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ABSTRACT
We present a new heuristic algorithm for computing the de-
terminant of a nonsingular n× n integer matrix. Extensive
empirical results from a highly optimized implementation
show the running time grows approximately as n3 logn, even
for input matrices with a highly nontrivial Smith invariant
structure. We extend the algorithm to compute the Her-
mite form of the input matrix. Both the determinant and
Hermite form algorithm certify correctness of the computed
results.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematical Software]: Algorithm Design
and Analysis; F.2.1 [Analysis of Algorithms and Prob-
lem Complexity]: Numerical Algorithms and Problems
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1. INTRODUCTION
Computing the exact integer determinant of a nonsingu-

lar integer matrix A ∈ Zn×n is a classical problem. The
problem provides a “canonical” example of a key feature
of symbolic computation: the growth in bitlength of num-
bers in the output compared to those in the input. On
the one hand, if we let ||A|| = maxij |Aij |, then consid-
ering a diagonal input matrix we see that we may have
log | detA| ≥ n log ||A||. On the other hand, Hadamard’s
bound gives that log | detA| ≤ (n/2) logn+n log ||A||. Thus,
the bitlength of the determinant can be up to n times that
of entries in the input matrix. Textbooks on computational
mathematics often use the problem of computing the de-
terminant to illustrate the technique of homomorphic imag-
ing and Chinese remaindering: this gives a deterministic
algorithm to compute detA using O(n4(logn + log ||A||)2)
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bit operations, even assuming standard, quadratic, integer
arithmetic.

A lot of effort has been devoted to obtaining improved
upper bounds for the complexity of computing detA. We
will not give a complete survey here but refer to [9, 10, 17].
An initial breakthrough was Kaltofen’s 1992 [8] division free
algorithm to compute the determinant of a matrix over a
ring: the algorithm can be adapted to compute detA in
O (̃n3.5 log ||A||) bit operations. High-order lifting and inte-
grality certification [17] can be used to compute the determi-
nant in about the same time (asymptotically, up to logarith-
mic factors) as required to multiply together two matrices
having the same dimension and size of entries as A, thus
in O (̃n3 log ||A||) bit operations assuming standard matrix
multiplication and pseudo-linear integer arithmetic. While
the algorithm in [17] does achieve the important so called
“reduction to matrix multiplication” goal, it does not make
an attractive candidate for implementation as it is presented
because the constant suppressed by the O˜ notation seems
very large. For example, the algorithm begins by embed-
ding the input matrix into a matrix of more than twice the
dimension which has many entries chosen randomly. The
algorithm we describe in this paper also relies on high-order
lifting but does not require an increase in the dimension.

The heuristic determinant algorithm of Abbot, Bronstein
& Mulders [1] is based on the well-known phenomenon that
the largest invariant factor of the matrix (the smallest posi-
tive integer sn such that snA

−1 is integral) is a factor of the
determinant that is often very large. For randomly chosen
v1, v2 ∈ Zn×2, the minimal s ∈ Z>0 such that both sA−1v1
and sA−1v2 are integral is likely to be equal to sn, or at least
a large factor, thus decreasing the number of images of the
determinant that need to be computed using the classical
Chinese remainder based determinant algorithm mentioned
above. Consider the following nonsingular input matrix.

A =


33 8 −50 45 −38
−20 62 39 11 −79
13 −82 −52 −65 −37
−35 −81 3 114 7
−100 14 −114 −22 −10

 . (1)

If we choose

[
v1 v2

]
=


10 45
−16 −81
−9 −38
−50 −18
−22 87
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then

A−1 [ v1 v2
]

=


1428470455
3313087328

43150207
161614016

673936589
2484815496

66351701
121210512

− 1462901509
9939261984

− 516047293
484842048

− 1221838091
9939261984

138504781
484842048

89642859
414135916

18215255
20201752

 .

The denominators of A−1
[
v1 v2

]
have least common

multiple s = 19878523968, which for this example is ac-
tually equal to −detA. But even if the heuristic finds a
large factor or even the complete determinant, the running
time of the method is still quartic in n, even for a random
matrix, because the expected bitlength of the gap between
| detA| and Hadamard’s bound (and thus the bitlength of
the images needed by the homomorphic imaging scheme to
guarantee to compute the correct determinant) is Θ(n) [1,
Section 3].

Eberly, Giesbrecht & Villard [5] relax the requirement that
the determinant should be certified correct, and use additive
preconditioners combined with binary search to get a Monte
Carlo algorithm requiring

O (̃n3(log ||A||)2
√

log | detA|) (2)

bit operations to recover the Smith form (and thus also the
determinant) of A. Recall that the Smith form of A is a di-
agonal matrix S = Diag(s1, s2, . . . , sn) such that S = UAV
for unimodular matrices U and V . Note that | detA| =
s1s2 . . . sn. Using Hadamard’s bound for | detA| in (2) gives
O (̃n3.5(log ||A||)2.5) in the worst case. This last cost es-
timate is quite pessimistic in the average case because the
algorithm is highly sensitive to the Smith invariant struc-
ture of A: for an input matrix with only O(1) nontriv-
ial invariant factors the running time is only O(n3(logn +
log ||A||)2(logn)) bit operations. Moreover, a careful anal-
ysis in [5] shows that an integer matrix with entries chosen
uniformly and randomly from an interval

Λ = {a, a+ 1, . . . , a+ λ− 1} (3)

for any a ∈ Z and λ ∈ Ω(n) is expected to have O(1) non-
trivial invariant factors.

In this paper we describe a new heuristic algorithm for
computing detA that has the following features:

• The algorithm certifies correctness of the computed
determinant.

• The algorithm is especially fast for propitious inputs
(e.g., matrices with few nontrivial invariant factors)
but still seems to work very effectively for matrices
with a highly nontrivial invariant structure.

We can illustrate the main idea of our algorithm by using the
input example in (1). Consider the first random projection
A−1v1. The minimal d1 ∈ Z>0 such that d1A

−1v1 is integral
is d1 = 9939261984, giving us a large factor of detA. But
instead of only using the denominator of A−1v1, we also
use the vector of numerators to produce an upper triangular
basis T1 of a superlattice of the integer lattice generated
by the rows of A. In particular, in Section 2 we give an
algorithm to produce a nonsingular and upper triangular
matrix T1 with minimal magnitude determinant such that

T1A
−1v1 is integral. For this example we obtain

T1 =


1 15 183835840

1 4 294625615
1 1 159758078

24 300295265
414135916

 .
The matrix T1 has positive diagonal entries and the off-
diagonal entries in each column are nonnegative and strictly
less than the diagonal entries in the same column. Recall
that such matrices are said to be in Hermite form, a canon-
ical presentation of row lattices. Continuing with the exam-
ple, we can use the second projection A−1v2 to compute a
second triangular factor T2, the minimal triangular denom-
inator of

T1A
−1v2 =


165758732

1
531308447

2
144048601

1
541532731

2
746825455

2

 . (4)

We obtain

T2 =


1 0

1 1
1 0

1 1
2

 .
Since the rows of T1 generate a superlattice of the lattice
generated by the rows of A, we can remove T1 from A by
computing

B1 = AT−1
1 =


33 8 −50 −18 12
−20 62 39 1 −51
13 −82 −52 5 69
−35 −81 3 40 43
−100 14 −114 64 32

 .
The factor T2 can also be removed to obtain

B2 = B1T
−1
2 =


33 8 −50 −18 11
−20 62 39 1 −57
13 −82 −52 5 73
−35 −81 3 40 42
−100 14 −114 64 −23

 .
Fast unimodularity certification [12] can now be used to cer-
tify that B2 is unimodular (i.e., with determinant ±1). If
B2 is unimodular then (detT1)(detT2) must be, up to sign,
equal to the determinant of A. (Note that if B2 is deter-
mined to be unimodular, the sign of the determinant can be
recovered by computing detB2 mod p for single odd prime
p.) If B2 had not been unimodular then further projections
v3, v4, . . . can be computed and used to find further triangu-
lar matrices T3, T4, . . . which can be factored from the work
matrix. On the one hand, if k is the number of nontrivial
invariant factors in the Smith form of A, then at least k
projections will be required to capture the complete deter-
minant. On the other hand, from the lattice conditioning
analysis of [3] we know k + O(1) projections will be suffi-
cient with high probability. We remark that in [18, 14] a
“bonus idea” method is developed that uses the numerators
of the projections to recover the penultimate invariant factor
in addition to just the last invariant.

A main computational task used in the approach just de-
scribed is to solve nonsingular linear systems to compute
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projections A−1v for some v ∈ Zn×m. The most efficient
algorithms for nonsingular linear system solving are based
on linear p-adic lifting [3, 4, 11]. The simplest variant of lin-
ear p-adic lifting has two phases. The first phase computes
a low precision inverse C := A−1 mod p for a prime p with
log p ∈ Θ(logn + log ||A||). This first phase thus has cost
O(n3(logn+ log ||A|||)2) bit operations assuming standard,
quadratic integer arithmetic. The second phase computes a
truncated p-adic expansion

A−1v ≡ c0 + c1p+ c2p
2 + · · ·+ ck−1p

`−1 mod p`,

each ci ∈ Zn×m with entries reduced modulo p, from which
the rational solution vector can be recovered using ratio-
nal number reconstruction provided the precision ` is high
enough. The required precision depends on the size of nu-
merators and denomininators if A−1v. Computing one of
the terms in the p-adic expansion requires a constant num-
ber of premultiplications with C and A of matrices of di-
mension n × m filled with entries of bitlength O(logn +
log ||A||). Thus, the second phase has cost O(`m×n2(logn+
log ||A||)2). Note that if the required precision k and the
number of projections m satisfy `m ∈ O(n), the overall cost
of producing A−1v is bounded by O(n3(logn + log ||A||)2)
bit operations.

We claimed above that our algorithm is also highly ef-
fective for matrices with nontrivial invariant structure, even
with k ∈ Ω(n) nontrivial Smith invariant factors. However,
the method as sketched above would solve Ω(n) nonsingu-
lar rational systems at full precision, equivalent in cost to
computing the exact inverse of A. Instead of computing the
projection T1A

−1v2 by first computing A−1v2 and then pre-
multiplying by T1, consider computing B−1

1 v2, equal to the
vector in (4). Since the first factor T1 has captured a large
factor of the detA, the denominator of B−1

1 v2 is very small.
It would be desirable to reduce the number of p-adic lifting
steps (the precision `) to be proportional to the bitlength
of information actually contained in the projection, namely
the bitlength of the denominator. We can accomplish this
by first precondtioning the projection with a so called high-
order residue [12]. A high-order residue R of B1 can be
computed in O(n3(logn+ log ||B1||)2(logn)) bit operations,
and has the property that B−1

1 Rv2 will be nearly proper.
For this example, one example of such a high-order residue
is

R =


−15 −15 −15 −15 1
31 31 31 31 6
−47 −47 −47 −47 −4
−30 −30 −30 −30 1
−104 −104 −104 −104 55


with

B−1
1 Rv2 =


− 92

1

− 97
2

− 92
1

− 97
2

− 97
2

 .
The above projection will yield the same triangular factor
T2. Thus, our implementation can effectively exploit the
same bitlength versus dimension paradigm we used for our
worst case determinant algorithm [17]. For example, com-
pute one projection at full precision, two at about half the
precision, four at (at most) a quarter of the precision, etc.

In particular, the p-adic lifting precision ` and the number
of projections m will satisfy `m ∈ O(n) at each phase.

For various reasons, we don’t give a rigorous cost anal-
ysis of our algorithm in this paper. First, a reduction to
matrix multiplication for the problem of computing the de-
terminant has already been given in [17]. Second, a detailed
analysis of most of the key subroutines is already available.
(For nonsingular solving we refer to [4, 11, 17]. For the
high order residue computation see [12].) Third, for the
worst case of the problem, when the Hermite form has many
nontrivial columns, there remain some technical challenges
to overcome to arrive at an algorithm that has expected
running time provably cubic in n, see Section 6. We can,
though, state the following rigorous cost estimate for an im-
portant class of matrices. For an input matrix A ∈ Zn×n

that has a Hermite with only k ∈ O(1) nontrivial columns,
the entire Hermite form can be captured with high proba-
bility using a single random projection of column dimension
O(1). The dominant cost of our algorithm in this case is a
single high-order residue computation to certify correctness.
The expected running time of our algorithm in this case is
O(n3(logn+log ||A||)2(logn)) bit operations assuming stan-
dard integer arithmetic. Moreover, it follows from the proof
of [5, Lemma 6.1] that if entries in A ∈ Zn×n are chosen
uniformly and randomly from an interval

Λ = {a, a+ 1, . . . , a+ λ− 1} (5)

for any a ∈ Z and λ ∈ Ω(n), then the Hermite form of A
has the shape [

In−k ∗
∗

]
where the expected value of k is O(1). Our algorithm is thus
very likely to be effective for random inputs.

The rest of this paper is organised as follows. Section 2
details our procedure for computing the minimal triangular
denominator. Sections 3 and 4 give our algorithms for the
determinant and Hermite normal form, respectively. In Sec-
tion 5, we compare our implementation against implementa-
tions of alternative heuristic Hermite form algorithms [13].
Section 6 concludes.

2. AN ALGORITHM FOR MINIMAL TRI-
ANGULAR DENOMINATOR

Let v ∈ Qn×1. In this section we show how to compute a
nonsingular upper triangular matrix T ∈ Zn×n with minimal
magnitude determinant such that Tv is integral; we call such
a T a minimal triangular denominator of v. Our algorithm
is based on the following lemma.

Lemma 1. Let v ∈ Qn×1 and d ∈ Z>0 be such that w :=
dv is integral. Write the Hermite form of

B :=

[
d
w In

]
∈ Z(n+1)×(n+1) (6)

as [
∗ ∗

H

]
∈ Z(n+1)×(n+1). (7)

Then H ∈ Zn×n is a minimal triangular denominator of v.

Proof. The unique unimodular matrix U that trans-
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forms B to Hermite form is given by

U =

[
∗ ∗

H

] [
d
w In

]−1

=

[
∗d−1 ∗
−Hv H

]
∈ Z(n+1)×(n+1). (8)

Since U is integral the submatrix −Hv shown in (8) is in-
tegral. Now, suppose that T is a minimal triangular de-
nominator of v. Then we could replace H in the definition
of U with T and still arrive at an integral matrix in (8).
Since U is unimodular, with determinant ±1, we must have
| detH| = | detT |.

Let v ∈ Qn×1 and d ∈ Z>0 be such that w := dv is integral,
as in Lemma 1. Let us define the entries of our input vector
w and target H as

w =


w1

w2

...
wn

 and H =


h1 h12 · · · h1n

h2 · · · h2n

. . .
...
hn

 . (9)

The obvious approach to compute a minimal triangular de-
nominator (not necessarily in Hermite form) of v is to simply
apply unimodular row operations to triangularize the input
matrix in (6). To this end, define Gcdex to be the operation
that takes as input a, b ∈ Z and returns as output s, t, v, h, g
such that [

s t
v h

] [
a
b

]
=

[
g
0

]
with sh− tv = ±1 and g a greatest common divisor of a and
b. We further specify that h > 0 and 0 ≤ t < h.

Now, if we compute sn, tn, vn, hn, gn = Gcdex(d,wn), then
the following unimodular transformation of the input matrix
zeroes out the entry occupied by wn.

sn tn
1

. . .

1
vn hn




d
w1 1
...

. . .

wn−1 1
wn 1

 =


gn tn
w1 1
...

. . .

wn−1 1
hn


If we initialize B ∈ Z(n+1)×(n+1) to be the input matrix
in (6), the following loop applies similar transformations to
zero out the entries occupied by wn, wn−1, . . . , w1. After the
loop completes the work matrix B will be upper triangular.

gn+1 := d;
for i = n downto 1 do

si, ti, vi, hi, gi := Gcdex(gi+1, wi);[
B[1, ∗]

B[i+ 1, ∗]

]
:=

[
si ti
vi hi

] [
B[1, ∗]

B[i+ 1, ∗]

]
od

The problem with this approach is that the top row of the
work matrix will fill in and the subsequent application of

the unimodular transformations will become too expensive.
Indeed, at the start of iteration i − 1 the work matrix has
the shape

B =



gi ti · · · ∗
w1 1
...

. . .

wi−1 1
hi · · · ∗

. . .
...
hn


(10)

Instead, we perform the gcd operations only to determine
the diagonal entries hi, for i = n, n− 1, . . . , 1, omitting the
application of the unimodular transformation to the work
matrix. Once the diagonal entries have been precomputed,
the off-diagonal entries h1,i, . . . , hi−1,i in column i of H, now
in increasing order i = 1, 2, . . . , n, are computed by appeal-
ing to the definition of H as the minimal denominator of the
vector w/d.

We begin by initializing w(0) to be the the first column of
the matrix in (6). For some i ≥ 1, suppose the first i − 1
columns of H have been computed. Then considering (10),
we see that the vector

d
w̄1

...
w̄i−1

wi

...
wn


:=



1
h1 · · · h1,i−1

. . .
...
hi

1
. . .

1





d
w1

...
wi−1

wi

...
wn


will have all entries divisible by gi = d/(hihi+1 · · ·hn), which
is a multiple of h1h2 · · ·hi−1. At iteration i the algorithm
works with the vector

w(i−1) :=



d
w̄1

...
w̄i−1

wi

...
wn


1

h1h2 · · ·hi−1
. (11)

We now compute off-diagonal entries h1,i, h2,i, . . . , hi−1,i

to be the unique integers in the range [0, hi) such that the
vector 

1
1 h1,i

. . .
...

1 hi−1,i

hi

. . .

1


w(i−1) (12)

has all entries divisible by hi.
Algorithm hcol, shown in Figure 1, implements the above

method to compute H. Given a nonzero integer b, operation
Rem(a, b) computes the unique integer in the range 0 ≤
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hcol(w, d)
Input: A vector w ∈ Zn×1 and d ∈ Z.
Output: H ∈ Zn×n, a minimal triangular denominator
of w/d.

1. [1. Diagonal entries]
g := d;
for i = n downto 1 do
∗, ti, ∗, hi, g := Gcdex(g, wi)

od;

2. [2. Off-diagonal entries]
for i = 1 to n do

assert:

[
d
w

]
= w(i−1)

if hi = 1 then next fi;
for k = 1 to i− 1 do
hk,i := Rem(−tiwk, hi);
wk := Rem(wk + hk,iwi, d)

od;
wi := hiwi;
d, w := d/hi, w/hi

od;
return H as in (9)

Figure 1: Algorithm hcol

Rem(a, b) < |b| that is congruent to a modulo b. Phase 1
computes the diagonal entries of H. Phase 2 computes the
off-diagonal entries in column i of H for i = 1, . . . , n. The
vector w and modulus d are updated in place. At the start of
loop iteration i the algorithm works with the n+ 1 integers
in w(i−1) as shown in (12). The inner loop and first line after
the inner loop computes the off-diagonal entries in column i
of H and performs the update shown in (12). The last line

removes the common factor hi to arrive at w(i).
To analyse the cost of algorithm hcol we need to introduce

a cost model. The number of bits in the binary representa-
tion of an integer a is given by

lg a =

{
1, if a = 0
1 + blog2 |a|c, if a > 0.

Using standard integer arithmetic [2, Chapter 3], a and b
can be multiplied together in O((lg a)(lg b)) bit operations.
Operation Gcdex also costs O((lg a)(lg b)) bit operations.
For an integer a and nonzero integer b, we can express a =
qb+ r with 0 ≤ r < |b| using O((lg q)(lg b)) bit operations.

Theorem 2. If entries in w ∈ Zn×1 are reduced modulo
d, then algorithm hcol computes the minimal triangular de-
nominator (in Hermite form) of w/d using O(n(log d)2) bit
operations.

Proof. Correctness of the algorithm follows from the
previous discussion.

For the cost analysis, let D denote the initial value of d as
passed into the algorithm. Assume without loss of generality
that D > 1. Phase 1 performs n extended gcd computations
with numbers bounded in magnitude by D. This has cost
bounded by O(n(logD)2) bit operations.

Now consider phase 2. At the start of each loop iterations
all entries in w are reduced modulo d, a divisor of D. Using

the fact that |ti| < hi and |hk,i| < hi, each individual op-
eration from {+,−,×, /,Rem} performed during iteration
i of the loop uses O((lgD)(lg hi)) bit operations. Since the
number of operations from {+,−,×, /,Rem} performed dur-
ing a single iteration of the outer loop is bounded by O(n),
there exists an absolute constant c such that loop iteration
i has cost bounded by cn(lgD)(lg hi) bit operations. Let
L = {i | hi > 1}. Then the total cost of phase 2 is bounded
by∑

i∈L

cn(lgD)(lg hi) ≤ cn(1 + log2D)
∑
i∈L

(1 + log2 hi)

≤ cn(2 log2D)(2
∑
i∈L

log2 hi)

= 4cn(log2D)(log2 h1h2 · · ·hn)

≤ 4cn(log2D)(log2D).

We remark that our determinant algorithm will call hcol
with a sequence of vectors that have denominator d1, . . . , dk
with d1 · · · dk = | detA|. The total cost of all calls to hcol

will thus be bounded by O(n(log | detA|)2) bit operations,
which becomes O(n3(logn + log ||A||)2) in the worst case
using Hadamard’s bound for | detA|.

3. THE PROJECTION METHOD FOR DE-
TERMINANT

[1. Initialization]
R := I
d := 1

[2. Projection]
Random v ∈ Zn×k

X := A−1Rv

[3. Tri. denominator]
Xi := ith column of X

x := Ti−1 . . . T2T1Xi

di := denom(x)

Ti := hcol(dix mod di, di)

[4. Extraction]
d := dd1d2 . . . dk

A := AT−1
1 T−1

2 . . . T−1
k

[5. Verification]
R := hor(A)

return d

if R = 0

for i = 1..k

Figure 2: Overview of determinant algorithm.

Figure 2 gives a high-level overview of our determinant
algorithm. The first phase uses a highly-optimized imple-
mentation of p-adic linear system solving [3] to compute
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X = A−1v, a projection of the inverse A−1 for a random
block of vectors v ∈ Zn×k. The procedure described in the
previous section computes minimal triangular denominators
Ti such that TiTi−1 · · ·T1 is a minimal triangular denomi-
nator of the first i columns of X, i = 1, 2, . . . , k. The factor
Tk · · ·T2T1 is next extracted from the input by updating A as
A := AT−1

1 T−1
2 · · ·T−1

k . Finally, to check the completeness
of the determinant extracted thus far, a high-order residue
R is computed by the method of double-plus-one lifting [12]
(denoted hor in Figure 2). If this check fails, a new random
block of vectors is chosen and the process repeats.

We note that the above algorithm is randomized in the
Las Vegas sense: the output is always correct, but the num-
ber of iterations required to produce that output may vary.
In the case of generic matrices, the computation of the high
order residue (the “Verification” phase in Figure 2) serves
only to verify the correctness of the result. Omitting this
verification step, then, yields a faster Monte Carlo random-
ized algorithm: one that computes the determinant from a
single projection with high probability.

4. EXTENSION TO HERMITE FORM

[1. Initialization]
B := A
H := I
R := I

[2. Projection]
Random v ∈ Zn×k

X := B−1Rv

[3. Tri. denominator]
Xi := ith column of X

x := Ti−1 . . . T2T1Xi

di := denom(x)

Ti := hcol(dix mod di, di)

[4. Extraction]
H := hermite(Tk · · ·T2T1H)

B := AH−1

[5. Verification]
R := hor(B)

return d

if R = 0

for i = 1..k

Figure 3: Overview of Hermite form algorithm.

A conceptually straightforward extension of the projec-
tion method allows the recovery of the entire Hermite form.
Figure 3 gives an overview. The Hermite form algorithm dif-
fers from the preceding determinant algorithm only in the
“extraction” phase.

In the determinant algorithm, the triangular denomina-
tors are repeatedly extracted from the same matrix in place
(i.e., A := AT−1

1 . . . T−1
k ) and then discarded. Here, each

set of Ti is combined into a single work matrix H (i.e.,
H := Tk . . . T1H) which eventually contains the Hermite
form of A. This process may cause growth in the off-diagonal
entries of H. A special Hermite normal form algorithm [16]
(denoted hermite in Figure 3) for triangular matrices pro-
vides an efficient scheme for appropriately reducing the off-
diagonal entries.

Additionally, H must be extracted from the original input
matrix — not a work matrix — at each stage. That is, A is
not updated in-place; rather, the subsequent projection and
verification phases operate on B := AH−1.

The additional cost required to combine the minimal tri-
angular denominators and extract them from the input ma-
trix complicates attempts to obtain a strong result for the
asymptotic complexity of the algorithm. Even if there are
very few invariant factors, the Hermite form may have many
non-trivial columns in the worst case.

5. IMPLEMENTATION
Although the Hermite normal form algorithm of the pre-

vious section is not asymptotically optimal, empirical tests
with a careful C implementation bear out its effectiveness in
practice.

Our implementation relies on several existing, highly ef-
ficient libraries. Nonsingular system solving is provided by
the Integer Matrix Library (IML) [3]. Additional routines
not available elsewhere (algorithm hcol, for one) are imple-
mented in terms of the integer arithmetic routines of the
GNU Multi-Precision Arithmetic (GMP) library [6]. The
algorithm and implementation presented in [12] gives a rou-
tine for computing the high-order residue.

The projection-based method for extracting the invariant
structure is sensitive to the number of non-trivial invariant
factors. A matrix with many non-trivial invariant factors
requires the computation of many projections. However, as
generic matrices are expected to have very few non-trivial
invariant factors - and often only one - the practical perfor-
mance of the algorithm in the common case is very good.
Typically, only a single projection is required to extract the
entirety of the invariant structure.

Yet, while the projection method performs most dramat-
ically on generic matrices, the algorithm can also be effec-
tively applied to matrices specifically constructed to have
many non-trivial invariant factors and, in turn, highly non-
trivial Hermite and Smith forms. This implementation is
robust in its ability to handle all input matrices without
making undue concessions to either the common or excep-
tional cases. No special manual tuning is used to better
handle any particular case.

We discuss some specific implementation concerns below.

Projection size.
The column dimension k of the random v ∈ Zn×k used

to compute the projection x := A−1v (cf. the “Projection”
phase in figure 3) may be varied from one iteration to the
next. Choosing a value for k, the size of the projection, is an
inexact process driven mostly by empirical observation. A
reality of the lifting-based linear system solving algorithms,
like those in IML, is that the cost of initialization can meet
or surpass the cost of the lifting steps themselves. Indeed, to
cover a wide range of inputs, IML has been tuned to balance
the cost of initialization with the cost of lifting. The rele-
vant consequence here, then, is that the cost of computing
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a projection of multiple columns is negligibly more than the
cost of working with a single column.

Preliminary observations suggest that an initial projection
of eight columns works well. Eight columns are sufficient to
capture all invariant factors in the case of a random matrix
without being prohibitively more costly than working with
a single column.

Subsequent iterations can use much larger projections as
the largest invariant factors will have already been extracted
and, consequently, the system can be solved at a much lower
precision. The scheme used in this implementation is some-
what coarse, but effective. The second iteration uses a pro-
jection of n/10 columns; the third iteration uses a projection
of n columns. Additionally, rather than a randomly chosen
matrix, the third iteration uses the identity matrix. This
guarantees that only three iterations are ever required and
obviates a final high-order residue computation to certify
the result.

It is perhaps possible to choose the size of projections
adaptively, based on the size of the denominator of the pre-
vious projection (or, even better, based on the expected size
of the next one). If the previous denominator is larger than
expected, the next denominator may be relatively small and,
thus, the next projection could be made larger without in-
curring much additional cost. An adaptive scheme of this
sort would require quantifying, perhaps only in a heuristic
sense, the expected size of the invariant factors extracted at
each iteration.

Combining slices.
As each projection yields a portion of the Hermite form

corresponding to only a few invariant factors, combining
these “slices” involves operations on highly structured ma-
trices. Generally, the non-zero elements of these matrices
are confined to only a few columns. Thus, storing only the
non-trivial columns immediately improves both the time and
space requirements. Two operations — multiplication and
reduction to Hermite form — are implemented for matri-
ces in this packed representation. Both operations use ex-
isting algorithms modified to concern themselves with only
the non-trivial columns: the former is based on classical ma-
trix multiplication while the latter uses an algorithm for the
Hermite form for triangular matrices [16].

Experimental results.
Two classes of matrices are used to illustrate the perfor-

mance of the implementation at both extremes of the spec-
trum of input matrices.

Firstly, to test the implementation on the generic case,
we use matrices with random 8-bit entries; these results are
shown in Table 1. Each of the random matrices used in Table
1 had three or fewer non-trivial elements on the diagonal of
the Hermite form. As expected, only a single projection was
required in each case.

Following the example of Jäger and Wagner [7], we use
the following class of matrices to test performance on inputs
with many non-trivial invariant factors:

An = [ai,j ] with ai,j = (i− 1)j−1 mod n for 1 ≤ i, j ≤ n

If n is prime, An is nonsingular, typically has more than n/2
non-trivial invariant factors, and sn is very large relative to
n. For instance, A113 has 72 non-trivial invariant factors,
the largest of which is 253 bits in length. In addition to

having the desired structural properties, An can be quickly
and straightforwardly constructed, allowing for consistent
comparisons between implementations. Results for the An

matrices are shown in Table 2.
The following tables summarize the experimental results.

These timings were made on an “M1 Medium” Amazon EC2
instance with 3.75 GiB RAM and a 64-bit Intel Xeon E5-
2650 at 2GHz. The software was compiled with GCC 4.6.3
and linked against IML 1.0.3, ATLAS 3.10.1, and GMP
5.1.1.

Sage 5.5 [15], compiled from source and run on the same
machine, provides a point of comparison for our implemen-
tation. For matrices of the size considered here, Sage uses
a modular algorithm [13] most effective in the random case.
Our implementation compares favourably with Sage.

n time (s)
iherm Sage

100 0.09 0.635
200 0.42 2.25
400 3.08 12.2
800 22.5 81.1
1600 171 681
3200 1625

n time (s)
iherm Sage

125 0.14 0.844
250 0.75 3.83
500 5.66 24.7
1000 42.0 152
2000 348 1365
4000 3214

Table 1: Time to compute Hermite form of random
n× n matrix with 8-bit entries.

For random matrices (Table 1), the computation time
grows roughly as n3 logn. That is, doubling the input di-
mension increases the cost by a factor of slightly less than
nine. The fit is not perfect, however: smaller inputs slightly
outperform expectations while larger inputs are slightly un-
derperforming. For instance, the ratio between results for
n = 4000 and n = 2000 is greater than nine, but is near
seven between n = 1000 and n = 500. Smaller input ma-
trices may be taking advantage of some beneficial machine-
specific cache effects.

n k time (s)
iherm Sage

101 56 0.52 1.13
211 118 2.91 19.4
401 266 18.6 531
809 503 118
1601 1060 831

n k time (s)
iherm Sage

127 77 0.83 2.24
251 132 5.90 44.6
503 252 32.0 1520
1009 663 221
2003 1041 1410

Table 2: Time to compute Hermite form of An with
k non-trivial invariant factors.

For inputs with many non-trivial invariant factors (Table
2), the empirical timings again grow roughly as n3 logn.
Although the algorithm runs much faster overall on generic
inputs, the rate of growth exhibited by the timings is the
same for both types of inputs.
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6. CONCLUSIONS AND FUTURE WORK
Although experiments demonstrate excellent performance

in practice, we do not provide a worst-case cost analysis for
our Hermite normal form algorithm. There are two essen-
tial roadblocks. Firstly, repeatedly combining the results of
hcol may, in the worst-case, be costly; there is the potential
for expressions swell, and while each minimal triangular de-
nominator has few non-trivial columns in practice, this need
not always be the case. Secondly, preliminary analysis sug-
gests that in the worst case the entries in AH−1 can have
n more bits compared to the entries in A. However, this
growth has not been observed in practice, even for matrices
with highly non-trivial Hermite forms.

The algorithm for Hermite normal form given here can
be extended to one for Smith normal form. An efficient
algorithm for finding the Smith normal form of a triangular
input matrix is given in [16]; this algorithm can be directly
applied to the result of our Hermite form computation.
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