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ABSTRACT
In this paper we extend complex homotopy methods to find-
ing witness points on the irreducible components of real va-
rieties. In particular we construct such witness points as the
isolated real solutions of a constrained optimization problem.

First a random hyperplane characterized by its random
normal vector is chosen. Witness points are computed by
a polyhedral homotopy method. Some of them are at the
intersection of this hyperplane with the components. Other
witness points are the local critical points of the distance
from the plane to components. A method is also given for
constructing regular witness points on components, when
the critical points are singular.

The method is applicable to systems satisfying certain reg-
ularity conditions. Illustrative examples are given. We show
that the method can be used in the consistent initialization
phase of a popular method due to Pryce and Pantelides for
preprocessing differential algebraic equations for numerical
solution.
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1. INTRODUCTION
This article is a contribution to the development of nu-

merical algorithms for real computational algebraic geome-
try, and the extension of such methods to systems of real
differential polynomials.

It is motivated by recent progress and numerical algo-
rithms for complex algebraic geometry, and in particular the
blossoming area of numerical algebraic geometry pioneered
by Sommese, Wampler, Verschelde and others. See the book
[22] and also [2] for references. Recent progress in extending
such methods to the real case are by Lu [17] and Besana et
al. [3]. Of particular interest and closest to this paper is the
recent work of Hauenstein [11]. Our work is also motivated
by progress in symbolic methods for determining features of
real solutions of general real polynomial systems (e.g. see
[19]).

In this paper we give a numerical method for computing
solution (witness) points on each real connected component
for real polynomial systems satisfying certain regularity con-
ditions. Given a random vector n the method computes local
critical points of the distance of a hyperplane to the compo-
nent in the direction n. A method for regularizing singular
critical points is also given. This method takes advantage of
the availability of efficient homotopy solvers which exploit
sparsity and structure of the polynomial system [14].

The real solving method we describe in this paper is ap-
plied to the consistent initialization step of the Pryce-Pante-
lides method [25, 18] for preprocessing differential algebraic
equations (dae) for numerical solution. The Pryce-Pante-
lides method is successful under certain regularity condi-
tions (in particular that certain system Jacobians are non-
singular). Though not guaranteed the success rate is high
enough that it has been implemented in a number of prob-
lem solving environments. For example it is the first method
of choice in Maple’s dae solving environment MapleSim (see
[25] for references).

The Pryce-Pantelides method takes as input a square sys-
tem of dae (i.e. the number of equations and unknowns are
equal) and consists of a differentiation (prolongation) step
and a consistent initialization step.

The prolongation step involves solving an optimization
problem. The results are used to determine which higher
order derivatives of equations in the system should be ap-
pended to the original dae system, to form an prolonged sys-
tem of dae, that implicitly includes its missing constraints.
For background references and interpretation in terms of dif-
ferential elimination theory see our paper [25]. For example
as shown in [25] the optimization corresponds to the choice
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of a partial ranking minimizing a differential Hilbert function
of the dae.

The consistent initialization step requires the determina-
tion of initial conditions lying on the variety of the dae in
the space where its unknowns and derivatives are regarded
as indeterminates. We will apply our real solving method to
this step, and exploit the fact that the required regularity
conditions are exactly the same as those needed by Pryce-
Pantelides. When these steps are successful standard index
one numerical dae solvers can be applied to the output. In-
deed there is even a complexity analysis available showing
the low (polynomial) cost of this numerical solution [13].

1.1 Numerical algebraic geometry
The methods of numerical algebraic geometry compute

approximate complex points on all irreducible solution com-
ponents of multivariate complex systems of polynomial equa-
tions. Such witness points on components of each possible
dimension are obtained by slicing with random planes of
equal co-dimension. The points are computed with efficient
homotopy methods.

Consider the set C[x1, x2, ..., xn] of multivariate polynomi-
als with complex coefficients in the complex variables x =
(x1, x2, ..., xn) ∈ Cn. Then C[x1, x2, ..., xn] is a ring and
a system of m polynomials p1(x), p2(x), ... , pm(x) in
C[x1, x2, ..., xn] yields a system of m multi-variate polyno-
mial equations p(x) = (p1(x), p2(x), ..., pm(x)) = 0. Its so-
lution set or variety is V (p) = {x ∈ Cn : p(x) = 0}. The
regular points of V (p), or reg(V (p)), are points at which
V (p) is a local complex Euclidean manifold of possible di-
mension: 0 (points), 1 (curves), ... , n− 1 (hyper-surfaces).
Then reg(V (p)) can be partitioned into a disjoint union of
subsets, under the equivalence relation of connectedness. Fi-
nally closure in the Euclidean topology of these sets yields
the irreducible components of a complex polynomial system.

1.2 Real algebraic geometry
Finding real solution components, is usually the case of

interest in applications. Naive extension of the complex ap-
proach to the real case fails, since such random planes may
not intersect some (e.g. compact) components.

Suppose that x = (x1, x2, ..., xn) ∈ Rn and consider a
system of k multivariate polynomials p1(x), p2(x), ... , pk(x)
in the polynomial ring R[x1, x2, ..., xn]. Its solution set or
variety is

VR(p1, ..., pk) = {x ∈ Rn : pj(x) = 0, 1 ≤ j ≤ k} (1)

Real algebraic geometry is a vast subject with many appli-
cations. For a modern text with many references on compu-
tational real algebraic geometry see [1].

Sturm’s ancient method on counting real roots of a poly-
nomial in an interval is central to Tarski’s real quantifier
elimination [23] and was further developed by Seidenberg
[21]. One of the most important algorithms of real algebraic
geometry is cylindrical algebraic decomposition. CAD was
introduced by Collins [7] and improved by Hong [12] who
made Tarski’s quantifier elimination algorithmic. This algo-
rithm decomposes Rn into cells on which each polynomial
of a given system has constant sign. The projections of two
cells in Rn to Rk with k < n either don’t intersect or are
equal. The double exponential cost of this algorithm [8], is
a major barrier to its application. See [6] and [5] for modern
improvements using triangular decompositions.

A paper for obtaining witness points for the real positive
dimensional case, closely related to our approach, is [19] (also
see [9]). Homotopy methods are used in [17] and [3] for real
algebraic geometry. Lasserre et al [15] uses semi-definite pro-
gramming and interestingly that approach is related to the
prolongation-projection method used in geometrical comple-
tion of differential systems (also see Wu and Zhi [26]).

2. COMPUTING WITNESS POINTS ON
REAL COMPONENTS

We consider systems

f = (f1, f2, ..., fk) = 0 (2)

of k polynomials from R[x1, ..., xn] which satisfy the follow-
ing assumptions:

A1: VR(f1, f2, ..., fi) has dimension n− i for 1 ≤ i ≤ k.

A2: the ideal Ii = 〈f1, f2, ..., fi〉 is radical for 1 ≤ i ≤ k.

These assumptions mean that the Jacobian of the sys-
tem {f1, f2, ..., fi} has full row rank at generic points of
VR(f1, f2, ..., fi) for 1 ≤ i ≤ k. If a system f satisfies these
two assumptions, we say f is regular.

The application of the Pryce-Pantelides method to dae
in Section 4 requires the assumptions A1 and A2. Imple-
mentations and many successful applications of this method
in problem solving environments such as MapleSim, Mathe-
matica, gPROMS, Modelica and EMSO attest to these as-
sumptions being often satisfied in practise.

In the longer term we aim to also develop methods that
don’t require such assumptions. However they lead to very
efficient and fast algorithms. Our approach is to treat well-
conditioned problems first before addressing more singular
and ill-conditioned problems.

We outline the main steps of our method, postponing de-
tails, such as singular cases to later sections.

To begin with, we choose a random point x̂ and a random
vector n in Rn. Consider the random hyperplane H in Rn
through x̂ with normal n.

For illustration of some of the main ideas we use a simple
example in R2 which has variety given in Figure 1. Many
methods are known for this case, and also for the case of
real hyper-surfaces in R3. The novelty of our methods, is
primarily for the case of k > 1 polynomials in Rn, defining
equi-dimensional varieties of dimension n−k. Our use of the
co-dimension one case and Example 2.1 is purely illustrative.

Example 2.1. Figure 1 displays the variety of a single
polynomial R2 given by:

f =
(
x2 + y2 − 1

)
·
(
x− 3− y2

)
·
(
x+ (y + 2)3

)
·
(

(2 y − 4)2 −
(
2x− x2

)3)
= 0

First we compute the intersection of f and a random line
H, that lie distance 0 from the variety, and obtain the point
P1. Note that the resulting system f = 0 together with
H = 0 is one dimension less, and belongs to the case of
k+ 1 polynomials. Since we have intersected with a random
hyperplane the resulting system of k + 1 polynomials will
also satisfy the regularity assumptions A1 and A2.
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Figure 1: H is a random line through the random
point x̂ with random normal n. The variety consists
of 4 one dimensional components. Point P1 is the
only point at which the variety intersects H at dis-
tance 0 from H. The regular local critical points of
the normal distance from H are given by P2, P3, P6.
The singular critical points are P4 and P5.

In the simple case in R above it would amount to finding
the isolated zeros of a zero dimensional system defined by H
and f = 0.

The closure of any component that does not intersect H
must (with probability one) contain critical points of the nor-
mal distance toH. If not, then the component would become
asymptotically close to H, without touching H. However
the randomness of the defining normal of H, and finiteness
of the number of such asymptotes, implies that this can only
happen on a set of lower measure.

Returning to our illustrative example, it shows the crit-
ical points P2, P3, P4, P5 and P6 on their corresponding
varieties. The above description is essentially a geometric
one. However any algorithm that computes it, must use
the equations defining the variety and results in well-known
and nontrivial difficulties for higher multiplicities and over-
determined systems. Thus we invoke the assumptions A1

and A2 to yield enough regularity so that our algorithms are
well-conditioned, and the encountered Jacobians have full
rank.

Regular critical points (e.g. P2, P3, P6) will have λ∇f = n
in R2. Generally, in Rn

n ∈ span{∇f} = span{∇f1, · · · ,∇fk} (3)

Consequently these critical points are the solutions of the
Lagrange optimization problem

f = 0,

k∑
i=1

λi∇fi = n (4)

Here n is a random vector in Rn and (4) has n+k equations
and n+ k unknowns (x, λ) = (x1, ..., xn, λ1, ..., λk).

Remark 2.1. The point-distance formulation to obtain real
points as the critical points of the distance from a compo-
nent to a random point can be found in [19, 11]. The main

difference between that previous work and our paper is that
we find critical points of the distance to a random hyper-
plane rather than to a random point. If the random point
in the point-distance formulation is far away from a com-
ponent, the corresponding system may have poor condition
number. However, in our plane-distance approach the ran-
dom hyperplane or random normal vector is invariant under
translation. So the distance to the component does not affect
the conditioning. This usually leads to a square system with
lower mixed volume the solution of which is more numeri-
cally stable and efficient.

2.1 The case of regular critical points
We first consider the case of regular local critical points.

The singular cases will be considered in Section 2.2. For
the regular case we use homotopy continuation methods to
solve the new system and find the real critical points which
are real. Homotopy continuation methods can determine all
isolated complex roots. To apply the methods, we need to
show the critical points are isolated in complex space.

Proposition 2.2. Suppose (x0, λ0) is a real solution of
(4) with random vector n and also that the Jacobian of f at
this point is of full row rank. Then (x0, λ0) is an isolated
root of (4) in Cn+k with probability 1.

Proof. Since the Jacobian of f at (x0, λ0) has full row
rank k, by the implicit function theorem [10] there are k
variables that can be locally expressed as smooth functions of
the other variables. Without loss of generality, we write x1 =
x1(z), ..., xk = xk(z), where z = (xk+1, ..., xn). Substituting

into the second equation of (4), that is into
∑k
i=1 λi∇fi = n,

yields a square system of n equations, which we denote by
g(z, λ) = n.

Thus, g is a smooth mapping from Rn to Rn. By Sard’s
Theorem [20], [10], for almost all n, the Jacobian of g at
(z0, λ0) has rank n. Consequently, the Jacobian of the full
system of n+k equations (4) has full rank n+k at (x0, λ0) ∈
Rn+k. The rank is the same at this point in Cn+k. So
(x0, λ0) is an isolated root in Cn+k. �

Example 2.2. Let f = x2 + y2 − 1. Let H be the line
through x̂ = (0,−3) with n = (2,−1)t, that is the line y =
2x− 3. Then (4) is

f = x2 + y2 − 1 = 0 , λ

(
2x
2y

)
=

(
−2
1

)
(5)

Simplifying the system, we have x2 + y2 − 1 = 0, x =
−2y. This leads to two real roots: P1 = (−2

√
5/5,
√

5/5)
and P2 = (2

√
5/5,−

√
5/5) corresponding to the minimum

distance point and the maximum distance point respectively
as shown in Figure 2.

Here f satisfies the full rank Jacobian condition and the
critical points are regular. In Example 2.3 however the crit-
ical points on a connected component are singular.

Example 2.3. Let f = y2 − (x − x2)3 with graph shown
in Figure 3 and consider H given by y = kx+ b.

Consider the case when the absolute value of the slope of
H, i.e. |k|, is larger than the maximum slope of the tangent
line to the curve y2 − (x − x2)3 = 0. Then when H is y =
2x + 3, the critical points are the singular points (0, 0) and
(1, 0).
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Figure 2: The circle x2 + y2 = 1 and the line y =
2x+ 3. The normal is (2,−1)t and the critical points
of the normal distance from the line to the circle are
displayed as P1 and P2.

Figure 3: y2 − (x− x2)3 = 0

Then the corresponding optimization problem

f = y2−(x−x2)3 = 0, λ

(
−3(x− x2)2(1− 2 x)

2y

)
=

(
−k
1

)
(6)

has no real solutions. In fact, the probability of hitting the
singular points can be quite large. We illustrate this by calcu-
lating this probability for the curve t y2−(x−x2)3 = 0 where

t is a parameter. For the solution branch, y = (x−x2)3/2/
√
t

we have

d2y

dx2
=

3

4

(1− 8x+ 8x2)√
x (1− x)

√
t
.

So when x = 2±
√
2

4
the slope of the curve dy

dx
attains the

critical values ∓3
8
√
t
. Thus (6) has no real solutions if and

only if k ∈ (−∞,− 8
3

√
t] ∪ [ 8

3

√
t,∞).

Let H have normal n = (sin(θ), cos(θ)). Assume the ran-
dom variable θ is uniformly distributed in [0, 2π]. Then the
probability of hitting the singular points (0, 0) and (1, 0) is
2
π

arctan( 8
3

√
t). When t = 1, the probability is 0.772 and if

t = 10 the probability increases to 0.925. This fact indicates
that avoiding hitting singular points can be difficult for such
curves.

2.2 Singular critical point
As is usual in numerical investigations, we first considered

the regular cases before considering singular cases. In this
section we consider the case illustrated in Figure 1, where
some of the critical points are singular.

The key is to study the local properties of a perturbed
system. We use the following notation. For any point p ∈
Rn, Bp(r) = {x ∈ Rn | ‖x − p‖ ≤ r}. If p ∈ VR, we define
Np = VR ∩Bp.

Let f be a regular system of k equations and consider
a regular point p ∈ VR(f). By appending linear equations
L(x) = L(p) to f , where L is orthogonal to the Jacobian of
f at p, we obtain a square system:

G =

(
f
L

)
(7)

with J = ∂G
∂x

. A perturbation ε ∈ Rk is added to f to yield
the perturbed system

G̃ =

(
f + ε
L

)
(8)

The variety of a perturbed system with perturbation ε ∈ Rk
is denoted by V εR. Similarly N ε

p = V εR ∩Bp.
Consider the linear homotopy connecting these two sys-

tems given by H(x, t) = tG̃(x) + (1− t)G(x) = 0. We follow
a curve x(t) starting from x(0) = p satisfying H(x(t), t) = 0
by solving a differential algebraic equation:

dH

dt
=

d

dt

(
f + tε
L

)
= J · dx

dt
+

(
ε
0

)
= 0 (9)

with initial condition x(0) = p. The solution q = x(1) of (9)
is uniquely determined if the perturbation is small enough
so that the Jacobian J is invertible for t ≤ 1.

Proposition 2.3. Suppose J is invertible in Bp(r) for
some r > 0. Let δ = max{‖J−1(x)‖ | x ∈ Bp(r)}. If ‖ε‖ <
r/δ, then ‖p − q‖ ≤ ‖ε‖δ. Moreover, the local dimension of
the perturbed variety at q is n− k and dist(p,N ε

p) ≤ ‖ε‖δ.

Proof. Since∥∥∥∥∫ 1

0

J−1 ·
(
ε
0

)
dt

∥∥∥∥ ≤ ‖ε‖ · ∫ 1

0

‖J−1‖ dt ≤ ‖ε‖δ

the distance between p and q is at most ‖ε‖δ. Thus dist(p,N ε
p)

≤ dist(p, q) ≤ ‖ε‖δ. Because J is invertible in Bp(r), the Ja-

cobian of G̃ is also invertible at q. Thus the local dimension
of f + ε at q is n− k. �

Theorem 2.4 (Regularization Theorem).
If f = {f1, ..., fk} is regular and c is sufficiently small, then
for almost all ‖ε‖ < c, f + ε has dimension n− k and there
are no singular points on VR(f + ε).

Proof. Consider f as a smooth mapping from Rn to Rk

with k < n. The image of the critical set, denoted by S has
Lebesgue measure zero in Rk by Sard’s theorem.

By Proposition 2.3, when the perturbation is small enough,
VR(f + ε) 6= ∅. Thus, for almost all ‖ε‖ < c, f + ε has no
singular points and dimVR(f + ε) = n− k. �

Example 2.4. Consider f = {y2+z2−(2 x−x2)3, z−y2}.
Figure 4 clearly shows a singular point at the origin. To
show the intersection explicitly, we solve y and z in terms of
x obtaining two solution branches:

y =
√
z, z = (−1 +

√
1− 32x3 − 48x4 + 24x5 − 4x6)/2

and

y = −
√
z, z = (−1 +

√
1− 32x3 − 48x4 + 24x5 − 4x6)/2.

342



Figure 4: Two surfaces M and N and their intersec-
tion. Here M : z−y2 = 0 and N : y2+z2−(2x−x2)3 = 0.

Figure 5: Perturbed and original real varieties

Consider the perturbed system f + ε = {y2 + z2 − (2 x −
x2)3 + ε1, z − y2 + ε2}. Consequently,

z = (−1 +
√

1− 32x3 − 48x4 + 24x5 − 4x6 − 4ε1 − 4ε2)/2.

Suppose ε1 = −0.04, ε2 = 0.015. The perturbed and unper-
turbed curves are shown in Figure 5.

Set n = (−1, 0, 0.2) in (4). We solve the system {f + ε =
0, λ ·∇(f + ε) = n} by Hom4Ps2 and obtain 26 complex roots,
including the following two real roots

(−0.108289277, 0, 0.01), (2.108289277, 0, 0.01).

Let us consider p = (−0.108289277, 0, 0.01). To address
the numerical difficulties encountered near the singularity,
we project onto the original curve. After 20 Newton iter-
ations, we obtain the point (−0.000179, 0, 0). The smallest
singular value of the Jacobian at this point is 0.769× 10−6.

One possible way to overcome the numerical difficulty is
to solve G = {f = 0, λ · ∇f = n} by using deflation methods
[16]. However it is easily seen that the critical point (0, 0, 0)
does not satisfy G.

Here we present alternative way to avoid the numerically
difficult region. Firstly, we move p along the perturbed curve
to another point q = (0.101,−0.135, 0.0283) where the sin-
gular values of the Jacobian are (1.04, 0.34). Secondly, we
project the point q to the original curve and find q′ = (q′1, q

′
2, q
′
3)

where q′1 = 0.122267538554529, q′2 = −0.109354334436423
and q′3 = 0.0119583704597381. At q′ the residue is (0.59 ×
10−12,−0.29×10−12) and the singular values are (1.02, 0.353).
So q′ is a regular point on the target curve with high accu-
racy. Now we use this example to verify Proposition 2.3. By

the definition δ ≤ 1/0.34 and ‖ε‖ = 0.0427, and we have
dist(q, q′) = 0.0372 < ‖ε‖δ.

Remark 2.5. In contrast to the approach in Hauenstein
[11], our critical points are defined differently, ie. by dis-
tance to a hyperplane, rather than distance to a point. In
[11] the author applied an endgame and adaptive precision
tracking technique to deal with singular cases. Such cases can
occur with high probability especially when the components
have “cusps”. In the case where there are nearby smooth
real points, we give a regularization method for the singular
critical points without extending the hardware precision.

3. IMPLEMENTATION
To address the potential singularities of a given system f ,

we first perturb the input to yield a nearby system F̃ . Then
a random linear equation L = n · x+ 1 is defined. There are
two systems to analyze:
(1) System G = {F̃ , λ · ∇F = n} (2) System {F̃ , L}.

We solve the square system G̃ of (8) in C by a Homotopy
continuation package, e.g. Hom4Ps2 by T.Y. Li et al [14].
We choose only the real roots and discard any imaginary
roots. For each real point, we need to project to the variety
VR(F ) by the algorithm Proj2Manifold described below.
If the Jacobian is near rank deficiency, then we apply the
algorithm FollowCurve to move the point along VR(F̃ )
until the condition of the Jacobian is tolerable. Finally, we
compute the projection from this new point onto VR(F ).

For the second system of lower dimension, we can consider
it as a new input and solve it recursively by the method
introduced above.

Now we describe our algorithms.

Algorithm Proj2Manifold

Input: Systemf={f1, ..., fk}⊂R[x1, . . . , xn],point p

– Solve N the right null space of Jp(F ) by SVD

– Construct the linear system L : N · x = N · p
– Let F̄ = {F,L} which is a square system

– Apply Newton iteration to p to yield q

Output: A regular point q on VR(f)

Algorithm FollowCurve

Input: f + ε: a perturbed system given by
{f1 + ε1, ..., fk + εk} ⊂ R[x1, . . . , xn]

p = an approximate solution of f + ε = 0
K = control condition ] used in curve tracking

– Solve N the right null space of Jp(f + ε) by SVD

– Construct an (n−k− 1)×n linear system L : A ·x =
A · p, where A consists of the last n− k− 1 vectors of
N to produce a curve to follow to a regular point.

– Let F̄ = {f + ε, L} which is (n − 1) × n system and
F̄ (p) = 0

– Track the curve from p to q by prediction-projection
method until ‖J+

q ‖ < K, where J+ is the pseudo-
inverse of J .

Output: A regular point q on VR(f + ε)
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Algorithm RealWitnessPoint

Input: f = {f1, ..., fk} ⊂ R[x1, . . . , xn] satisfying regularity
assumptions A1 and A2

c = upper bound on the perturbation
K = control condition ] used in curve tracking

– Choose a random real hyperplane H : n · x = 1

– Construct G = {f + ε, λ · ∇f = n}, where ε ∈ Rk and
‖ε‖ < c

– Let S be the set of real roots of G = 0 by Hom4Ps2

– For each point p ∈ S,

∗ if ‖J+
p ‖ > K (i.e. condition poor) then

q = FollowCurve(f + ε, p,K)

q′ = Project2Manifold(f, q)

∗ else q′ = Project2Manifold(f, p)

– replace p by q′ in S

Output: The real witness points of f = 0:
S ∪RealWitnessPoints({f,H})

Usually the poor conditioning region where ‖J+
p ‖ > K

appears close to a singular component or point (e.g. at the
intersection of two irreducible components). Since the di-
mension of the singular set is lower than the dimension of
regular set, the likelihood of leaving this poor conditioning
region is quite large.

We implemented the algorithms in Maple 16 together with
a Maple interface to Hom4Ps2. Although we can not verify
the regularity assumption in advance, it can be detected if
the perturbed system has no real solutions or the Jacobian
is always near rank-deficiency during path tracking.

4. APPLICATION TO DAE
In this section we show how our real solving method can be

applied to the consistent initialization of dae in the Pryce-
Pantelides method.

As shown in [25] that method is equivalent implicitly to a
Riquier Basis (an object which could be computed for exact
input by symbolic differential elimination algorithms). In
this section we consider a crane control example. We com-
pare the application of symbolic differential elimination with
Pryce-Pantelides (coupled with our real solving method).

If successful it is very efficient since the prolongation step
can be solved in polynomial time and an efficient polynomial
cost method can be used to numerically solve the prolonged
dae [13]. The reader may wish to look ahead at the Table 1
below, where Pryce’s method partnered by our real-solving
method is much more efficient than a standard differential
elimination method on a class of dae. The reader should
view this comparison cautiously as symbolic differential elim-
ination algorithms yield more theoretically complete results,
since they follow cases (and a radical differential membership
result is available). Also they can apply to over-determined
dae and systems with multiplicities.

In fact as shown in our paper [25] the Pryce-Pantelides
method produces an implicit form of a Riquier Basis without
making potentially costly symbolic eliminations. Also the
nonsingular Jacobians are precisely the conditions for the
implicit function theorem, to transform Pryce’s system into
a Riquier Basis (see Theorem 6.12 in [25]). Those conditions
are equivalent to A1 and A2.

Figure 6: Control of a crane

Example 4.1 (Index 5 dae for a crane).
This model which is illustrated in Figure 6, is discussed in
[25]. The problem is to determine the horizontal velocity
u1(t) and the angular velocity u2(t) of a winch of mass M1,
so that the attached load M2 moves along a prescribed path
– the dashed curve in Figure 6.

The equations of motion are given by Visconti [24] with
unknowns {x, x′, z, z′, d, d′, r, r′, θ, τ, u1, u2}:
xt − x′ = 0, zt − z′ = 0, dt − d′ = 0, rt − r′ = 0

M2 x
′
t + τ sin(θ) = 0, M1 d

′
t + C1 dt − u1 − τ sin(θ) = 0

M2 z
′
t + τ cos(θ)−mg = 0, J r′t + C2 rt + C3 u2 − C3

2τ = 0

r sin(θ) + d− x = 0, r cos(θ)− z = 0

H1(x, z, t) = 0, H2(x, z, t) = 0.

The prescribed path of the mass M2 is described by an al-
gebraic equations {H1 = 0, H2 = 0}. The winch has moment
of inertia J and is attached with a cable of length r(t), mak-
ing an angle θ(t) to the vertical. Substituting sin(θ) = s(t)
and cos(θ) = c(t) and appending s(t)2 + c(t)2 = 1 converts
the dae to a system of differential polynomials. Applying
the Pryce-Pantelides method [25], we obtain 13 ode and 39
algebraic constraints.

To illustrate how to find a real initial point for this dae,
we reuse the polynomial system of Example 2.4 with {H1 =

z(t)2−t = 0, H2 = z(t)2+t2−
(
2 x(t)− x(t)2

)3
= 0}. Then

the total Bézout degree of the constraints becomes 21233664,
but it has a block triangular structure enabling its solutions
by bottom up substitution.

Choosing the initial time t randomly as in [25], say t =
4 and applying the homotopy method Hom4Ps2 yields 24
solutions. But all of them are complex. Since the real variety
of the bottom block H1 = H2 = 0 is a bounded curve in the
(x, z, t)-space as shown in Figure 5, it leads to a large chance
of missing the curve when we apply a random real slicing
used in our previous paper [25].

The method we have presented in the current paper, how-
ever, can find real initial points for this example, with good
condition as we explained already in Example 2.4. Further
the Block structure of the system, enables us to easy verify
that all the relevant Jacobians for the success of the method
are non-singular, by efficient bottom up substitution. Equiv-
alently the variety defined by the dae satisfies our assump-
tions A1 and A2.
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diff-elim (sec) fast prolongation # real
j (rifsimp) + real solving (sec) points
1 0.31 0.063+0.12 4
2 0.69 0.063+0.22 16
3 2.39 0.063+0.17 10
4 22.48 0.063+0.39 12
5 > 3 hr 0.063+0.28 10

Table 1: Times for the crane problem by sym-
bolic differential elimination (rifsimp) and the Pryce
method. Here H1 = x(t)j + z(t)j − x(t)z(t)− t− j,H2 =
z(t)j + x(t)z(t) − tj + j for j = 1, 2, 3, 4, 5. Exsecuted
in Maple16 on a PC under Windows 7 with 4GB of
RAM, I5 cpu at 2.5 GHz.

Moreover, the computational difficulty of this problem for
the symbolic differential elimination algorithm Rifsimp explo-
sively increases with the degree d of H1, H2 in comparison
with the numerical method as shown in the Table 1.

5. CONCLUSIONS
In this paper we give a numerical method for computing

witness points on real connected components for real polyno-
mial systems satisfying the regularity assumptions A1 and
A2. Given a random vector n the method computes local
critical points of the distance of a hyperplane to the compo-
nent in the direction n. A method for regularizing singular
critical points is also given.

This method takes advantage of the availability of effi-
cient homotopy solvers which exploit sparsity and structure
of the polynomial system to potentially significantly reduce
the number of paths following in homotopy solving. The
method is pleasingly parallelisable, since homotopy paths
can be followed independently on different processors. Once
a witness point is determined, additional points on the com-
ponent, can be further generated by other homotopies.

We demonstrated the usefulness of our plane-distance
method in the consistent initialization step of the Pryce-
Pantelides method. In particular its regularity conditions
are the same as those of Pryce-Pantelides.

Theoretically, if we take a point at infinity, Hauenstein’s
distance-point method [11] is equivalent to the plane-distance
method. But our plane-distance method has the advantage
that it is translation invariant. Thus its conditioning does
not depend on the distance, as does the most closely related
method, the distance-point method of Hauenstein. In addi-
tion, in contrast to the approach in [11] for singular critical
points, we present a way to move away from a singularity
by stepping along a perturbed component to obtain a reg-
ular point with hardware precision rather than tracking at
singular endpoints with higher precision.

Future research includes loosening the assumptions A1

and A2, to address more degenerate cases. Such research
includes methods for deflating higher multiplicity compo-
nents, and also addressing problems with equations which
are sums of squares. We will explore the relations with the
closest method to ours, that of Hauenstein [11], especially
as regards the effect on sparsity of the equation systems for
these methods.
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