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ABSTRACT
We introduce a method of characteristic sets with respect
to several term orderings for difference-differential polyno-
mials. Using this technique, we obtain a method of com-
putation of multivariate dimension polynomials of finitely
generated difference-differential field extensions. Further-
more, we find new invariants of such extensions and show
how the computation of multivariate difference-differential
polynomials is applied to the equivalence problem for sys-
tems of algebraic difference-differential equations.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms

General Terms
Theory, Algorithms

Keywords
Difference-differential field, dimension polynomial, reduction,
characteristic set

1. INTRODUCTION
The role of Hilbert polynomials in commutative and ho-

mological algebra, as well as in algebraic geometry, is well
known. A similar role in differential algebra is played by
differential dimension polynomials, which describe in exact
terms the freedom degree of a dynamic system, as well as
the number of arbitrary constants in the general solution of
a system of algebraic differential equations.

The notion of a differential dimension polynomial was in-
troduced by E. Kolchin [4] for a finitely generated differential
field extension L = K〈η1, . . . , ηn〉 (CharK = 0). He proved
that there is a polynomial ωη|K(t) associated with the set
of generators η = {η1, . . . , ηn} such that for all sufficiently
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large r ∈ Z, ωη|K(r) is the transcendence degree of the field
extension of K generated by all derivations of ηi (1 ≤ i ≤ n)
of order ≤ r. ωη|K(t) is called the differential dimension
polynomial of the extension L/K associated with the set of
differential generators η.

If P is a prime differential ideal of a finitely generated dif-
ferential algebra R = K{ζ, . . . , ζn} over a differential field
K, then the quotient field of R/P is a differential field ex-
tension of K generated by the images of ζi (1 ≤ i ≤ n) in
R/P . The corresponding differential dimension polynomial,
therefore, characterizes the ideal P ; it is denoted by ωP (t).
Assigning such polynomials to prime differential ideals has
led to a number of new results on the Krull-type dimension
of differential algebras and dimension of differential varieties
(see, for example, [2] and [3]).

Furthermore, as it was shown in [11], one can naturally
assign a differential dimension polynomial to a system of al-
gebraic differential equations and this polynomial expresses
the A. Einstein’s strength of the system (see [1]). Methods
of computation of (univariate) differential dimension poly-
nomials and the strength of systems of differential equations
via the Ritt-Kolchin technique of characteristic sets can be
found, for example, in [12] and [6, Chapters 5, 9]. Note also,
that there are quite many works on computation of dimen-
sion polynomials of differential, difference and difference-
differential modules with the use of various generalizations
of the Gröbner basis method (see, for example, [6, Chapters
V - XI], [7], [8], [9], [10, Chapter 3], and [13]). This method,
however, does not work for non-linear difference-differential
polynomial ideals, which, generally speaking, do not have
finite Gröbner bases.

In this paper, we develop a method of characteristic sets
with respect to several orderings for algebras of difference-
differential polynomials over a difference-differential fields
whose basic set of derivations is partied into several disjoint
subsets. We apply this method to prove the existence, out-
line a method of computation, and determine invariants of a
multivariate dimension polynomial associated with a finite
system of generators of a difference-differential field exten-
sion (and a partition of the basic sets of derivations). We
also show that most of these invariants are not carried by
univariate dimension polynomials and show how the con-
sideration of the new invariants can be applied to the iso-
morphism problem for difference-differential field extensions
and equivalence problem for systems of algebraic difference-
differential equations.
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2. PRELIMINARIES
Throughout the paper, N,Z, Q, and R denote the sets

of all non-negative integers, integers, rational numbers, and
real numbers, respectively. Q[t1, . . . , tk] will denote the ring
of polynomials in variables t1, . . . , tk over Q.

By a difference-differential ring we mean a commutative
ring R together with finite sets ∆ = {δ1, . . . , δm} and σ =
{α1, . . . , αn} of derivations and automorphisms of R, respec-
tively, such that any two mappings of the set ∆ ∪ σ com-
mute. The set ∆∪ σ is called the basic set of the difference-
differential ring R, which is also called a ∆-σ-ring. If R is a
field, it is called a difference-differential field or a ∆-σ-field.
Furthermore, in what follows, we denote the set

{α1, . . . , αn, α
−1
1 , . . . , α−1

n }

by σ∗. If R is a ∆-σ-ring, then Λ will denote the free com-
mutative semigroup of all power products of the form

λ = δk11 . . . δkmm αl11 . . . αlnn

where ki ∈ N, lj ∈ Z (1 ≤ i ≤ m, 1 ≤ j ≤ n). For any such
an element λ, we set

λ∆ = δk11 . . . δkmm , λσ = αl11 . . . αlnn ,

and denote by Λ∆ and Λσ the commutative semigroup of
power products δk11 . . . δkmm and the commutative group of

elements of the form αl11 . . . αlnn , respectively. The order of
λ is defined as

ord λ =

m∑
i=1

ki +

n∑
j=1

|lj |,

and for every r ∈ N, we set Λ(r) = {λ ∈ Λ | ord λ ≤ r}
(r ∈ N).

A subring (ideal) R0 of a ∆-σ-ring R is called a difference-
differential (or ∆-σ-) subring of R (respectively, difference-
differential (or ∆-σ-) ideal of R) if R0 is closed with respect
to the action of any operator of ∆∪σ∗. If a prime ideal P of
R is closed with respect to the action of ∆ ∪ σ∗, it is called
a prime difference-differential (or ∆-σ-) ideal of R.

If R is a ∆-σ-field and R0 a subfield of R which is also a
∆-σ-subring of R, then R0 is said to be a ∆-σ-subfield of R;
R, in turn, is called a difference-differential (or ∆-σ-) field
extension or a ∆-σ-overfield of R0. In this case we also say
that we have a ∆-σ-field extension R/R0.

If R is a ∆-σ-ring and Σ ⊆ R, then the intersection of
all ∆-ideals of R containing the set Σ is the smallest ∆-σ-
ideal of R containing Σ; it is denoted by [Σ]. (Clearly, [Σ] is
generated, as an ideal, by the set {λξ |ξ ∈ Σ, λ ∈ Λ}). If the
set Σ is finite, Σ = {ξ1, . . . , ξq}, we say that the ∆-ideal I is
finitely generated (we write this as I = [ξ1, . . . , ξq]) and call
ξ1, . . . , ξq difference-differential (or ∆-σ-)generators of I.

If K0 is a ∆-σ-subfield of the ∆-σ-field K and Σ ⊆ K,
then the smallest ∆-σ-subfield of K containing K0 is de-
noted by K0〈Σ〉. If K = K0〈Σ〉 and the set Σ is finite,
Σ = {η1, . . . , ηs}, then K is said to be a finitely gener-
ated ∆-σ-extension of K0 with the set of ∆-σ-generators
{η1, . . . , ηs}. In this case we write K = K0〈η1, . . . , ηs〉. It is
easy to see that the field K0〈η1, . . . , ηs〉 coincides with the
field K0({ληi | λ ∈ Λ, 1 ≤ i ≤ s}).

A ring homomorphism of ∆-σ-rings φ : R −→ S is called
a difference-differential (or ∆-σ-) homomorphism if φ(τa) =
τφ(a) for any τ ∈ ∆ ∪ σ, a ∈ R.

If K is a ∆-σ-field and Y = {y1, . . . , ys} is a finite set of
symbols, then one can consider the countable set of symbols

ΛY = {λyj | λ ∈ Λ, 1 ≤ j ≤ s}

and the polynomial ring

R = K[{λyj | λ ∈ Λ, 1 ≤ j ≤ s}]

in the set of indeterminates ΛY over the field K. This poly-
nomial ring is naturally viewed as a ∆-σ-ring where

τ(λyj) = (τλ)yj

for any τ ∈ ∆ ∪ σ, λ ∈ Λ, 1 ≤ j ≤ s, and the elements
of ∆ ∪ σ act on the coefficients of the polynomials of R
as they act in the field K. The ring R is called a ring
of difference-differential (or ∆-σ-) polynomials in the set of
differential (∆-σ-)indeterminates y1, . . . , ys over K. This
ring is denoted by K{y1, . . . , ys} and its elements are called
difference-differential (or ∆-σ-) polynomials.

Let L = K〈η1, . . . , ηs〉 be a difference-differential field ex-
tension of K generated by a finite set η = {η1, . . . , ηs}. As
a field, L = K({ληj | λ ∈ Λ, 1 ≤ j ≤ s}).

The following is a unified version of E. Kolchin’s theo-
rem on differential dimension polynomial and the author’s
theorem on the dimension polynomial of a difference field
extension (see [7] or [10, Theorem 4.2.5]).

Theorem 2.1. With the above notation, there exists a
polynomial φη|K(t) ∈ Q[t] such that

(i) φη|K(r) = tr.degK K({ληj | λ ∈ Λ(r), 1 ≤ j ≤ s}) for
all sufficiently large r ∈ Z;

(ii) deg φη|K ≤ m + n and φη|K(t) can be written as

φη|K(t) =

m+n∑
i=0

ai

(
t+ i

i

)
, where ai ∈ Z and 2n|am+n.

(iii) d = deg φη|K , am+n and ad do not depend on the set
of difference-differential generators η of L/K (ad 6= am+n

if and only if d < m + n). Moreover,
am+n

2n
is equal to

the difference-differential transcendence degree of L over K
(denoted by ∆-σ-tr.degK L), that is, to the maximal number
of elements ξ1, . . . , ξk ∈ L such that the family {λξi | λ ∈
Λ, 1 ≤ i ≤ k} is algebraically independent over K.

The polynomial whose existence is established by this the-
orem is called a univariate difference-differential (or ∆-σ-)
dimension polynomial of the extension L/K associated with
the system of difference-differential generators η.

3. PARTITION OF THE SET ∆. FORMU-
LATION OF THE MAIN THEOREM

Let K be a difference-differential field of zero characteris-
tic with basic sets ∆ = {δ1, . . . , δm} and σ = {α1, . . . , αn} of
derivations and automorphisms, respectively. Suppose that
the set of derivations is represented as the union of p disjoint
subsets (p ≥ 1):

∆ = ∆1 ∪ · · · ∪∆p (1)

where ∆1 = {δ1, . . . , δm1}, ∆2 = {δm1+1, . . . , δm1+m2}, . . . ,

∆p = {δm1+···+mp−1+1, . . . , δm} (m1 + · · ·+mp = m).

If

λ = δk11 . . . δkmm αl11 . . . αlnn ∈ Λ
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(ki ∈ N, lj ∈ Z), then the orders of λ with respect to ∆i

(1 ≤ i ≤ p) and σ are defined as

ordi λ =

m1+···+mi∑
ν=m1+···+mi−1+1

kν and ordσ λ =

n∑
j=1

|lj |,

respectively. (If i = 1, then ν changes from 1 to m1 in the
first sum.) For any r1, . . . , rp+1 ∈ N, the set

{λ ∈ Λ | ordi λ ≤ ri (i = 1, . . . , p), ordσ λ ≤ rp+1}

will be denoted by Λ(r1, . . . , rp+1).
In what follows, for any permutation (j1, . . . , jp+1) of the

set {1, . . . , p + 1}, <j1,...,jp+1 will denote the lexicographic

order on Np+1 such that

(r1, . . . , rp+1) <j1,...,jp+1 (s1, . . . , sp+1)

if and only if either rj1 < sj1 or there exists k ∈ N, 1 ≤ k ≤
p, such that rjν = sjν for ν = 1, . . . , k and rjk+1 < sjk+1 .

If Σ ⊆ Np+1, then Σ′ will denote the set of all e ∈ Σ that
are maximal elements of this set with respect to one of the
(p+ 1)! orders <j1,...,jp+1 .

The following statement is the main result of this paper.

Theorem 3.1. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field ex-
tension generated by a set η = {η1, . . . , ηs}. Then there
exists a polynomial Φη ∈ Q[t1, . . . , tp+1] such that

(i) Φη(r1, . . . , rp+1) = tr. degK K(

s⋃
j=1

Λ(r1, . . . , rp+1)ηj)

for all sufficiently large (r1, . . . , rp+1) ∈ Np+1 (it means that
there exist s1, . . . , sp+1 ∈ N such that the equality holds for
all (r1, . . . , rp+1) ∈ Np+1 with r1 ≥ s1, . . . , rp+1 ≥ sp+1);

(ii) degti Φη ≤ mi (1 ≤ i ≤ p), degtp+1
Φη ≤ n and

Φη(t1, . . . , tp+1) can be represented as

Φη =

m1∑
i1=0

. . .

mp∑
ip=0

n∑
ip+1=0

ai1...ip+1

(
t1 + i1
i1

)
. . .

(
tp+1 + ip+1

ip+1

)

where ai1...ip+1 ∈ Z and 2n | am1...mpn.

(iii) Let Eη = {(i1, . . . , ip+1) ∈ Np+1 | 0 ≤ ik ≤ mk for
k = 1, . . . , p, 0 ≤ ip+1 ≤ n, and ai1...ip+1 6= 0}. Then
d = deg Φη, am1...mp+1 , elements (k1, . . . , kp+1) ∈ E′η, the
corresponding coefficients ak1...kp+1 and the coefficients of
the terms of total degree d do not depend on the choice of
the system of ∆-σ-generators η.

Definition 3.2. Φη(t1, . . . , tp+1) is called the difference-
differential (or ∆-σ-) dimension polynomial of the ∆-σ-field
extension L/K associated with the set of ∆-σ-generators η
and partition (1) of the basic set of derivations.

The ∆-σ-dimension polynomial associated with partition (1)
has the following interpretation as the strength of a system
of difference-differential equations.

Consider a system of difference-differential equations

Ai(f1, . . . , fs) = 0 (i = 1, . . . , q) (2)

over a field of functions of m real variables x1, . . . , xm (fi
are unknown functions of x1, . . . , xm). Suppose that ∆ =
{δ1, . . . , δm} where δi is the partial differentiation ∂/∂xi and
the basic set of automorphisms σ = {α1, . . . , αm} where

αi : f(x1, . . . , xm) 7→ f(x1, . . . , xi−1, xi + hi, xi+1, . . . , xm)

(h1, . . . , hm ∈ R). Thus, we assume that the left-hand sides
of the equations in (2) contain unknown functions fi, their
partial derivatives, their images under the shifts αj , and var-
ious compositions of such shifts and partial derivations. Fur-
thermore, we suppose that system (2) is algebraic, that is,
all Ai(y1, . . . , ys) are elements of a ring of ∆-σ-polynomials
K{y1, . . . , ys} over some functional ∆-σ-field K.

Let us consider a grid with equal cells of dimension h1 ×
· · · × hm that fills Rm. We fix some node P and say that a
node Q has order i if the shortest path from P to Q along
the edges of the grid consists of i steps (by a step we mean
a path from a node of the grid to a neighbor node along the
edge between them). We also fix partition (1) of the set of
basic derivations ∆ (such a partition can be, for example, a
natural separation of (all or some) derivations with respect
to coordinates and the derivation with respect to time).

For any r1, . . . , rp+1 ∈ N, let us consider the values of
the unknown functions f1, . . . , fs and their partial deriva-
tives, whose order with respect to ∆i does not exceed ri
(1 ≤ i ≤ p), at the nodes whose order does not exceed rp+1.
If f1, . . . , fs should not satisfy any system of equations (or
any other condition), these values can be chosen arbitrar-
ily. Because of the system (and equations obtained from
the equations of the system by partial differentiations and
transformations of the form

fj(x1, . . . , xm) 7→ fj(x1 + k1h1, . . . , xm + kmhm)

with k1, . . . , km ∈ Z, 1 ≤ j ≤ s), the number of independent
values of the functions f1, . . . , fs and their partial derivatives
whose ith order does not exceed ri (1 ≤ i ≤ p) at the nodes
of order ≤ rp+1 decreases. This number, which is a function
of p + 1 variables r1, . . . , rp+1, is the “measure of strength”
of the system in the sense of A. Einstein. We denote it by
Sr1,...,rp+1 .

Suppose that the ∆-σ-ideal J of K{y1, . . . , ys} generated
by the ∆-σ-polynomials A1, . . . , Aq is prime (e. g., the
polynomials are linear). Then the field of fractions L of
the ∆-σ-integral domain K{y1, . . . , ys}/J is a ∆-σ-field ex-
tension of K generated by the finite set η = {η1, . . . , ηs}
where ηi is the canonical image of yi in K{y1, . . . , ys}/J
(1 ≤ i ≤ s). It is easy to see that the ∆-σ-dimension polyno-
mial Φη(t1, . . . , tp+1) of the extension L/K associated with
the system of ∆-σ-generators η has the property that

Φη(r1, . . . , rp+1) = Sr1,...,rp+1

for all sufficiently large (r1, . . . , rp+q) ∈ Np+1, so this dimen-
sion polynomial is the measure of strength of the system of
difference-differential equations (2) in the sense of A. Ein-
stein.

4. NUMERICAL POLYNOMIALS

Definition 4.1. A polynomial f(t1, . . . , tp) ∈ Q[t1, . . . , tp]
is called numerical if f(r1, . . . , rp) ∈ Z for all sufficiently
large (r1, . . . , rp) ∈ Zp.

The following theorem proved in [6, Chapter 2] gives the
“canonical” representation of a numerical polynomial. (As

usual,
(
t
k

)
= t(t−1)...(t−k+1)

k!
.)

Theorem 4.2. Let f(t1, . . . , tp) be a numerical polyno-
mial in p variables and let degti f = mi (m1, . . . ,mp ∈ N).
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Then f(t1, . . . , tp) can be represented as

f(t1, . . . tp) =

m1∑
i1=0

. . .

mp∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
with uniquely defined integer coefficients ai1...ip .

In what follows, we deal with subsets of Nm×Zn (m,n ≥ 1)
and a fixed partition of the set Nm = {1, . . . ,m} into p
disjoint subsets (p ≥ 1):

Nm = N1 ∪ · · · ∪Np (3)

where N1 = {1, . . . ,m1},. . . , Np = {m1 + · · · + mp−1 +
1, . . . ,m} (m1 + · · ·+mp = m).

If a = (a1, . . . , am+n) ∈ Nm × Zn we set

ordi a =
∑

j∈Ni
aj , 1 ≤ i ≤ p

and

ordp+1 a =

m+n∑
i=m+1

|ai|.

Furthermore, we consider the set Zn as a union

Zn =
⋃

1≤j≤2n
Z

(n)
j (4)

where Z
(n)
1 , . . . ,Z

(n)
2n are all different Cartesian products of

n sets each of which is either N or Z− = {a ∈ Z|a ≤ 0}.
We assume that Z

(n)
1 = Nn and call Z

(n)
j ) the jth orthant of

Zn. The set Nm ×Zn will be treated as a partially ordered
set with the order � such that

(e1, . . . , em, f1, . . . , fn) � (e′1, . . . , e
′
m, f

′
1, . . . , f

′
n)

if and only if the n-tuples (f1, . . . , fn) and (f ′1, . . . , f
′
n) lie in

the same orthant Z
(n)
k and

(e1, . . . , em, |f1|, . . . , |fn|) <P (e′1, . . . , e
′
m, |f ′1|, . . . , |f ′n|)

where <P is the product order on Nm+n. (Recall that the
product order on Nk is a partial order <P such that

c = (c1, . . . , ck) <P c
′ = (c′1, . . . , c

′
k)

if and only if ci < c′i for i = 1, . . . , k. We write c ≤P c′ if
c <P c

′ or c = c′).
If A is a subset of Nm×Zn, then WA will denote the set of

all elements w ∈ Nm ×Zn such that there is no a ∈ A with
a�w. Furthermore, for any r1, . . . rp+1 ∈ N, A(r1, . . . rp+1)
denotes the set

{x = (x1, . . . , xm, x
′
1, . . . , x

′
n) ∈ A | ordi x ≤ ri, 1 ≤ i ≤ p+1}.

If E ⊆ Nm and s1, . . . , sp ∈ N, then E(s1, . . . , sp) will de-
note the set {(e1, . . . , em) ∈ E | ordi(e1, . . . , em, 0, . . . , 0) ≤
si for i = 1, . . . , p} ( (e1, . . . , em, 0, . . . , 0) ends with n zeros;
it is treated as a point in Nm×Zn.) Furthermore VE will de-
note the set of all m-tuples v = (v1, . . . , vm) ∈ N which are
not greater than or equal to anym-tuple from E with respect
to the product order on Nm. Clearly, v = (v1, . . . , vm) ∈ VE
if and only if for any element (e1, . . . , em) ∈ E, there exists
i ∈ N, 1 ≤ i ≤ m, such that ei > vi.

The following two theorems are proved in [6, Chapter 2].

Theorem 4.3. Let E be a subset of Nm where m = m1 +
· · ·+mp for some m1, . . . ,mp ∈ N (p ≥ 1). Then there exists
a numerical polynomial ωE(t1, . . . , tp) such that

(i) ωE(r1, . . . , rp) = Card VE(r1, . . . , rp) for all suffi-
ciently large (r1, . . . , rp) ∈ Np. (As usual, Card M denotes
the number of elements of a finite set M).

(ii) degti ωE ≤ mi for all i = 1, . . . , p.
(iii) degωE = m if and only if E = ∅. In this case

ωE(t1, . . . , tp) =

p∏
i=1

(
ti +mi

mi

)
.

Definition 4.4. The polynomial ωE(t1, . . . , tp) is called
the dimension polynomial of the set E ⊆ Nm associated with
the partition (m1, . . . ,mp) of m.

Theorem 4.5. Let E = {e1, . . . , eq} (q ≥ 1) be a finite
subset of Nm and let partition (3) of Nm be fixed. Let ei =
(ei1, . . . , eim) (1 ≤ i ≤ q) and for any l ∈ N, 0 ≤ l ≤
q, let Γ(l, q) denote the set of all l-element subsets of the
set Nq = {1, . . . , q}. Furthermore, for any σ ∈ Γ(l, q), let
ē∅j = 0, ēσj = max{eij | i ∈ σ} if σ 6= ∅ (1 ≤ j ≤ m), and

bσk =
∑
h∈Nk

ēσh (k = 1, . . . , p). Then

ωE(t1, . . . , tp) =

q∑
l=0

(−1)l
∑

σ∈Γ(l, q)

p∏
j=1

(
tj +mj − bσj

mj

)
(5)

Remark. It is clear that if E ⊆ Nm and E∗ is the
set of all minimal elements of the set E with respect to
the product order on Nm, then the set E∗ is finite and
ωE(t1, . . . , tp) = ωE∗(t1, . . . , tp). Thus, Theorem 4.5 gives
an algorithm that allows one to find a numerical polynomial
associated with any subset of Nm (and with a given parti-
tion of the set {1, . . . ,m}): one should first find the set of all
minimal points of the subset and then apply Theorem 4.5.

The following result can be obtained by mimicking the
proof of [8, Theorem 3.4].

Theorem 4.6. Let A ⊆ Nm × Zn and let partition (3)
of Nm be fixed. Then there exists a numerical polynomial
φA(t1, . . . , tp+1) such that

(i) φA(r1, . . . , rp+1) = CardWA(r1, . . . , rp+1) for all suf-
ficiently large (r1, . . . , rp+1) ∈ Np+1.

(ii) degtiφA ≤ mi (1 ≤ i ≤ p), degtp+1φA ≤ n and the

coefficient of tm1
1 . . . t

mp
p tnp+1 in φA is of the form

2na

m1! . . .mp!n!
,

with a ∈ Z.
(iii) Let us consider a mapping

ρ : Nm × Zn −→ Nm+2n

such that ρ((e1, . . . , em+n) = (e1, . . . , em,max{em+1, 0}, . . . ,
max{em+n, 0},max{−em+1, 0}, . . . ,max{−em+n, 0}).

Let

B = ρ(A) ∪ {ē1, . . . , ēn},

where ēi (1 ≤ i ≤ n) is a (m + 2n)-tuple in Nm+2n whose
(m + i)th and (m + n + i)th coordinates are equal to 1 and
all other coordinates are equal to 0. Then

φA(t1, . . . , tp+1) = ωB(t1, . . . , tp+1)

where ωB(t1, . . . , tp+1) is the dimension polynomial of the set
B (see Definition 4.4) associated with the partition Nm+2n =
{1, . . . ,m1}∪{m1+1, . . . ,m1+m2}∪· · ·∪{m1+· · ·+mp−1+
1, . . . ,m} ∪ {m+ 1, . . . ,m+ 2n} of the set Nm+2n.
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(iv) If A = ∅, then

φA =

p∏
j=1

(
tj +mj

mj

)
n∑
i=0

(−1)n−i2i
(
n

i

)(
tp+1 + i

i

)
. (6)

The polynomial φA(t1, . . . , tp+1) is called the dimension
polynomial of the set A ⊆ Nm × Zn associated with parti-
tion (3) of Nm.

5. PROOF OF THE MAIN THEOREM
In this section, we prove Theorem 3.1 and give a method of

computation of difference-differential dimension polynomials
of ∆-σ-field extensions based on constructing a characteris-
tic set of the defining prime ∆-σ-ideal of the extension.

In what follows we use the conventions of section 3. In
particular, we assume that partition (1) of the set of basic
derivations ∆ = {δ1, . . . , δm} is fixed.

Let us consider total orderings <1, . . . , <p, <σ of the set
of power products Λ such that

λ = δk11 . . . δkmm αl11 . . . αlnn <i λ
′ = δ

k′1
1 . . . δ

k′m
m α

l′1
1 . . . α

l′n
n

(1 ≤ i ≤ p) if and only if
(ordi λ, ord λ, ord1 λ, . . . , ordi−1 λ, ordi+1 λ, . . . , ordp λ,
ordσ λ, km1+···+mi−1+1, . . . , km1+···+mi , k1, . . . , km1+···+mi−1 ,
km1+···+mi+1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln) is less than the
corresponding (m+ 2n+ p+ 2)-tuple for λ′ with respect to
the lexicographic order on Nm+2n+p+2.

Similarly, λ <σ λ
′ if and only if (ordσ λ, ord λ, ord1 λ, . . . ,

ordp λ, |l1|, . . . , |ln|, l1, . . . , ln, k1, . . . , km) is less than the cor-
responding (m+ 2n+ p+ 2)-tuple for λ′ with respect to the
lexicographic order on Nm+2n+p+2.

Let λ1 = δk11 . . . δkmm αl11 . . . αlnn , λ2 = δr11 . . . δrmm αs11 . . . αsnn
be elements of Λ. They are called similar , if (l1, . . . , ln) and
(s1, . . . , sn) lie in the same orthant of Zn (see (4)). In this
case we write λ1 ∼ λ2. We say that λ1 divides λ2 (or λ2 is
a multiple of λ1) and write λ1|λ2 if λ1 ∼ λ2 and there exists
λ ∈ Λ such that λ ∼ λ1, λ ∼ λ2 and λ2 = λλ1.

Let K be a ∆-σ-field (Char K = 0) and let partition (1)
of the set ∆ be fixed. Let K{y1, . . . , ys} be the ring of ∆-σ-
polynomials over K and let ΛY denote the set of all elements
λyi (λ ∈ Λ, 1 ≤ i ≤ s) called terms. Note that as a ring,

K{y1, . . . , ys} = K[ΛY ].

Two terms u = λyi and v = λ′yj are called similar if λ and
λ′ are similar; in this case we write u ∼ v. If u = λyi is a
term and λ′ ∈ Λ, we say that u is similar to λ′ and write
u ∼ λ′ if λ ∼ λ′. Furthermore, if u, v ∈ ΛY , we say that u
divides v or v is a multiple of u, if u = λ′yi, v = λ′′yi for
some yi and λ′|λ′′. (If λ′′ = λλ′ for some λ ∈ Λ, λ ∼ λ′, we

write
v

u
for λ.)

Let us consider p+ 1 orders <1, . . . , <p, <σ on the set ΛY
that correspond to the orders on Λ (we use the same symbols
for the orders on Λ and ΛY ). These orders are defined as
follows: λyj <i (or <σ) λ′yk if and only if λ <i (respectively,
<σ)λ′ in Λ or λ = λ′ and j < k (1 ≤ i ≤ p, 1 ≤ j, k ≤ s).

The order of a term u = λyk and its orders with respect to
the sets ∆i (1 ≤ i ≤ p) and σ are defined as the correspond-
ing orders of λ (we use the same notation ord u, ordi u, and
ordσ u for the corresponding orders).

If A ∈ K{y1, . . . , ys} \K and 1 ≤ k ≤ p, then the highest
with respect to <k term that appears in A is called the k-

leader of A. It is denoted by u
(k)
A . The highest term of A

with respect to <σ is called the σ-leader of A; it is denoted
by vA. If A is written as a polynomial in vA,

A = Id(vA)d + Id−1(vA)d−1 + · · ·+ I0,

where all terms of I0, . . . , Id are less than vA with respect to
<σ, then Id is called the initial of A. The partial derivative

∂A/∂vA = dId(vA)d−1 + (d− 1)Id−1(vA)d−2 + · · ·+ I1

is called the separant of A. The initial and the separant of a
∆-σ-polynomial A are denoted by IA and SA, respectively.

If A,B ∈ K{y1, . . . , ys}, then A is said to have lower rank
than B (we write rkA < rkB) if either A ∈ K, B /∈ K, or(

vA, degvA A, ord1 u
(1)
A , . . . , ordp u

(p)
A

)
is less than(

vB , degvB B, ord1 u
(1)
B , . . . , ordp u

(p)
B

)
with respect to the lexicographic order (vA and vB are com-
pared with respect to <σ). If the vectors are equal (or
A,B ∈ K) we say that A and B are of the same rank and
write rkA = rkB.

Definition 5.1. If A,B ∈ K{y1, . . . , ys}, then B is said
to be reduced with respect to A if

(i) B does not contain terms λvA such that λ ∼ vA, λ∆ 6=
1, and

ordi(λu
(i)
A ) ≤ ordi u

(i)
B , i = 1, . . . , p.

(ii) If B contains a term λvA, where λ ∼ vA and λ∆ = 1,
then either there exists j, 1 ≤ j ≤ p, such that

ordj u
(j)
B < ordj

(
λu

(j)
A

)
or ordj

(
λu

(j)
A

)
≤ ordj u

(j)
B

for all j = 1, . . . , p and degλvA B < degvA A.

If B ∈ K{y1, . . . , ys}, then B is said to be reduced with
respect to a set Σ ⊆ K{y1, . . . , ys} if B is reduced with
respect to every element of Σ.

A set Σ ⊆ K{y1, . . . , ys} is called autoreduced if Σ∩K = ∅
and every element of Σ is reduced with respect to any other
element of this set.

The proof of the following lemma can be found in [5, Chap-
ter 0, Section 17].

Lemma 5.2. Let A be any infinite subset of Nm × Nn

(n ≥ 1). Then there exists an infinite sequence of elements
of A, strictly increasing relative to the product order, in
which every element has the same projection on Nn.

As a consequence, we obtain the following statement.

Lemma 5.3. Let S be any infinite set of terms λyj (λ ∈
Λ, 1 ≤ j ≤ s) in K{y1, . . . , ys}. Then there exists an index
j and an infinite sequence of terms λ1yj , λ2yj , . . . , λkyj , . . .
such that λk|λk+1 for every k = 1, 2, . . . .

Proposition 5.4. Every autoreduced set is finite.

Proof. Suppose that Σ is an infinite autoreduced subset
of K{y1, . . . , ys}. Then Σ must contain an infinite set Σ′

whose ∆-σ-polynomials have different σ-leaders similar to
each other. Indeed, if it is not so, then Σ contains an infinite
set Σ1 whose ∆-σ-polynomials have the same σ-leader v. By
Lemma 5.2, the infinite set{(

ord1 u
(1)
A , . . . , ordp u

(p)
A

)
|A ∈ Σ1

}
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contains a nondecreasing infinite sequence

(ord1 u
(1)
A1
, . . . , ordp u

(p)
A1

) ≤P (ord1 u
(1)
A2
, . . . , ordp u

(p)
A2

) ≤P . . .

(A1, A2, · · · ∈ Σ1 and ≤P denotes the product order on Np).
Since the sequence

{degvAi
Ai|i = 1, 2, . . . }

cannot be strictly decreasing, there are two indices i and j
such that i < j and degvAi

Ai ≤ degvAj
Aj . We see that Aj

is not reduced with respect to Ai that contradicts the fact
that Σ is an autoreduced set.

Thus, we can assume that all ∆-σ-polynomials in Σ have
distinct σ-leaders similar to each other. Then (see Lemma 5.3)
there exists an infinite sequence B1, B2, . . . of elements of

Σ such that vBi |vBi+1 and
(
vBi+1
vBi

)
∆
6= 1 (i = 1, 2, . . . ). Let

kij = ordj vBi and lij = ordj u
(j)
Bi
, 1 ≤ j ≤ p.

Then lij ≥ kij , so that

{(li1 − ki1, . . . , lip − kip)|i = 1, 2, . . . } ⊆ Np.

By Lemma 5.2, there exists an infinite sequence of indices
i1 < i2 < . . . such that (li11 − ki11, . . . , li1p − ki1p) ≤P
(li21−ki21, . . . , li2p−ki2p) ≤P . . . . Then for any j = 1, . . . , p,
we have

ordj

(
vBi2
vBi1

u
(j)
Bi1

)
= ki2j − ki1j + li1j ≤ li2j = ordj u

(j)
Bi2

,

so that Bi2 contains a term λvBi1 = vBi2 with λ∆ 6= 1 and

ordj
(
λu

(j)
Bi1

)
≤ ordj u

(j)
Bi2

, j = 1, . . . , p.

Thus, Bi2 is reduced with respect to Bi1 that contradicts
the fact that Σ is an autoreduced set.

Throughout the rest of the paper, while considering and au-
toreduced set Σ = {A1, . . . , Ad} in K{y1, . . . , ys}, we always
assume that rkA1 < · · · < rkAd.

The proof of the following statement is similar to the proof
of Theorem 3.5.27 in [6].

Proposition 5.5. Let Σ = {A1, . . . , Ad} be an autore-
duced set in K{y1, . . . , ys} and let Ik and Sk denote the
initial and separant of Ak, respectively. Let I(Σ) = {X ∈
K{y1, . . . , ys} |X = 1 or X is a product of finitely many ele-
ments of the form γ(Ik) and γ′(Sk) where γ, γ′ ∈ Λσ}. Then
for any ∆-σ-polynomial B, there exist B0 ∈ K{y1, . . . , ys}
and J ∈ I(Σ) such that B0 is reduced with respect to Σ and
JB ≡ B0 mod [Σ] (that is, JB −B0 ∈ [Σ]).

With the notation of the last proposition, we say that the
∆-σ-polynomial B reduces to B0 modulo Σ.

Definition 5.6. Let Σ = {A1, . . . , Ad} and Σ′ = {B1, . . . ,
Be} be two autoreduced sets in K{y1, . . . , ys}. Then Σ is
said to have lower rank than Σ′ if one of the following two
cases holds:

(i) There exists k ∈ N such that k ≤ min{d, e}, rkAi =
rkBi for i = 1, . . . , k − 1 and rkAk < rkBk.

(ii) d > e and rkAi = rkBi for i = 1, . . . , e.
If d = e and rkAi = rkBi for i = 1, . . . , d, then Σ is said

to have the same rank as Σ′.

As in [5, Chapter I, Section 9], we obtain the following
proposition.

Proposition 5.7. In every nonempty family of autore-
duced sets of difference-differential polynomials there exists
an autoreduced set of lowest rank.

Let J be any ideal of K{y1, . . . , ys}. Since the set of all
autoreduced subsets of J is not empty (if A ∈ J , then {A} is
an autoreduced subset of J), the last statement shows that
J contains an autoreduced subset of lowest rank. Such an
autoreduced set is called a characteristic set of the ideal J .
The following statement can be obtained by mimicking the
proof of Lemma 8 in [5, Chapter I].

Proposition 5.8. Let Σ = {A1, . . . , Ad} be a character-
istic set of a ∆-σ-ideal J of the ring R = K{y1, . . . , ys}.
Then an element B ∈ R is reduced with respect to the set Σ
if and only if B = 0.

Since for any A ∈ K{y1, . . . , ys} and γ ∈ Λσ, ordi(γA) =
ordiA for i = 1, . . . , p, one can introduce the concept of a co-
herent autoreduced set of a linear ∆-σ-ideal of K{y1, . . . , ys}
(that is, a ∆-σ-ideal generated by a finite set of linear ∆-σ-
polynomials) in the same way as it is defined in the case of
difference polynomials (see [6, Section 6.5]): an autoreduced
set Σ = {A1, . . . , Ad} ⊆ K{y1, . . . , ys} consisting of linear
∆-σ-polynomials is called coherent if it satisfies the following
two conditions:

(i) λAi reduces to zero modulo Σ for any λ ∈ Λ, 1 ≤ i ≤ d.
(ii) If vAi ∼ vAj and w = λvAi = λ′vAj , where λ ∼ λ′ ∼

vAi ∼ vAj , then the ∆-σ-polynomial

(λ′IAj )(λAi)− (λIAi)(λ
′Aj)

reduces to zero modulo Σ.
The following two propositions can be proved precisely in

the same way as the corresponding statements for difference
polynomials, see [6, Theorem 6.5.3 and Corollary 6.5.4]).

Proposition 5.9. Any characteristic set of a linear ∆-
σ-ideal of K{y1, . . . , ys} is a coherent autoreduced set. Con-
versely, if Σ is a coherent autoreduced set in K{y1, . . . , ys}
consisting of linear ∆-σ-polynomials, then Σ is a character-
istic set of the linear ∆-σ-ideal [Σ].

Proposition 5.10. Let us consider a partial order 4 on
K{y1, . . . , ys} such that A 4 B if and only if vA|vB. Let A
be a linear ∆-σ-polynomial in K{y1, . . . , ys}, A /∈ K. Then
the set of all minimal with respect to 4 elements of the set
{λA |λ ∈ Λ} is a characteristic set of the ∆-σ-ideal [A].

Now we are ready to prove Theorem 3.1.

Proof. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension
of K generated by a finite set η = {η1, . . . , ηs}. Then there
exists a natural ∆-σ-homomorphism Υη of the ring of ∆-
σ-polynomials K{y1, . . . , ys} onto K{η1, . . . , ηs} such that
Υη(a) = a for any a ∈ K and Υη(yj) = ηj for j = 1, . . . , s.
(If A ∈ K{y1, . . . , ys}, then Υη(A) is called the value of A at
η; it is denoted by A(η).) Obviously, the kernel P of the ∆-
σ-homomorphism Υη is a prime ∆-σ-ideal of K{y1, . . . , ys}.
This ideal is called the defining ideal of η over K or the
defining ideal of the extension L = K〈η1, . . . , ηs〉.

It is easy to see that the quotient ∆-σ-field of the factor
ring R̄ = K{y1, . . . , ys}/P is naturally ∆-σ-isomorphic to
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the field L. The corresponding isomorphism is identity on
K and maps the images of the ∆-σ-indeterminates y1, . . . , ys
in the factor ring R̄ to the elements η1, . . . , ηs, respectively.

Let Σ = {A1, . . . , Ad} be a characteristic set of P and for
any r1, . . . , rp+1 ∈ N, let
Ur1...rp+1 = {u ∈ ΛY | ordi u ≤ ri for i = 1, . . . , p, ordσ u ≤

rp+1, and either u is not a multiple of any vAi or for every
λ ∈ Λ, A ∈ Σ such that u = λvA and λ ∼ vA, there exists

j ∈ {1, . . . , p} such that ordj(λu
(j)
A ) > rj}.

Applying the arguments of the proof of Theorem 6 in [5,
Chapter II], we obtain that the set

Ūr1...rp+1 =
{
u(η) | u ∈ Ur1...rp+1

}
is a transcendence basis of K

( n⋃
j=1

Λ(r1, . . . , rp+1)ηj
)

over K.

Let U
(1)
r1...rp+1 = {u ∈ ΛY | ordi u ≤ ri for i = 1, . . . , p,

ordσ u ≤ rp+1, and u is not a multiple of any vAj , j =
1, . . . , d} and let

U
(2)
r1...rp+1 = {u ∈ ΛY | ordi u ≤ ri, ordσ u ≤ rp+1 for i =

1, . . . , p and there exists at least one pair i, j (1 ≤ i ≤ p, 1 ≤
j ≤ d) such that u = λvAj , λ ∼ vAj , and ordi(λu

(i)
Aj

) > ri}.
Clearly,

Ur1...rp+1 = U (1)
r1...rp+1 ∪ U

(2)
r1...rp+1

and

U (1)
r1...rp+1 ∩ U

(2)
r1...rp+1 = ∅.

By Theorem 4.6, there exists a numerical polynomial φ ∈
Q[t1, . . . , tp+1] such that

φ(r1, . . . , rp+1) = CardU (1)
r1...rp+1

for all sufficiently large (r1, . . . , rp+1) ∈ Np+1, degti φ ≤ mi

(1 ≤ i ≤ p), and degtp+1
φ ≤ n. Repeating the arguments

of the proof of Theorem 4.1 of [9], we obtain that there is
a linear combination ψ(t1, . . . , tp+1) of polynomials of the
form (6) such that

ψ(r1, . . . , rp+1) = CardU (2)
r1...rp+1

for all sufficiently large (r1, . . . , rp+1) ∈ Np+1. Then the
polynomial

Φη(t1, . . . , tp+1) = φ(t1, . . . , tp+1) + ψ(t1, . . . , tp+1)

satisfies conditions (i) and (ii) of Theorem 3.1.
In order to prove the last part of the theorem, suppose

that ζ = {ζ1, . . . , ζq} is another system of ∆-σ-generators of
L/K, that is, L = K〈η1, . . . , ηs〉 = K〈ζ1, . . . , ζq〉. Let

Φζ =

m1∑
i1=0

. . .

mp∑
ip=0

n∑
ip+1=0

bi1...ip+1

(
t1 + i1
i1

)
. . .

(
tp+1 + ip+1

ip+1

)

be the dimension polynomial of L/K associated with the
system of generators ζ. Then there exist positive integers
h1, . . . , hp+1 such that

ηi ∈ K

(
q⋃
j=1

Λ(h1, . . . , hp+1)ζj

)
and

ζk ∈ K

(
s⋃
j=1

Λ(h1, . . . , hp+1)ηj

)

for any i = 1, . . . , s and k = 1, . . . , q, whence

Φη(r1, . . . , rp+1) ≤ Φζ(r1 + h1, . . . , rp+1 + hp+1)

and

Φζ(r1, . . . , rp+1) ≤ Φη(r1 + h1, . . . , rp+1 + hp+1)

for all sufficiently large (r1, . . . , rp+1) ∈ Np+1. Now the
statement of the third part of Theorem 3.1 follows from
the fact that for any element (k1, . . . , kp+1) ∈ E′η, the term(
t1+k1
k1

)
. . .
(
tp+1+kp+1

kp+1

)
appears in Φη and Φζ with the same

coefficient ak1...kp+1 . The equality of the coefficients of the
corresponding terms of total degree d = deg Φη in Φη and
Φζ can be shown as in the proof of [10, Theorem 3.3.21].

The result of Theorem 3.1 can be generalized to the case
when both sets of basic operators ∆ and σ are represented as
unions of disjoint subsets. The proof is, however, essentially
longer; the author will present the generalized version of
Theorem 3.1 in his forthcoming paper.

Example 5.11. Let us find the ∆-σ-dimension polyno-
mial that expresses the strength of the difference-differential
equation

∂2y(x1, x2)

∂x2
1

+
∂2y(x1, x2)

∂x2
2

+y(x1+h, x2)+a(x1, x2) = 0 (7)

over some ∆-σ-field of functions of two real variables K,
where the basic set of derivations ∆ = {δ1 = ∂

∂x1
, δ2 = ∂

∂x2
}

has the partition ∆ = {δ1} ∪ {δ1} and σ consists of one
automorphisms α : f(x1, x2) 7→ f(x1 + h, x2) (h ∈ R).

In this case, the associated ∆-σ-extension K〈η〉/K is ∆-
σ-isomorphic to the field of fractions of

K{y}/[αy + δ2
1y + δ2

2y + a]

(a ∈ K corresponds to the function a(x1, x2)). Applying
Proposition 5.10, we obtain that the characteristic set of the
defining ideal of K〈η〉/K consists of the ∆-σ-polynomials

g1 = αy + δ2
1y + δ2

2y + a

and

g2 = α−1g1 = α−1δ2
1y + α−1δ2

2y + y + α−1(a).

With the notation of the proof of Theorem 3.1, the ap-
plication of the procedure described in this proof, Theo-
rem 4.6(iii), and formula (5) leads to the following expres-

sions for the numbers of elements of the sets U
(1)
r1r2r3 and

U
(2)
r1r2r3 :

CardU (1)
r1r2r3 = r1r2 + 2r2r3 + r1 + r2 + 2r3 + 1

and

CardU (2)
r1r2r3 = 4r1r3 + 2r2r3 − 2r3

for all sufficiently large (r1, r2, r3) ∈ N3. Thus, the strength
of equation (7) corresponding to the given partition of the
basic set of derivations is expressed by the ∆-σ-polynomial

Φη(t1, t2, t3) = t1t2 + 4t1t3 + 4t2t3 + t1 + t2 + 1.

Example 5.12. Let K be a ∆-σ-field where the basic set
of derivations ∆ = {δ1, δ2} is considered together with its
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partition ∆ = {δ1} ∪ {δ2} and σ = {α} for some automor-
phism α of K. Let L = K〈η〉 be a ∆-σ-field extension with
the defining equation

δa1δ
b
2α

cη + δa1δ
b
2α
−cη + δa1δ

b+c
2 η + δa+c

1 δb2η = 0 (8)

where a, b, and c are positive integers. Let Φη(t1, t2, t3)
denote the corresponding difference-differential dimension
polynomial (which expresses the strength of equation (8)
with respect to the given partition of ∆). In order to com-
pute Φη, notice, first , that the defining ∆-σ-ideal P of the
extension L/K is the linear ∆-σ-ideal of K{y} generated by
the ∆-σ-polynomial

f = δa1δ
b
2α

cy + δa1δ
b
2α
−cy + δa1δ

b+c
2 y + δa+c

1 δb2y.

By Proposition 5.10, the characteristic set of P consists of
f and α−1f = α−(c+1)δa1δ

b
2y + δa1δ

b
2α

c−1y + δa1δ
b+c
2 α−1y +

δa+c
1 δb2α

−1y. The procedure described in the proof of Theo-
rem 3.1 shows that

CardU (1)
r1r2r3 = φA(r1, r2, r3)

for all sufficiently large (r1, r2, r3) ∈ N3, where φA is the
dimension polynomial of the set

A = {(a, b, c), (a, b,−(c+ 1) )} ⊆ N2 × Z.

Applying Theorem 4.6(iii), and formula (5) we obtain that
φA(t1, t2, t3) = 2ct1t2 + 2bt1t3 + 2at2t3 + (b+ 2c− 2bc)t1 +
(a+ 2c− 2ac)t2 + (2a+ 2b− 2ab)t3 + a+ b+ 2c− ab− 2ac−
2bc+2abc. The computation of CardU

(2)
r1r2r3 with the use of

the method of inclusion and exclusion described in the proof
of Theorem 3.1 yields the following:

CardU (2)
r1r2r3 = (2r3−2c+1)[c(r2−b+1)+c(r1−a+1)−c2]

for all sufficiently large (r1, r2, r3) ∈ N3. Therefore, the ∆-
σ-dimension polynomial that expresses the strength of equa-
tion (8), is as follows.

Φη = 2ct1t2 +2(b+c)t1t3 +2(a+c)t2t3 +(b+3c−2bc−c2)t1

+(2a+2b+4c−2ab−2ac−2bc−2c2)t3+a+b+4c−ab−3ac−3bc

+(a+ 3c− 2ac− 2c2)t2 + +2abc+ 2ac2 + 2bc2 + 2c3 − 5c2.

The computation of the univariate ∆-σ-dimension polyno-
mial (see Theorem 2.1) via the method of Kähler differentials
described in [6, Section 6.5] (by mimicking Example 6.5.6 of
[6]) leads to the following result:

φη|K(t) =
D

2
t2 − D(D − 2)

2
t+

D(D − 1)(D − 2)

6
(9)

where D = a + b + c. In this case the polynomial φη|K(t)
carries just one invariant a+b+c of the extension L/K while
Φη(t1, t2, t3) determines three such invariants: c, b+ c, and
a+ c (see Theorem 3.1(iii)), that is, Φη determines all three
parameters a, b, c of the defining equation while φη(t) gives
just the sum of these parameters.

The extension K〈ζ〉/K with a ∆-σ-generator ζ, the same
basic set ∆ ∪ σ (∆ = {δ1, δ2}, σ = {α}), the same partition
of ∆ and defining equation

δa+b
1 αcζ + δa+b

2 α−cζ = 0 (10)

has the same univariate difference-dimension polynomial (9).
However, its ∆-σ-dimension polynomial is not only different,

but also has different invariants described in part (iii) of
Theorem 3.1:

Φζ = 2ct1t2 +2(a+b)t1t3 +2(a+b)t2t3 +At1 +Bt2 +Ct3 +E

where A = B = (a+ b)(1− 2c) + 2c, C = 2[1− (a+ b− 1)2],
and E = 1 + 2c(a+ b− 1)2.

Two systems of algebraic difference-differential (∆-σ-) equa-
tions with coefficients in a ∆-σ-field K are said to be equiva-
lent if there is a ∆-σ-isomorphism between the ∆-σ-field ex-
tensions of K with these defining equations, which is identity
on K. Our example shows that using a partition of the basic
set of derivations and the computation of the corresponding
multivariate ∆-σ-dimension polynomials, one can determine
that two systems of ∆-σ-equations (see systems (8) and (10))
are not equivalent, even though they have the same univari-
ate difference-dimension polynomial.
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