi1(k1) . . . xid(kd)}−1 the shift of the
monomial m. For each n ∈ N and m = xi1(k1) . . . xid(kd) ∈
[X | N] n acts on m as n ·m =: xi1(k1 + n) . . . xid(kd + n).
From now on · will be used to denote this action. We call
the place support of m ∈ [X | N] the set of places, occur-
ing in m. A monomial m is called place-multilinear, if each
number from the place support of m appears at most once.

Indeed, there is an embedding of K-vector spaces ι : F →
P , ι(xi1 · . . . · xid) = xi1(1) . . . xid(d) for all monomials m =
xi1 . . . xid ∈ 〈X〉. However, ι is not a ring homomorphism.
Denote by V := im(ι), then V is spanned by all monomials
of K[X | N], whose place support is of the form 1, . . . , d for
some d ∈ N. In particular, such elements have shift 0 and
are place-multilinear.

We aim at studying infinite structures, which are invariant
under the action of the shift or shortly shift-invariant. Let
J ⊂ K[X | N] be an ideal, then it is shift-invariant if ∀s ∈ N
holds s · J ⊆ J . Observe, that for any ideal L ⊂ K[X | N]
the ideal ∪s∈Ns ·L is shift-invariant by construction. Let us
define a shift-invariant vector space V ′ = ∪s∈Ns · V .

Definition 1.1. For a graded ideal J ⊂ K[X | N], where
the ring is graded with respect to the total degree function
of letters deg() we denote by Jd the graded component of
total degree d. We call J a letterplace ideal if J is generated
by

⋃
s,d∈N

s · (Jd ∩ V ). In this case, J is shift-invariant and

place-multigraded.

The following theorem is the key result proven by Levan-
dovskyy and La Scala in [LL09].

259



Theorem 1.2. Let I E K〈X〉 be a graded ideal and set
J = 〈ι(I)〉 ⊆ K[X | N]. Then J is a letterplace ideal of
K[X | N]. Conversely, let J E K[X | N] be a letterplace
ideal and set I = ι−1(J ∩ V ). Then I is a graded ideal of
K〈X〉. The mappings I → J and J → I define a bijective
correspondence between graded ideals of K〈X〉 and letter-
place ideals of K[X | N].

With this correspondence in mind we would like to introduce
the main idea behind the computation of Gröbner bases via
the letterplace approach: one adds all shifts of the elements
of a generating set to the set and computes a commutative
Gröbner basis. After removing superfluous elements one is
then left with a generating system corresponding to a Gröb-
ner basis.

Definition 1.3. • Let J be a letterplace ideal of
K[X|P ] and H ⊂ K[X|P ]. We say that H is a letter-
place basis of J if H ⊂

⋃
d∈N

Jd ∩ V and
⋃
s∈N

s · H is a

generating set of the ideal J .

• Let J be an ideal of K[X|P ] and H ⊂ J . Then H
is called a (Gröbner) shift-basis of J if

⋃
s∈N

s · H is a

(Gröbner) basis of J .

The following theorem from [LL09] derscribes the connection
between Gröbner shift-basis and the original Gröbner basis
for the ideal of the free algebra.

Theorem 1.4. • Let I be a graded two-sided ideal of
K〈X〉 and put J = 〈

⋃
s∈N

s · ι(I)〉. Moreover, let G ⊂⋃
d∈N

Id and define H = ι(G) ⊂
⋃
d∈N

Jd ∩ V . Then G is

a generating set of I as a two-sided ideal if and only if
H is a letterplace basis of J .

• Let I E K〈X〉 be a graded two-sided ideal and put J =
〈
⋃
s∈N

s · ι(I)〉. Moreover, let H be a Gröbner letterplace

basis of J and put G = ι−1(H ∩ V ) ⊂
⋃
d∈N

Id. Then G

is a two-sided Gröbner basis of I.

This allows one to use commutative methods in infinite di-
mension ”up to shifting”. Since K〈X〉 is not Noetherian as
well, one expects a finite output rather rarely. Instead, one
passes to the semi-algorithms, that is the computations are
performed up to given degree bound.

Algorithm 1.5.

Input: G0, a generating set for an graded ideal I E K〈X〉
Output: G, a Gröbner basis for I
H := ι(G0 \ {0});
P = {(f, s·g) | f, g ∈ H, s ∈ N, f 6= s·g,gcd(lm(f), lm(s·
g)) 6= 1, lcm(lm(f), lm(s · g)) ∈ V };
while P 6= ∅ do

Choose (f, s · g) ∈ P ;
P = P \ (f, s · g);
h := Reduce(S(f, s · g),

⋃
t∈N

t ·H);

if h 6= 0 then
P := P ∪ {(h, s · g) | g ∈ H, s ∈ N,gcd(lm(h), lm(s ·
g)) 6= 1, lcm(lm(h), lm(s · g)) ∈ V };

P := P ∪ {(g, s · h) | g ∈ H, s ∈ N,gcd(lm(g), lm(s ·
h)) 6= 1, lcm(lm(g), lm(s · h)) ∈ V };
H := H ∪ {h};

end if
end while;
G := ι−1(H);
return G;

As we can see, the algorithm resembles Buchberger’s algo-
rithm and in this formulation can be seen as a member of
”critical pair and completion” family of algorithms. The cru-
cial novelty is the presence of an additional structure via
shift.

Analysis shows, that indeed the set P in the algorithm can
be shortened to contain exactly the pairs corresponding to
overlaps of leading monomials of the participating elements.
This is due to the fact that the condition lcm(lm(f), lm(s ·
g)) ∈ V gets rid of superfluous elements produced by sense-
less shifting. Nevertheless, in order to establish the set P
as well as for the reduction step, a large amount of shifted
polynomials will be generated.

The algorithm above has been implemented in Singular
in an almost verbatim way in order to check the new idea
with letterplace and shifting. Nevertheless the naive imple-
mentation performed nicely [LL09, SL13]. In this article we
report on the work done for optimizing and generalizing this
algorithm.

For simplicity we will only consider graded monomial order-
ings, that is m > n if deg(m) > deg(n) ∀m,n ∈ K〈X〉.

2. A SEPARATING INVARIANT
It is easy to see that the letterplace Gröbner basis algorithm
depends heavily on the computation of shifts and a large set
of shifted polynomials is generated in each step. However,
only a few of them are needed. Luckily there is better way
to search for critical pairs. Therefore we start with a closer
investigation of the shift action.

In commutative computer algebra one often uses exponent
vectors in order to determine if a monomial divides another.

Example 2.1. Consider m1 = xa1
1 · · ·xan

n , m2 =

xb11 · · ·xbnn ∈ K[x1, . . . , xn]. Then m1|m2 ⇔ ∀i ai ≤ bi.

For the free algebra there has been no direct way to attach
exponent vectors from Nk to monomials of 〈X〉. However,
the letterplace ring is commutative, so there is a way to use
the exponent vectors, since the support of a monomial is
always finite.

Example 2.2. Consider K[x1, x2, x3 | N] and take p =
x1(1)x3(2)x2(3) +x2(1)x3(2). We order the variables by the
lowest place first, that is xi(k) < xi(l) if k > l. So for
x1(1)x3(2)x2(3) we have the exponent vector
(1, 0, 0, 0, 0, 1, 0, 1, 0) and for x2(1)x3(2) we have
(0, 1, 0, 0, 0, 1). In other words, one of the natural ways to
order the variables of K[X | N] is to use blocks of original
variables; in the example it is

x1(1), x2(1), x3(1), x1(2), x2(2), x3(2), x1(3), x2(3), x3(3), . . .

Remark 2.3. Take m ∈ V ′ ⊂ K[X | N] of total degree d
and shift s with exponent vector e ∈ Nk.
Then k = d + s and e = (e1, . . . , ed+s), where ei is a block
of length n for all 1 ≤ i < d. Then:
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• For 1 ≤ i < s : ei contains only zeros.

• For s ≥ i : ei contains exactly one 1 and n − 1
zeros. Note that the one is on position j, if and only
if (xj | i)|m.

Lemma 2.4. Take two monomials m,m′ ∈ V ′ such that
m′ = s · m for some s ∈ N and construct their exponent
vectors e and e′, respectively, as explained above. Suppose
that deg(m) = d. By setting ẽ := (e′s, . . . , e

′
s+d) we obtain

ẽ = e.

Proof. Denote by m̃ the monomial corresponding to ẽ.
Since shift(m′) ≥ s we have e′i = (0, . . . , 0) ∀i < s. We
conclude that shift(m̃) = shift(m′) − s and s · m̃ = m′,
which already implies m̃ = m and thus ẽ = e.

Definition 2.5. Let m ∈ V ′ with shift s and deg(m) =
d > 0 and assume the exponent vector e has been constructed
as before. Set ẽ = (es, . . . , ed+s). Construct an integer vec-
tor D as follows: The first entry of D is the unique position
of 1 in es. For 1 < i ≤ d denote by z the number of ze-
ros between the two occurring 1 in the vector (es+i, es+i−1).
Then we set the i − th entry of D to z + 1. We call D a
distance vector and denote by dv the map that assigns to
each monomial m ∈ V ′ its distance vector. Moreover, we
postulate dv(1) := 0 ∈ N1.

Example 2.6. As above consider p = x1(1)x3(2)x2(3) +
x2(1)x3(2). The distance vector for x1(1)x3(2)x2(3) is given
by (1, 5, 2) and for x2(1)x3(2) we have (2, 4).

Proposition 2.7. The map dv is invariant with respect
to the shift action, that is it separates the orbits. Moreover,
for all m,m′ ∈ V ′ we have dv(m) = dv(m′) ⇔ m′ = s ·m
or m = s ·m′ for some s ∈ N.

In particular, this leads to the fact recognition of shifted
monomials in K[X | N] and at the same time – via letter-
place encoding – to the divisibility check m|m′ for monomi-
als m,m′ ∈ K〈X〉.

Definition 2.8. For two distance vectors d and d′ we say
that d is contained in d′, if d = 0 or size(d′) ≥ size(d)

and there exists i such that d[1] = d′[i] + in −
i−1∑
1

d′[i] and

d[j] = d′[i+ j − 1] for 1 < j ≤ size(d).

Lemma 2.9. Let m,m′ ∈ V ′ be two monomials. Then
m|m′ if and only if dv(m) is contained in dv(m′).

Corollary 2.10.
Take two monomials w,w′ ∈ 〈X〉. Then w|w′ ⇔ dv(ι(w))
is contained in dv(ι(w′)).

Remark 2.11.
The closer analysis of Algorithm 1.5 shows, that one creates
new critical pairs in the pairset P with shifts of elements
from the would-be-Gröbner-basis H. In addition, the reduc-
tion of a polynomial takes place with respect to all shifts of
H. In the practical but still naive version of the algorithm,
running with a given degree bound, one possibility is to store
all shifts of elements of H and add to the source of the pairset
all shifts of new polynomials as well. By this approach one
can use the usual commutative divisibility on monomials and
also use classical monomial orderings for comparisons.

Remark 2.12. Now we follow a different way: by using
distance vectors we can make a fast division test for mono-
mials in V ′ respectively V . In particular, the shift of a mono-
mial can be read off and stored during the computation of its
distance vector.

Thus keeping the distance vector of a leading monomial of
a polynomial adjoint to the polynomial data in the Algorithm
1.5 directly improves the algorithm. Namely, the overlaps-
based computation of critical pairs is more effective and one
can directly use special optimized algorithms for the shift-
divisibility and shift-reductions, vital for the performance of
the Algorithm.

3. NON-GRADED IDEALS
Although the theoretical aspect of the correspondence be-
tween non-graded ideals and their homogenized counterparts
is technically involved, the basic idea is similar to the clas-
sical homogenization in the commutative case. While being
algorithmically feasible in the Noetherian case, the compu-
tation of a Gröbner basis of a non-graded ideal in the non-
Noetherian case has the following problem: A non-graded
ideal I ∈ K〈X〉 has a finite Gröbner basis, while the homog-
enized set of generators leads to an infinite Gröbner basis.

As mentioned before in [Sca12] La Scala proposed a general-
ization of the letterplace approach to the non graded case by
introducing another variable to homogenize the generators
of an ideal and translating the process of non commutative
homogenization to the letterplace ring. While showing good
results this approach does not solve the general problem.

Since there are concrete examples of this behavior, commu-
nicated to us by Victor Ufnarovskij, we are looking for direct
Gröbner basis theory for non-graded ideals of K〈X〉.

3.1 Place grading, or homogenization without
a homogenization variable

To improve the method of La Scala our first step is to show
that introducing a new variable is superfluous. In fact one
can use the structure given by the letterplace ring quite suc-
cessfully.

Definition 3.1. • Denote by W ′ ⊂ K[X | N] the vec-
tor space, spanned by all place-multilinear monomials,
that is monomials of [X | N], whose place support is
irredundant as a set. Let W ⊂ W ′ be spanned by all
place-multilinear monomials of shift zero.

• For a monomial m ∈W , define the place-degree
pdeg(m) to be the highest place occurring in the place-
support of m and we set pdeg(m) = 0 for m ∈ K
by convention. For a polynomial p ∈ W \ {0} we set
pdeg(p) = max

i
{pdeg(mi)|p =

∑
aimi, ai ∈ K\{0}}.

• If there is 1 ≤ k ≤ pdeg(m), such that k is not in
the place-support, we say m has a hole at place k. The
number of holes between the first occurring variable and
the last one is called the place defect of m.

• Let ·lp be the letterplace multiplication on K[X | N]
[LL09], that is m1 ·lp m2 = m1(pdeg(m1) · m2) for
monomials m1,m2 ∈ [X | N].

• Define Wk = {w ∈W | pdeg(w) = k} ⊆W .
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Proposition 3.2. The following holds:

1. W ′ =
⋃

s∈N0
s ·W .

2. pdeg(m1 ·lp m2) = pdeg(m1) + pdeg(m2) =
pdeg(m2 ·lpm1) and thus Wl ·lpWk ⊆Wl+k ∀l, k ∈ N0.

3. ∀m ∈ W : pdeg(m) = deg(m)+ shift(m)+ place-
defect(m).

4. W =
⊕

k∈N0

Wk is graded with respect to place degree.

5. V0 = W0 = K, V1 = W1 = ⊕n
i=1Kxi(1) and Vk (

Wk ∀k ≥ 2. Thus V (W and V ′ (W ′.

6. Place grading respects shifts, that is s ·Wk ⊂Wk+s

∀k, s ∈ N holds.

Example 3.3. To get a deeper insight into the structure
of W a look into the graded parts is useful. It is easy to see
that W0 = K · {1} = V0 and W1 = K · {xi | 1 ≤ i ≤ n} = V1.
According to the definition, W2 = V2 ⊕ (1 · V1). Further
on, we find W3 = V3 ⊕ (1 · W2) ⊕ (W1 × 2 · W1), where
W1× 2 ·W1 = {w(2 · w̃) | w, w̃ ∈W1}. Substituting previous
expressions we obtain W3 = V3⊕(1·V2)⊕(2·V1)⊕(V1×2·V1).

Recall that the letterplace ring is equipped with the shift
action, which also defines an equivalence relation: m1 ' m2

if either m1 = s ·m2 or m2 = s ·m1 for some s ∈ N. Using
this relation we can identify a monomial of the free algebra
with the orbit of monomials from K[X | N] under the shift
action. A natural choice for the representative of an orbit is
ι(m) ∈ V .

Definition 3.4. Let G ⊂ K〈X〉 be a set of polynomials

and put G̃ = ι(G). Then for each p̃ =
∑
i

aim̃i ∈ G̃ with

ai ∈ K, m̃i ∈ [X | N] we set

ph =
∑
i

ai(pdeg(p̃)− pdeg(mi)) ·mi ∈ K[X | N].

Then ph is graded with respect to pdeg (or
place-homogeneous). We call ph the place-homogenization
of p̃.

So instead of adding a new variable to the free algebra one
is able to use places to homogenize polynomials. Note that
normally one adds commutators to the ideal in order to allow
the new variable to be commuted. This is also possible with
the use of holes in view of the fact, that any representative
of an orbit can be chosen, which implies that any polynomial
in K[X | N] can be viewed as place-homogenized.

Using this new place-homogenization the algorithm
presented in [LL09] can be applied, since the homogeniza-
tion is shift-invariant. However, dehomogenization is not as
simple, since monomials with positive place-defect are not in
an orbit with an element of V under the shift-action. How-
ever, if a s-polynomial is computed or one does reduction
it is easy to see that polynomials with positive place-defect
will occur.

Definition 3.5. Define a K-linear map
shrink : W ′ → V as follows: shrink(m) = m for m ∈ V .
Now suppose that m ∈W ′ \ V with 1 ≤ deg(m) = d and
pdeg(m) = d′ > d, then there exist s1, . . . , sd ∈ N0 such
that m = s1 · xi1(1) . . . sd · xid(d), where sd = d′ − d ≥ 1.
We put shrink(m) := xi1(1) · · ·xid(d) ∈ V .

Definition 3.6. • Define an equivalence relation on
W ′ respectively on W by m1 ∼ m2 ⇔ shrink(m1) =
shrink(m2). We set ∼: W ′ → W ′/ ∼ to be the
natural surjection.

• Define a map ? : V × V →W ′/ ∼ as follows:
v1 ? v2 := [v1(pdeg(v1) · v2)].

Lemma 3.7. Define a K-linear map

η : V →W ′/ ∼, f =
∑
i

aimi 7→ [f ].

Then η is an isomorphism of vector spaces.

Proof. Since V is stable under shrinking, η is injective.
Let w ∈ W ′ be place-multilinear, then shrink(w) ∈ V be-
longs to [w] and thus η is surjective.

Note that the inverse map for η is given by shrink. If we
identify a residue class [w] ∈W ′/ ∼ with the unique element
v ∈ V contained in this class we can think of ? as a multipli-
cation on V , which respects the total degree of polynomials,
thus giving V an K-algebra structure.

Lemma 3.8. Define the map ? : V × V → V ,
(v1, v2) 7→ shrink(v1(pdeg(v1) · v2)).

1. ? is bilinear.

2. We have p ? q = 0 ⇔ p = 0 ∨ q = 0.

3. ? is associative.

Proof. 1. Recall that pdeg of a polynomial is the
highest occurring place in any monomial with non-zero
coefficient. Moreover, we have shrink(v1(s · v2)) =
shrink(v1(s′ · v2)) ∀v1, v2 ∈ V if s, s′ ≥ pdeg(v1)
holds. The claim follows by the linearity of shrink,
shift and the multiplication on K[X | N] as a ring.

2. Because we have p ? q = (
D∑
d

pd) ? (
E∑
e

qe) =

D+E∑
k=0

(
k∑

d=0

pdqk−d), where pd, qe are pdeg−graded com-

ponents of p and q respectively we need to proof the
claim for deg-graded components

∑
d

pdqk−d only. Be-

cause p, q ∈ V we have that
∑
d

pdqk−d is homogeneous

and the claim follows by the fact, that we can use the
letterplace multiplication for the graded case.

3. Routine computation.

Indeed the map ? can be extended to a map
K[X | N]×K[X | N]→ V , which enjoys similar properties.

262



Theorem 3.9. Define a K-linear map

ϑ : (K〈X〉, ·)→ (V, ?), p =
∑

cj∈K\{0}

cjmj 7→
∑

cjι(mj).

Then ϑ is a K-algebra isomorphism.

Proof. By definition ϑ is K-linear and we have ϑ(p +
q) = ϑ(p) + ϑ(q) ∀p, q ∈ K〈X〉. We need to show that
ϑ(p · q) = ϑ(p) ? ϑ(q) ∀p, q ∈ K〈X〉. We have ϑ(p) ?
ϑ(q) = ϑ(

∑
i

aipi) ? ϑ(
∑
j

bjqj) =
∑
i,j

aibiϑ(pi) ? ϑ(qj). Be-

cause ϑ(pi) ? ϑ(qj) = ι(pi) ? ι(qj) = shrink(ι(pi)(deg(p) ·
ι(qj))) = ι(pi)(deg(pi) · ι(qj)) = ι(piqj) where we used the
remark given in the proof of 3.8. So we have ϑ(p) ? ϑ(q) =∑
i,j

aibiι(piqj) =
∑
i,j

aibiϑ(piqj) = ϑ(p ·q) using linearity of ϑ.

Because of 3.8 (2) ϑ is injective. Since V is defined as the
image of ι we have that ϑ is also surjective, which completes
the proof.

We have revealed that one can interpret holes in letterplace
monomials as traces of the appearance of homogenization
variable. The results of La Scala for correspondence of ide-
als and generating systems, especially Gröbner bases can be
used for the correspondence here, thereby proving the cor-
rectness of our method.

3.2 Saturation on the fly
Knowing about the problem behind homogenization men-
tioned earlier there are two steps one can take in order to
avoid it. The first one is to apply an ordering which al-
lows one to simplify the homogenization in each step and
the second one is an alternative for homogenization which
natural occurs on the letterplace ring, namely the use of
distance vectors.

In our opinion, by using graded techniques on the ho-
mogenized ideal, our aim is not to compute the trusted ho-
mogenized ideal, but to come as directly as possible to the
non-graded Gröbner basis, which is usually obtained via the
post-computation of the saturation.

As the first step let us recall the homogenization.

Definition 3.10. Consider the free algebra K〈X〉 and let
h be a new variable commuting with all xi ∈ X. Define X =
X ∪ {h} and F = K〈X〉. Then each p ∈ K〈X〉 is the image
of some homogeneous element p ∈ K〈X〉 under the algebra
homomorphism Φ defined via Φ(xi) = xi, Φ(h) = 1. More

precisely, if we have f =
d∑

k=0

pk with pk ∈ K〈X〉k, pd 6= 0,

then p̃ =
d∑

k=0

pkh
d−k is a homogeneous element, satisfying

Φ(p̃) = p.

Remark 3.11. In order to compute a Gröbner basis via
classical homogenization one has to employ an ordering that
has the following property: hk | lm(p̃) then hk divides each
term occurring in p̃ with non-zero coefficient. An example
for such orderings can be found in [Li12] and in [BB98] as
well as in [Mor88] there is a full introduction to this topic.
In particular, note that for a homogenized polynomial p̃ we
always have h - lm(p) with respect to such an ordering.

After one has computed the Gröbner basis of a homoge-
nized ideal, a saturation of the result with respect to h must
be computed. If we introduce the commutators to the ho-
mogenized ideal one is always able to move the homogeniza-
tion variable to the end of each monomial using reduction if
needed. Indeed, for each computed s-polynomial p, such that
hk|lm(p), one can replace p with the polynomial p/hk. This
procedure is called saturation on the fly, because p/hk be-
longs to the saturated homogenized ideal. This allows one to
reduce significantly the total degree of considered polynomials
during the computation. Note, that the somewhat analogous
effect in the commutative case can be achieved by using the
notion of ecart.

Recognizing holes as traces of the homogenization, one can
apply the method presented by La Scala rather effectively.
The big advantage hereby is that one does not need to in-
troduce an extra variable and in each step of the algorithm
a sort of saturation-on-the-fly is applied. Also, it is not nec-
essary to choose a special ordering for the homogenization
variable. In the following we present the full algorithm.

Note that the classical operations with polynomials (cre-
ation of s-polynomials, reductions etc.) usually produces
holes in the monomials of inhomogeneous input. Hence
the new reduction routine Shrink-Reduce is introduced,
which applies shrinking after each elementary reduction step
f = f−cimih, where h is an appropriately shifted reductor,
ci ∈ K \ {0} and mi ∈ V .

Algorithm 3.12.

Input: G0, a generating set for an ideal I E K〈X〉
Output: G, a Gröbner basis for I
H := ι(G0 \ {0});
P = {(f, s·g) | f, g ∈ H, s ∈ N, f 6= s·g,gcd(lm(f), lm(s·
g)) 6= 1, lcm(lm(f), lm(s · g)) ∈ V };
while P 6= ∅ do

Choose (f, s · g) ∈ P ;
P = P \ (f, s · g);
h := Shrink-Reduce(shrink(S(f, s · g)),

⋃
t∈N

t ·H);

if h 6= 0 then
P := P ∪ {(h, s · g) | g ∈ H, s ∈ N,gcd(lm(h), lm(s ·
g)) 6= 1, lcm(lm(h), lm(s · g)) ∈ V };
P := P ∪ {(g, s · h) | g ∈ H, s ∈ N,gcd(lm(g), lm(s ·
h)) 6= 1, lcm(lm(g), lm(s · h)) ∈ V };
H := H ∪ {h};

end if
end while;
G := ι−1(H);
return G;

Theorem 3.13. If the algorithm above terminates it re-
turns a reduced Gröbner basis for the ideal I.

Proof. As explained before H can be viewed as a set of
homogenized generators, where holes were added at the end
of each monomial. Since leading monomials are not affected
by the homogenization P clearly contains all critical pairs,
as shown in the proof for graded ideals.
So the only thing to prove is the correctness of the compu-
tation of H, which is clear by the correspondence given in
the previous section.
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3.3 Applying the new data structure and the
new homogenization

Equipped with the knowledge that we can compute Gröbner
bases of non-graded ideals using the letterplace approach
without introducing direct homogenization one can ask if
there is a better way, because applying shrinking to each
new s-polynomial can be very inefficient. Luckily there is
better way.

As in the section before the methods of distance vectors can
be applied to reconstruct Buchberger’s original algorithm. It
is important to note that the ideal and generating set corre-
spondence still holds even without explicit homogenization.
In addition to that, distance vectors can be used to repre-
sent monomials in the shift invariant way. By switching to
this new representation one can multiply monomials more
effectively.

Proposition 3.14. Denote by lg the size of a distance
vector. For two monomials m1,m2 ∈ 〈X〉 set m̃1 := ι(m1),
m̃2 := ι(m2), dm1 := dv(m̃), dm2 := dv(m̃2).
Define a new vector d by setting d[1 . . . lg(dm1)] = dm1,

d[lg(dm1) + 1] = lg(dm1)n− (
lg(dm1)∑

k=1

dm1[k]) + dm2[1],

d[(lg(dm1) + 2) . . . (lg(dm1) + lg(dm2))] =
dm2[2 . . . lg(dm2)]. Then dv(ι(m1m2)) = d.

Proof. To see that the claim is correct one only needs
to notice that the entry d[lg(dm1) + 1] is exactly the gap
in the exponent vector of m̃1lg(dm1) · m̃2 between the last
variable of m̃1 and the first of lg(dm1) · m̃2.

Remark 3.15. Using this multiplication allows one to
completely eliminate the need for shrinking. Since the shift
is not needed either, one has a sparse representation of the
orbit under the shift action on a monomial. Since the pro-
cedure is directly inherited from the methods of homogeniza-
tion, its correctness is granted.

4. GEBAUER-MÖLLER’S CRITERION
In commutative as well as in non-commutative Gröbner ba-
sis theory it is well-known that the practical use of criteria
to reduce the set of critical pairs has very effective impact on
the performance. Out of several criteria, first formulated by
Buchberger, the product criterion in the case of free algebras
is naturally applied during the consideration of overlaps of
polynomials. The chain criterion applies as well, but it can
be refined further, following the work of Gebauer and Möller
[GM88] in the commutative case. Gebauer-Möller’s crite-
rion has been generalized to the setup of modules in [KR00]
and [KR05], while in the non-commutative case Mora gave
a detailed presentation of superfluos pairs in [Mor94], which
was adapted to fit practical computations, as for example in
[Xiu12].
Here we will present the theoretical layout as well as the
practical use of the criterion in the letterplace framework.
We want to point out that our research was done simulta-
neously and independently, comparing to the recent work
[KX13].

For this section we will assume that each set P ⊂ K〈X〉 is
interreduced, meaning ∀p, q ∈ P, p 6= q : lm(p) - lm(q) and
that each p ∈ P is monic.

4.1 The non-commutative theory
In the non-commutative version of Buchberger’s algorithm
one constructs s-polynomials from so-called obstructions,
that is a six-tuple (l, p, r;λ, q, ρ) with l, r, λ, ρ ∈ K〈X〉, p, q ∈
P and lm(lpr) = lm(λqρ).
The classical ”product criterion theorem” states that only
those pairs need to be considered, leading monomials of
which involve an overlap, that is lm(p) = ab and lm(q) =
bc for some monomials a, b, c. Therefore one only has to
consider pairs π = (1, pi, r;λ, pj , 1), such that lm(pir) =
lm(λpj).

Definition 4.1. For an obstruction π = (1, pi, r;λ, pj , 1)
we denote by cm(π) := lm(pir) = lm(pi)r = λlm(pj) the
common multiple of pi and pj with respect to the overlap
considered in π.

Let us consider a set of polynomials P and construct the
set of all critical pairs π(P ) by searching for overlaps in the
leading monomials. We want to apply the criteria to π(P )
to reduce its size.

Theorem 4.2.
Suppose that we are given a set of polynomials P , its set of
critical pairs π(P ) and a pair π = (1, pi, ri;λk, pk, 1) ∈ π(P ).

1. If there exist two pairs π1 = (1, pi, r
′
i;λj , pj , 1), π2 =

(1, pj , rj ;λ
′
k, pk, 1) ∈ π(P ) \ {π}, such that

lm(pj)|cm(π), then the s-polynomial s(π) of π will re-
duce to zero.

2. If there exists a pair π1 = (1, pj , rj ;λ
′
k, pk, 1) ∈ π(P ) \

{π}, such that cm(π1) divides cm(π) from the right,
then the s-polynomial s(π) of π will reduce to zero.

Proof. 1. Because of the assumptions we have
lm(pj) = abc, lm(pk) = bctk and lm(pi) = tiab for
some monomials a, b, c, ti, tk. Since P is interreduced,
none of the leading monomials can divide the overlap
cofactors. This implies λk = tia and ri = ctk. More-
over, the existence of π1 and π2 and the form of the
leading monomials imply that there exist pairs π′1 =
(1, pi, c; ti, pj , 1) and π′2 = (1, pj , tk; a, pk, 1). Then
s(π) = pictk− tiapk = tiabctk + tail(pi)ctk− tiabctk−
tiatail(pk)→ −titail(pj)tk + tail(pi)ctk + titail(pj)tk
− tiatail(pk) = −s(π′1)tk − tis(π′s)→ 0.
Note that the reductions used are performed according
to the fixed monomial ordering.

2. We first note that lm(pj)rj = lm(pjrj) = lm(λ′kpk) =

λ′klm(pk) and l̃lm(pj)rj = λ̃λ′klm(pk) = λklm(pk) =

lm(pi)ri for some monomials l̃, λ̃. This already implies

l̃ = λ̃ and λ̃λ′ = λk. Moreover, l̃lm(pj)rj = lm(pi)ri
implies that one of the following holds:

• l̃lm(pj)|lm(pi). Then the set of polynomials is
not interreduced, which leads to a contradiction.

• There exists r̂i such that rj = r̂iri. This implies

the existence of a pair (1, pi, r̂i; l̃, pj , 1) and the
claim follows from the first case.

Remark 4.3. One can apply these criteria in a straight
forward way: If the set of critical pairs during some step of
Buchberger’s algorithm has been constructed, then one can
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just check the pairs and search for redundant ones. However,
to decide if a monomial divides another is not as cheap and
easy as in the commutative case. So, in this situation the
usage of distance vectors leads to much more effective com-
putations.

4.2 Translation to letterplace
Our final goal now is to translate the criteria into the letter-
place realm. Notably, in this criterion there is no distinction
between graded and non-graded cases.

Theorem 4.4. Let P be the set of critical pairs. Suppose
it contains a pair π = (pi, s · pk) for pi, pk ∈ W ⊂ K[X | N]
and s ∈ N.

1. If there exist two pairs π1 = (pi, s
′ · pj) and

π2 = (pj , s
′′ · pk), such that lm(s′ · pj)|lcm(pi, s · pk),

then the s-polynomial s(π) of π will reduce to zero.

2. If there exists a pair π1 = (pj , s · pk) 6= π, such that
lcm(pj , s · pk) divides lcm(pi, s · pk), then the
s-polynomial s(π) of π will reduce to zero.

Remark 4.5. Ad 1.: We have s′′ = s − s′. This follows
immediately from the non-commutative proof and the form of
the overlap. In the case, when the shifts are already known,
commutative methods can be used to check the divisibility.
For condition 1. this is especially easy, since from the con-
crete pair we check its shift is known.
Ad 2.: Since we assume that the shift of pk is the same for π
and π1, the condition, that cm(π1) divides cm(π) from the
right, is always satisfied.

5. IMPLEMENTATION AND TIMINGS
The new methods have been implemented into the kernel

part of the computer algebra system Singular. As men-
tioned before, the implementation of the letterplace struc-
ture is discussed in [LL09], so we will not discuss this any
further. For an introduction to Singular we refer to the
online-manual [DGPS12].

We will now present some important examples and com-
pare our timings with those given by the implementation
of letterplace Gröbner bases by Viktor Levandovskyy in the
current distribution of Singular, as well as with the imple-
mentations in GAP and Magma. We must mention that
the older implementation in Singular [LL09] has been re-
leased for graded ideals; its functionality with non-graded
ideals is experimental.

Note that the implementation of the letterplace:DVec
algorithm is not yet distributed with Singular. The merge
of our development branch with the main branch of Singu-
lar will be done soon.

All tests were performed on a PC equipped with two Intel
Core i7 Quadcore Processor (8×2933 MHz) with 16GB RAM
running Linux.

We used Magma V2.18-12 [BCP97], GAP Version 4.5.6
[GAP13] with the package GBNP, version 1.0.1 and Singu-
lar version 3-1-6.

Testing methodology. In order to make the tests repro-
ducible, we used the new SDEvalv2 framework, created by
Albert Heinle of the SymbolicData project ([BG00]) for
our benchmarking. It means that the input polynomials
have been out into the system SymbolicData. Then, for

each computer algebra system the files to be executed were
generated by the SymbolicData using scripts, written by
ourselves for this purpose. With the help of SDEvalv2 the
computing task was formed, put to the compute server, ex-
ecuted and evaluated. The functions of SymbolicData as
well as the data are free to use. In such a way our compari-
son is easily and trustfully reproducible by any other person.
Note, that among other the function, which is used to mea-
sure the time, can be customized within this approach.

5.1 Examples
Many of the examples are explained in detail in [LL09] or
[Stu10] and we use the same notation. In the following we
explain only the new ones.

One-relator quotients
In [CHN] the authors present a list of 48 examples of one
relator quotients of the modular group. All these examples
were considered with a degree bound by the total degree of
the maximal generator. The enumeration is chosen accord-
ing to the paper and the examples are denoted by H.

LS
The examples LS 5d9 and LS 6d10 were presented to us
during discussions with Roberto La Scala and are connected
to Clifford algebras. Infinite Gröbner bases are expected
from this generating sets, therefore degree bounds are em-
ployed. The first number denotes the number of generators,
while the number following the d denotes the degree bound.

Example Sing 1 Sing 2 Magma GAP
2tri 4v7d 4.10 1.75 1.40 31.67
3nilp d6 0.41 0.29 0.96 4.76
3nilp d10 2410.15† 36.65 2.89 31.08
4nilp d8 380.23† 747.95 10.25 1133.82
Braid3 11 273.40† 15.73 1.52 185.39
Braid4 11 51.82 3.10 1.14 31.97
plBraid3d 6 0.18 0.08 0.91 926.80

lp1 10 31.31 2.33 1.00 11.10
lv2d10 0.23 0.15 0.78 3.29
s e6d10 10.56 1.84 1.12 12.45
s e6d13 976.32 44.74 7.81 274.63

s eha112d10 1.12 0.26 0.96 6.20
s eha112d12 462.36 4.19 1.40 62.40
s f4 d10 4.35 0.58 0.97 5.35
s f4 d15 1103.33 † 147.31 13.54 2241.62
s ha11 d10 2.18 0.32 0.81 3.51
LS 5d9 23.46 2.49 0.79 2.90
LS 6d10 411.33 † 704.97 16.86 372.06
C 4 1 7W 3.23 1.19 0.91 5.76
C 4 1 7Y 0.09 0.09 0.91 2.91
H 5 0.62 0.24 0.62 2.90
H 19 0.88 0.32 0.62 2.99
H 37 0.86 0.32 0.68 2.89
H 40 0.98 0.29 0.62 2.89
H 48 0.88 0.31 0.62 2.91

5.2 Timings
In [LL09] we used external time measuring for the whole

computation via /usr/bin/time command. This included
the initializing of a computer algebra system as well as the
loading of standard libraries. In this paper we use IEEE
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standard for measuring (POSIX.2) and present the timings
for the system record of the time output.

In the following tables the resulting timings are presented.
Sing 1 refers to the implementation by Viktor Levandovskyy,
currently distributed with Singular, while Sing 2 is the new
implementation of the authors using distance vectors. Re-
sults are presented in seconds. By † we denote the situation
when the computation run out of memory after the indi-
cated time.
While Magma is still faster in some cases the timings show
that the new letterplace implementation can compete with
other systems and since the test were done with a first im-
plementation there is still space for improvements.
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[Li12] Huishi Li. Gröbner Bases in Ring Theory.
World Scientific Publishing, 2012.

[LL09] R. La Scala and V. Levandovskyy. Letterplace
ideals and non-commutative Gröbner bases. J.
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