
Interfacing Mathemagix with C++

Joris van der Hoeven
Laboratoire d’Informatique, UMR 7161 CNRS

Campus de l’École polytechnique
91128 Palaiseau Cedex, France

vdhoeven@lix.polytechnique.fr

Grégoire Lecerf
Laboratoire d’Informatique, UMR 7161 CNRS

Campus de l’École polytechnique
91128 Palaiseau Cedex, France
gregoire.lecerf@math.cnrs.fr

ABSTRACT

In this paper, we give a detailed description of the interface
between the Mathemagix language and C++. In partic-
ular, we describe the mechanism which allows us to import
a C++ template library (which only permits static instan-
tiation) as a fully generic Mathemagix template library.

Categories and Subject Descriptors

D.2.11 [SOFTWARE ENGINEERING]: Software
Architectures–Languages ; D.3.4 [PROGRAMMING

LANGUAGES]: Processors–Translator writing systems
and compiler generators

General Terms

Languages, Performance

Keywords

Mathemagix; C++; generic programming; template library

1. INTRODUCTION

1.1 Motivation behind Mathemagix

Until the mid nineties, the development of computer
algebra systems tended to exploit advances in the area of
programming languages, and sometimes even influenced the
design of new languages. The Formac system [2] was devel-
oped shortly after the introduction of Fortran. Symbolic
algebra was an important branch of the artificial intelligence
project at Mit during the sixties. During a while, the Mac-

syma system [22, 24, 26] was the largest program written
in Lisp, and motivated the development of better Lisp com-
pilers.

The Modlisp [17] and Scratchpad II [12] systems were
at the origin of yet another interesting family of computer
algebra systems, especially after the introduction of domains
as function return values and dependent types [18, 20, 30].
These developments were at the forefront of language design

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

and type theory [10, 23, 25]. Scratchpad II later evolved
into the Axiom system [1, 19]. In the A# project [32, 33],
later renamed into Aldor, the language and compiler were
redesigned from scratch and further purified.

After this initial period, computer algebra systems have
been less keen on exploiting new ideas in language design.
One important reason is that a good language for computer
algebra is more important for developers than for end users.
Indeed, typical end users tend to use computer algebra
systems as enhanced pocket calculators, and rarely write
programs of substantial complexity themselves. Another
reason is specific to the family of systems that grew out
of Scratchpad II: after IBM’s decision to no longer support
the development, there has been a long period of uncer-
tainty for developers and users on how the system would
evolve. This has discouraged many of the programmers who
did care about the novel programming language concepts
in these systems.

In our opinion, this has led to an unpleasant current
situation in computer algebra: there is a dramatic lack
of a modern, sound and fast general purpose program-
ming language. The major systems Mathematicatm [34],
Mapletm [21] and Magma [3] are interpreted, weakly typed
(even though the dynamic types of Magma do admit some
expressive power), besides being proprietary and expensive.
The Sage system [28] relies on Python and merely con-
tents itself to glue together various existing libraries and
other software components.

The absence of modern languages for computer algebra is
even more critical whenever performance is required. Nowa-
days, many important computer algebra libraries (such as
Gmp [11], Mpfr [7], Flint [13], FGb [6], etc.) are directly
written in C or C++. Performance issues are also impor-
tant whenever computer algebra is used in combination with
numerical algorithms. We would like to emphasize that high
level ideas can be important even for traditionally low level
applications. For instance, in a suitable high level language
it should be easy to operate on SIMD vectors of, say, 256 bit
floating point numbers. Unfortunately, Mpfr would have
to be completely redesigned in order to make such a thing
possible.

For these reasons, we have started the design of a new
software system, Mathemagix [15, 16], based on a com-
piled and strongly typed language, featuring signatures,
dependent types, and overloading. Mathemagix is intended
as a general purpose language, which supports both func-
tional and imperative programming styles. Although the
design has greatly been influenced by Scratchpad II and
its successors Axiom and Aldor, the type system of Math-

363

emagix contains several novel aspects, as described in [14].
Mathemagix is also a free software, which can be down-
loaded from http://www.mathemagix.org.

1.2 Interfacing Mathemagix with C++

One major design goal of the Mathemagix compiler
is to admit a good compatibility with existing program-
ming languages. For the moment, we have focussed on C

and C++. Indeed, on the one hand, in parallel with the
development of the compiler, we have written several high
performance C++ template libraries for various basic math-
ematical structures (polynomials, matrices, series, etc.). On
the other hand, the compiler currently generates C++ code.

We already stated that Mathemagix was inspired by
Axiom and Aldor in many respects. Some early work on
interfacing with C++ was done in the context of Aldor [5,
8]. There are two major differences between C++ and
Aldor which are important in this context.

On the one hand, Aldor provides support for genuine
generic functional programming: not only functions, but
also data types can be passed as function arguments. For
instance, one may write a routine which takes a ring R

and an integer n on input and which returns the ring
R[X1]� [Xn]. The language also provides support for depen-
dent types: a function may very well take a ring R together
with an instance x of R as its arguments or return value.

On the other hand, C++ provides support for templates.
We may write a routine cube which takes an instance x of an
arbitrary type R on input and returns x*x*x. However, and
even though there is some work in this direction [9, 27], it is
currently not possible to add the requirement that Rmust be
a ring when declaring the template cube. Hence, the correct-
ness of the template body x*x*x can only be checked at the
moment when the template is instantiated for a particular
type R. Furthermore, types and templates being all fully
determined at compile time, only a finite number of these
instantiations can occur in a program or library, and tem-
plate parameters cannot be passed to functions as objects.

In Aldor, there is no direct equivalent of templates. Nev-
ertheless, it is possible to implement a function cube which
takes a ring R and an instance x of R on input, and which
returns x*x*x. It thus makes sense to consider importing
C++ template libraries into Aldor. Although [5, 8] con-
tain a precise strategy for realizing such interfacing, part of
the interface still had to be written by hand.

Mathemagix features two main novelties with respect
to the previous work which was done in the context of
Axiom and Aldor. First of all, the language itself admits
full support for templates with typed parameters; see our
paper [14] on the type system for more details. Secondly,
C++ template libraries can be imported into Mathemagix

in a straightforward way, without the need to write any
non trivial parts of the interface by hand.

The ability to transform a C++ template library which
only permits static instantiation into a fully generic tem-
plate library is not straightforward. Our strategy mainly
relies on the specification of the interface itself. Indeed, the
interface should in particular provide the missing type infor-
mation about the parameters of the C++ templates. In this
paper, we will describe in more details how this mechanism
works. We think that similar techniques can be applied for
the generic importation of C++ templates into other lan-

guages such as Aldor or OCaml (in particular, the fact
that the Mathemagix compiler generates C++ code is not
essential for our mechanism to work). It might also be useful
for future extensions of C++ itself.
The paper is organized as follows. In Section 2, we

describe how to import and export non templated classes
and functions from and to C++. In Section 3, we briefly
recall how genericity works in Mathemagix, and we
describe what kind of C++ code is generated by the com-
piler for generic classes and functions. The core of the paper
is Section 4, where we explain how C++ templates are
imported into Mathemagix. In Section 5 we summarize
the main C++ libraries that have been interfaced to Math-

emagix, and Section 6 contains a conclusion and several
ideas for future extensions.

2. INTERFACE PRINCIPLES TO C++

2.1 Preparing imports from C++

Different programming languages have different con-
ventions for compiling programs, organizing projects into
libraries, and mechanisms for separate compilation.
C++ is particularly complex, since the language does

not provide any direct support for the management of big
projects. Instead, this task is delegated to separate config-
uration and Makefile systems, which are responsible for the
detection and specification of external and internal depen-
dencies, and the determination of the correct compilation
flags. Although these tasks may be facilitated up to a certain
extent when using integrated development environments
such as Eclipsetm, Xcodetm, or C++ Buildertm, they
usually remain non trivial for projects of a certain size.

Mathemagix uses a different philosophy for managing
big projects. Roughly speaking, any source file contains
all information which is necessary for building the corre-
sponding binary. Consequently, there is no need for external
configuration or Makefile systems.

Whenever we import functionality from C++ into Math-

emagix, our design philosophy implies that we have to
specify the necessary instructions for compiling and/or
linking the imported code. To this effect, Mathemagix

provides special primitives cpp_flags, cpp_libs and
cpp_include for specifying the compilation and linking
flags, and C++ header files to be included.
For instance, the numerix library of Mathemagix con-

tains implementation for various numerical types. In
particular, it contains wrappers for the Gmp and Mpfr

libraries [7, 11] with implementations of arbitrary precision
integers, rational numbers and floating point numbers. The
Mathemagix interface to import the wrapper for arbitrary
precision integers starts as follows:

foreign cpp import {

cpp_flags "`numerix-config --cppflags`";

cpp_libs "`numerix-config --libs`";

cpp_include "numerix/integer.hpp";

... }

On installation of the numerix library, a special script
numerix-config is installed in the user’s path. In the
above example, we use this script in order to retrieve
the compilation and linking flags. Notice also that
numerix/integer.hpp is the C++ header file for basic arbi-
trary precision integer arithmetic.

364

2.2 Importing simple classes and functions

Ideally speaking, the bulk of an interface between Math-

emagix and a foreign language is simply a dictionary which
specifies how concepts in one system should be mapped into
the other one. For ordinary classes, functions and constants,
there is a direct correspondence between Mathemagix and
C++, so the interface is very simple in this case.

Assume for instance that we want to map the C++ class
integer from integer.hpp into the Mathemagix class
Integer, and import the basic constructors and arithmetic
operations on integers. This is done by completing the pre-
vious example into:

foreign cpp import {

cpp_flags "`numerix-config --cppflags`";

cpp_libs "`numerix-config --libs`";

cpp_include "numerix/integer.hpp";

class Integer == integer;

literal_integer: Literal -> Integer ==

make_literal_integer;

prefix -: Integer -> Integer == prefix -;

infix +: (Integer, Integer) -> Integer == infix +;

infix -: (Integer, Integer) -> Integer == infix -;

infix *: (Integer, Integer) -> Integer == infix *;

... }

The special constructor literal_integer allows us to write
literal integer constants such as 12345678987654321 using
the traditional notation. This literal constructor corre-
sponds to the C++ routine

integer make_literal_integer (const literal&);

where literal is a special C++ class for string symbols.

2.3 Syntactic sugar

The syntax of C++ is quite rigid and often directly
related to implementation details. For instance, in C++ the
notation p.x necessarily presupposes the definition of a class
or structure with a field x. In Mathemagix, the operator
postfix .x can be defined anywhere. More generally, the
language provides a lot of syntactic sugar which allows for
a flexible mapping of C++ functionality to Mathemagix.

Another example is type inheritance. In C++, type inher-
itance can only be done at the level of class definitions. Fur-
thermore, type inheritance induces a specific low level repre-
sentation in memory for the corresponding class instances.
In Mathemagix, we may declare any type T to inherit from
a type U by defining an operator downgrade: T -> U as an
ordinary function. This operator really acts as a converter
with the special property that for any second converter X ->

T, Mathemagix automatically generates the converter X ->

U. This allows for a more high level view of type inheritance.

Mathemagix also provides a few built-in type construc-
tors: Alias T provides a direct equivalent for the C++

reference types, the type Tuple T can be used for writing
functions with an arbitrary number of arguments of the
same type T, and Generator T corresponds to a stream of
coefficients of type T. The built-in types Alias T, Tuple T

and Generator T are automatically mapped to the C++

types T&, mmx::vector<T> and mmx::iterator<T> in defi-
nitions of foreign interfaces. The containers mmx::vector<T>

and mmx::iterator<T> are defined in the C++ support
library basix for Mathemagix, where mmx represents the
Mathemagix namespace.

2.4 Compulsory functions

When importing a C++ class T into Mathemagix, we
finally notice that the user should implement a few compul-
sory operators on T. These operators have fixed named in
C++ and in Mathemagix, so it is not necessary to explic-
itly specify them in foreign interfaces.

The first compulsory operator is flatten: T ->

Syntactic, which converts instances of type T into syntactic
expression trees which can then be printed in several formats
(ASCII, Lisp, TEXMACS, etc.). The other compulsory oper-
ators are three types of equality (and inequality) tests and
the corresponding hash functions. Indeed, Mathemagix

distinguishes between “semantic” equality, exact “syntactic”
equality and “hard” pointer equality. Finally, any C++ type
should provide a default constructor with no arguments.

2.5 Exporting basic functionality to C++

Simple Mathemagix classes and functions can be
exported to C++ in a similar way as C++ classes and
functions are imported. Assume for instance that we wrote
a Mathemagix class Point with a constructor, accessors,
and a few operations on points. Then we may export this
functionality to C++ as follows:

foreign cpp export {

class Point == point;

point: (Double, Double) -> Point ==

keyword constructor;

postfix .x: Point -> Double == get_x;

postfix .y: Point -> Double == get_y;

middle: (Point, Point) -> Point == middle; }

3. CATEGORIES AND GENERICITY

Before we discuss the importation of C++ template
libraries into Mathemagix, let us first describe how to
define generic classes and functions in Mathemagix, and
how such generic declarations are reflected on the C++

side. For a description of the Mathemagix type system
we refer the reader to [14].

Mathemagix provides the forall construct for the dec-
laration of generic functions. For instance, a simple generic
function for the computation of a cube is the following:

forall (M: Monoid) cube (x: M): M == x*x*x;

This function can be applied to any element x whose type M
is a monoid. For instance, we may write

c: Int == cube 3;

The parameters of generic functions are necessarily typed.
In our example, the parameter M is a type itself and the
type of M a category . The category Monoid specifies the
requirements which are made upon the type M, and a typ-
ical declaration would be the following:

category Monoid == { infix *: (This, This) -> This; }

Hence, a type M is considered to have the structure of a
Monoid in a given context, as soon as the function infix *:

(M, M) -> M is defined in this context. Notice that the com-

365

piler does not provide any means for checking mathematical
axioms that are usually satisfied, such as associativity.

Already on this simple example, we notice several impor-
tant differences with the C++ “counterpart” of the declara-
tion of cube:

template<typename M> M

cube (const M& x) { return x*x*x; }

First of all, C++ does not provide a means for checking
that M admits the structure of a monoid. Consequently, the
correctness of the body return x*x*x can only be checked
for actual instantiations of the template. In particular, it is
not possible to compile a truly generic version of cube.

By default, Mathemagix always compiles functions pre-
fixed with the forall keyword, such as cube, in a generic
way. Let us briefly describe how this is implemented. First
of all (and similarly to [5, 8]), the definition of the category
Monoid gives rise to a corresponding abstract base class on
the C++ side:

class Monoid_rep: public rep_struct {

inline Monoid_rep ();

virtual inline ~Monoid_rep ();

virtual generic mul (const generic&,

const generic&) const = 0;

... };

A concrete monoid is a “managed pointer” (i.e. the objects to
which they point are reference counted) to a derived class of
Monoid_rep with an actual implementation of the multipli-
cation mul. Instances of the Mathemagix type generic cor-
respond to managed pointers to objects of arbitrary types.
The declaration of cube gives rise to the following code on
the C++ side:

generic

cube (const Monoid& M, const generic& x) {

// x is assumed to contain an object "of type M"

return M->mul (x, M->mul (x, x)); }

The declaration c: Int == cube 3; gives rise to the
automatic generation of a class Int_Monoid_rep which cor-
responds to the class Int with the structure of a Monoid:

struct Int_Ring_rep: public Ring_rep {

...

generic

mul (const generic& x, const generic& y) const {

return as_generic<int> (from_generic<int> (x) *

from_generic<int> (y)); }

... };

The declaration itself corresponds to the following C++

code:

Monoid Int_Ring= new Int_Ring_rep ();

int c= from_generic<int>

(cube (Int_Ring, as_generic<int> (3)));

Notice that we did not generate any specific instantiation
of cube for the Int type. This may lead to significantly
smaller executables with respect to C++ when the function
cube is applied to objects of many different types. Indeed,
in the case of C++, a separate instantiation of the function
needs to be generated for each of these types during the
compilation stage.

Remark 1. Of course, for very low level types such as
Int, the use of generic functions does imply a non trivial
overhead. Nevertheless, since the type generic is essen-
tially a void*, the overhead is kept as small as possible.

In particular, the overhead is guaranteed to be bounded by
a fixed constant. We also notice that Mathemagix provides
an experimental keyword specialize which allows for the
explicit instantiation of a generic function, thus achieving
a fine compromise between speed and compiler code size.

Remark 2. Although generic functions such as cube are
not instantiated by default, our example shows that we do
have to generate special code for converting the type para-
meter Int to a Monoid. Although this code is essentially
trivial, it may become quite voluminous when there are
many different types and categories. We are still investi-
gating how to reduce this size as much as possible while
keeping the performance overhead small.

Mathemagix also allows for the declaration of generic
container classes; the user simply has to specify the typed
parameters when declaring the class:

class Complex (R: Ring) == {

re: R;

im: R;

constructor complex (r: R, i: R) == {

re == r;

im == i; } }

Again, only the generic version of this class is compiled by
default. In particular, the internal representation of the cor-
responding C++ class is simply a class with two fields re

and im of type generic.
Regarding functions and templates, a few other features

of Mathemagix extend those in C++:

1. General non mutual dependencies are allowed
between function and template parameters and
return values, as in the following example:

forall (R: Ring, M: Module R)

infix * (c: R, v: Vector M): Vector M ==

[c * x | x: M in v];

2. Template parameters can be arbitrary types or (not
necessarily constant) instances. For instance, one
may define a container Vec (R: Ring, n: Int) for
vectors with a fixed size.

3. Functions can be used as arguments and as values:

compose (f: Int -> Int, g: Int -> Int)

(x: Int): Int == f g x;

Notice that Axiom and Aldor admit the same advantages
with respect to C++.

4. IMPORTING C++ TEMPLATES

One of the most interesting aspects of our interface
between Mathemagix and C++ is its ability to import
C++ template classes and functions. This makes it pos-
sible to provide a fully generic Mathemagix interface on
top of an existing C++ template library. We notice that
the interface between Aldor and C++ [5, 8] also provided
a strategy for importing templates. However, the bulk of
the actual work still had to be done by hand.

4.1 Example of a generic C++ import

Before coming to the technical details, let us first give
a small example of how to import part of the univariate
polynomial arithmetic from the C++ template library
algebramix, which is shipped with Mathemagix:

366

foreign cpp import {

...

class Pol (R: Ring) == polynomial R;

forall (R: Ring) {

pol: Tuple R -> Pol R == keyword constructor;

upgrade: R -> Pol R == keyword constructor;

deg: Pol R -> Int == deg;

postfix []: (Pol R, Int) -> R == postfix [];

prefix -: Pol R -> Pol R == prefix -;

infix +: (Pol R, Pol R) -> Pol R == infix +;

infix -: (Pol R, Pol R) -> Pol R == infix -;

infix *: (Pol R, Pol R) -> Pol R == infix *;

... } }

As is clear from this example, the actual syntax for tem-
plate imports is a straightforward extension of the syntax of
usual imports and the syntax of generic declarations on the
Mathemagix side.

Actually, the above code is still incomplete: in order to
make it work, we also have to specify how the ring operations
on R should be interpreted on the C++ side. This is done
by exporting the category Ring to C++:

foreign cpp export

category Ring == {

convert: Int -> This == keyword constructor;

prefix -: This -> This == prefix -;

infix +: (This, This) -> This == infix +;

infix -: (This, This) -> This == infix -;

infix *: (This, This) -> This == infix *; }

This means that the ring operations in C++ are the con-
structor from int and the usual operators +, - and *. The
programmer should make sure that the C++ implemen-
tations of the imported templates only rely on these ring
operations.

4.2 Generation of generic instance classes

The first thing the compiler does with the above C++

export of Ring is the creation of a C++ class capable of
representing generic instances of arbitrary ring types. Any
mechanism for doing this has two components: we should
not only store the actual ring elements, but also the rings
themselves to which they belong. This can actually be done
in two ways.

The most straightforward idea is to represent an instance
of a generic ring by a pair (R,x), where R is the actual ring
(similar to the example of the C++ counterpart of a monoid
in Section 3) and x an actual element of R. This approach
has the advantage of being purely functional, but it requires
non trivial modifications on the C++ side.

Indeed, whenever a function returns a ring object, we
should be able to determine the underlying ring R from
the input arguments. In the case of a function such as
postfix []: (Pol R, Int) -> R, this means that R has to
be read off from the coefficients of the input polynomial.
But the most straightforward implementation of the zero
polynomial does not have any coefficients! In principle, it
is possible to tweak all C++ containers so as to guarantee
the ability to determine the underlying generic parameters
from actual instances. We have actually implemented this
idea, but it required a lot of work, it involved long compi-
lation times from the C++ side, and it violated the principle

that writing a Mathemagix interface for a C++ template
library should essentially be trivial.
The second approach, which is less functional but more

efficient, is to store the ring R in a global variable, whose
value will frequently be changed in the course of actual com-
putations. In fact, certain templates might carry more than
one parameter of type Ring, in which case we need more
than one global ring. For this reason, we chose to imple-
ment a container instance<Cat,Nr> for generic instances
of a type of category Cat, with an additional integer para-
meter Nr for distinguishing between various parameters of
the same category Cat. The container instance<Cat,Nr> is
really a wrapper for generic:

template<typename Cat, int Nr>

class instance {

public:

generic rep;

static Cat Cur;

inline instance (const instance& prg2):

rep (prg2.rep) {}

inline instance (const generic& prg):

rep (prg) {}

instance ();

template<typename C1> instance (const C1& c1);

... };

For instance, objects of type instance<Ring,2> are
instances of the second generic Ring parameter of templates.
The corresponding underlying ring is stored in the global
static variable instance<Ring,2>::Cur.
When exporting the Ring category to C++, the Math-

emagix compiler automatically generates generic C++

counterparts for the ring operations. For instance, the fol-
lowing multiplication is generated for instance<Ring,Nr>:

template<int Nr> inline instance<Ring,Nr>

operator * (const instance<Ring,Nr>& a1,

const instance<Ring,Nr>& a2) {

typedef instance<Ring,Nr> Inst;

return Inst (Inst::Cur->mul (a1.rep, a2.rep)); }

Since the C++ language does not allow to directly spe-
cialize constructors of instance<Cat,Nr>, we provide a gen-
eral default constructor of instance<Cat,Nr> from an arbi-
trary type T, which relies on the in place routine

void set_as (instance<Ring,Nr>&, const T&);

This routine can be specialized for particular categories. For
instance, the converter convert: Int -> This from Ring

gives rise to following routine, which induces a constructor
for instance<Ring,Nr> from int:

template<int Nr> inline void

set_as (instance<Ring,Nr>& ret, const int& a1) {

typedef instance<Ring,Nr> Inst;

ret = Inst (Inst::Cur->cast (a1)); }

In this example, Inst::Cur->cast represents the function
that sends an int into an element of the current ring.

4.3 Importing C++ templates

Now that we have a way to represent arbitrary Math-

emagix classes R with the structure of a Ring by a C++

type instance<Ring,Nr>, we are in a position to import
arbitrary C++ templates with Ring parameters. This
mechanism is best explained on an example. Consider
importing the routine

367

forall (R: Ring)

infix *: (Pol R, Pol R) -> Pol R;

The compiler essentially generates the following C++ code
for this import (the actual code is slightly more compli-
cated and follows the resource acquisition is initialization
idiom [29] in order to be exception safe):

polynomial<generic>

mul (const Ring &R,

const polynomial<generic>& p1,

const polynomial<generic>& p2) {

typedef instance<Ring,1> Inst;

Ring old_R= Inst::Cur;

Inst::Cur= R;

polynomial<Inst> P1= as<polynomial<Inst> > (p1);

polynomial<Inst> P2= as<polynomial<Inst> > (p2);

polynomial<Inst> Q = P1 * P2;

polynomial<generic> q=

as<polynomial<generic> > (Q);

Inst::Cur= old_R;

return q; }

There are two things to be observed in this code. First of all,
for the computation of the actual product P1 * P2, we have
made sure that Inst::Cur contains the ring R corresponding
to the coefficients of the generic coefficients of the inputs p1
and p2. Moreover, the old value of Inst::Cur is restored
on exit. Secondly, we notice that polynomial<Inst> and
polynomial<generic> have exactly the same internal rep-
resentation. The template as simply casts between these
two representations. In the actual code generated by the
compiler, these casts are done statically without any cost,
directly on pointers.

The above mechanism provides us with a fully generic way
to import C++ templates. However, as long as the tem-
plate parameters are themselves types which were imported
from C++, it is usually more efficient to shortcut the above
mechanism and directly specialize the templates on the
C++ side. For instance, the Mathemagix program

p: Pol Integer == ...;

q: Pol Integer == p * p;

is simply compiled into the following C++ code:

polynomial<integer> p= ...;

polynomial<integer> q= p * p;

5. INTERFACED C++ LIBRARIES

Currently, most of the mathematical features available in
Mathemagix are imported from C++ libraries, either of
our own or external [16]. In this section, we briefly describe
what these libraries provide, and the main issues we encoun-
tered.

5.1 Mathemagix libraries

C++ libraries of the Mathemagix project provide the
user with usual data types and mathematical objects.
We have already mentioned the basix library which is
devoted to vectors, iterators, lists, hash tables, generic
objects, parsers, pretty printers, system commands, and
the TEXMACS interface. The numerix library is dedicated
to numerical types including integers, modular integers,
rational numbers, floating point numbers, complex num-
bers, intervals, and balls. Univariate polynomials, power

series, fraction fields, algebraic numbers, and matrices are
provided by the algebramix library, completed by analyziz

for when working with numerical coefficient types. Multi-
variate polynomials, jets, and power series and gathered in
the multimix library. Finally continewz implements ana-
lytic functions and numerical homotopy continuation for
polynomial system solving.
The Mathemagix compiler is itself written in Math-

emagix on the top of the basix library. In order to produce
a first binary for this compiler, we designed a mechanism for
producing standalone C++ sources from its Mathemagix

sources (namely the mmcompileregg package). This mech-
anism is made available to the user via the option --keep-

cpp of the mmc compiler command.
In the following example we illustrate simple calculations

with analytic functions. We use the notation ==> for macro
definitions. We first construct the polynomial indetermi-
nate x of C[x], and convert it into the analytic function
indeterminate z. We display exp z, exp 1, and exp (z +
1) on the standard output mmout. Internal computations
are performed up to 256 bits of precision, but printing is
restricted to 5 decimal digits. Analytic functions are dis-
played as their underlying power series at the origin, for
which we set the output order to 5.

include "basix/fundamental.mmx";

include "numerix/floating.mmx";

include "numerix/complex.mmx";

include "continewz/analytic.mmx";

R ==> Floating;

C ==> Complex R;

Pol ==> Polynomial C;

Afun ==> Analytic (R, C);

bit_precision := 256;

x: Pol == polynomial (complex (0.0 :> R),

complex (1.0 :> R));

z: Afun == x :> Pol;

f: Afun == exp z;

significant_digits := 5;

set_output_order (x :> (Series C), 5);

mmout << "f= " << f << lf;

mmout << "f (1)= " << f (1.0 :> C) << lf;

mmout << "f (1 + z)= " << move (f, 1.0 :> C) << lf;

Compiling and running this program in a textual terminal
yields:
f= 1.0000 + 1.0000 * z + 0.50000 * z^2

+ 0.16667 * z^3 + 0.041667 * z^4 + O (z^5)

f (1)= 2.7183

f (1 + z)= 2.7183 + 2.7183 * z + 1.3591 * z^2

+ 0.45305 * z^3 + 0.11326 * z^4 + O (z^5)

5.2 External libraries

Importing a library that is completely external to the
Mathemagix project involves several issues. First of all, as
mentioned in Section 2.4, all the data types to be imported
should satisfy mild conditions in order to be properly usable
from Mathemagix. Usually, these conditions can easily be
satisfied by writing a C++ wrapper whenever necessary.
However, when introducing new types and functions,

one usually wants them to interact naturally with other
librairies. For instance, if several libraries have their own

368

arbitrarily long integer type, straightforward interfaces
introduce several Mathemagix types of such integers,
leaving to the user the responsibility of the conversions in
order to use functions of different librairies within a single
program.

For C and C++ libraries not involving tempates, we
prefer to design lower level interfaces to the C++ libraries of
Mathemagix. In this way, we focus on writing efficient con-
verters between external and C++ Mathemagix objects,
and then on interfacing new functions at the Mathemagix

language level. This is the way we did for instance with
lattice reduction of the Fplll library [4], where we mainly
had to write converters for integer matrices. Similarly the
interface with FGb [6] mainly consists in converters between
different representations of multivariate polynomials.

When libraries contain many data types, functions, and
have their own memory management, the interface quickly
becomes tedious. This situation happened with the Pari

library [31]. We first created a C++ wrapper of generic
Pari objects, so that wrapped objects are reference counted
and have memory space allocated by Mathemagix. Before
calling a Pari function, the arguments are copied onto the
Pari stack. Once the function has terminated, the result
from the stack is wrapped into a Mathemagix object. Of
course converters for the different representations of inte-
gers, rationals, polynomials and matrices were needed. The
following example calls the Pari function nfbasis to com-
pute an integral basis of the number field defined by x2 +
x− 1001:

include "basix/fundamental.mmx";

include "mpari/pari.mmx";

Pol ==> Polynomial Integer;

x: Pol == polynomial (0 :> Integer, 1 :> Integer);

p: Pol == x^2 + x - 1001;

mmout << pari_nf_basis p << lf;

[1, 1 / 3 * x - 1 / 3]

6. FUTURE EXTENSIONS

The current mechanism for importing C++ template
libraries has been tested for the standard mathematical
libraries which are shipped with Mathemagix. For this pur-
pose, it has turned out to be very user friendly, flexible and
robust. We think that other languages may develop facilities
for the importation of C++ template libraries along sim-
ilar lines. In the future, our approach may even be useful for
adding more genericity to C++ itself. A few points deserve
to be developed further:

Exporting Mathemagix containers and templates. So far,
we have focussed on the importation of C++ containers and
templates, and Mathemagix only allows for the exporta-
tion of simple, non generic functions and non parameterized
classes. Nevertheless, one could add support for the more
general exportation of generic functions and parameterized
classes. Of course, information on the categories of the tem-
plate parameters would be lost in this process, and the
resulting templates will only allow for static instantiation.

Multi-threading. The main disadvantage of relying on global
variables for storing the current values of template parame-
ters is that this strategy is not thread-safe. In order to allow
generic code to be run simultaneously by several threads,

the global variables have to be replaced by fast lookup tables
which determine the current values of template parameters
as a function of the current thread.

Non class parameters. The current interface only allows
for the importation of C++ templates with type parame-
ters. This is not a big limitation, because templates with
value parameters are only supported for built-in types and
they can only be instantiated for constant values. Never-
theless, it is possible to define auxiliary classes for storing
mutable static variables, and use these instead as our tem-
plate parameters; notice that this is exactly the purpose
of the instance<Cat,Nr> template. In Mathemagix, we
also use this mechanism for the implementation of mod-
ular arithmetic, with a modulus that can be changed during
the execution. After fixing a standard convention for the
creation of auxiliary classes, our implementation could be
extended to the importation of C++ with “value parame-
ters” of this kind.

Interfacing more libraries. Interfacing libraries often
involves portability issues, and also create dependencies
that have a risk to be broken in case the library stops
being maintained. In the Mathemagix project we consid-
ered that functionalities imported from an external library
should be implemented even naively directly in Math-

emagix (excepted for Gmp and Mpfr). This represents a
certain amount of work (for lattice reduction, Gröbner basis,
finite fields, etc), but this eases testing the interfaces and
allows the whole software to run on platforms where some
libraries are not available.

Acknowledgments

This work has been partly supported by the Digiteo

2009-36HD grant of the Région Ile-de-France. We would
like to thank Jean-Charles Faugère for helping us in the
interface with FGb, and also Karim Belabas and Bill
Allombert for their precious advices in the design of our
interface with the Pari library.

7. REFERENCES

[1] Axiom computer algebra system. Software available
from http://wiki.axiom-developer.org.

[2] E. Bond, M. Auslander, S. Grisoff, R. Kenney,
M. Myszewski, J. Sammet, R. Tobey, and S. Zilles.
FORMAC an experimental formula manipulation com-
piler. In Proceedings of the 1964 19th ACM national con-
ference , ACM ’64, pages 112.101–112.1019, New York,
NY, USA, 1964. ACM.

[3] W. Bosma, J. Cannon, and C. Playoust. The Magma
algebra system. I. The user language. J. Symbolic
Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993).

[4] D. Cade, X. Pujol, and D. Stehlé. Fplll, library
for LLL-reduction of Euclidean lattices, 1998.
Software available from http://perso.ens-

lyon.fr/damien.stehle/fplll.

[5] Y. Chicha, F. Defaix, and S. M. Watt.
Automation of the Aldor/C++ interface: User’s
guide. Technical Report Research Report D2.2.2c,
FRISCO Consoritum, 1999. Available from

369

http://www.csd.uwo.ca/~watt/pub/reprints/1999-

frisco-aldorcpp-ug.pdf.

[6] J.-C. Faugère. FGb: A Library for Computing Gröbner
Bases. In K. Fukuda, J. van der Hoeven, M. Joswig, and
N. Takayama, editors, Mathematical Software - ICMS
2010, Third International Congress on Mathematical
Software, Kobe, Japan, September 13-17, 2010 , volume
6327 of Lecture Notes in Computer Science , pages 84–
87. Springer Berlin / Heidelberg, 2010.

[7] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and
P. Zimmermann. MPFR: A multiple-precision binary
floating-point library with correct rounding. ACM
Transactions on Mathematical Software , 33(2), 2007.
Software available from http://www.mpfr.org.

[8] M. Gaëtano and S. M. Watt. An object
model correspondence for Aldor and C++.
Technical Report Research Report D2.2.1,
FRISCO Consortium, 1997. Available from
http://www.csd.uwo.ca/~watt/pub/reprints/1997-

frisco-aldorcppobs.pdf.

[9] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and
J. Willcock. A comparative study of language sup-
port for generic programming. In Proceedings of the
2003 ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(OOPSLA’03), October 2003.

[10] J. Y. Girard. Une extension de l’interprétation de Gödel
à l’analyse, et son application à l’élimination de coupures
dans l’analyse et la théorie des types. In J. E. Fen-
stad, editor, Proceedings of the Second Scandinavian
Logic Symposium , pages 63–92. North-Holland Pub-
lishing Co., 1971.

[11] T. Granlund and the GMP development team. GNU
MP: The GNU Multiple Precision Arithmetic Library,
1991. Software available from http://gmplib.org.

[12] J. H. Griesmer, R. D. Jenks, and D. Y. Y. Yun.
SCRATCHPAD User’s Manual . Computer Science
Department monograph series. IBM Research Division,
1975.

[13] W. Hart. An introduction to Flint. In K. Fukuda,
J. van der Hoeven, M. Joswig, and N. Takayama, editors,
Mathematical Software - ICMS 2010, Third Interna-
tional Congress on Mathematical Software, Kobe, Japan,
September 13-17, 2010 , volume 6327 of Lecture Notes
in Computer Science , pages 88–91. Springer Berlin /
Heidelberg, 2010.

[14] J. van der Hoeven. Overview of the Mathemagix type
system. In Electronic proc. ASCM ’12 , Beijing, China,
October 2012. Available from http://hal.archives-

ouvertes.fr/hal-00702634.

[15] J. van der Hoeven, G. Lecerf, B. Mourrain,
et al. Mathemagix, 2002. Software available from
http://www.mathemagix.org.

[16] J. van der Hoeven, G. Lecerf, B. Mourrain, Ph.
Trébuchet, J. Berthomieu, D. Diatta, and A. Man-
zaflaris. Mathemagix, the quest of modularity and
efficiency for symbolic and certified numeric computa-
tion. ACM Commun. Comput. Algebra , 45(3/4):186–
188, 2012.

[17] R. D. Jenks. The SCRATCHPAD language. SIGPLAN
Not., 9(4):101–111, 1974.

[18] R. D. Jenks. MODLISP – an introduction (invited). In
Proceedings of the International Symposium on Symbolic
and Algebraic Computation , EUROSAM ’79, pages 466–
480, London, UK, 1979. Springer-Verlag.

[19] R. D. Jenks and R. Sutor. AXIOM: the scientific com-
putation system . Springer-Verlag, New York, NY, USA,
1992.

[20] R. D. Jenks and B. M. Trager. A language for compu-
tational algebra. SIGPLAN Not., 16(11):22–29, 1981.

[21] Maple user manual. Toronto: Maplesoft, a division
of Waterloo Maple Inc., 2005–2012. Maple is a
trademark of Waterloo Maple Inc. http://www.maple-
soft.com/products/maple.

[22] W. A. Martin and R. J. Fateman. The MACSYMA
system. In Proceedings of the second ACM symposium
on symbolic and algebraic manipulation , SYMSAC ’71,
pages 59–75, New York, NY, USA, 1971. ACM.

[23] P. Martin-Löf. Constructive mathematics and computer
programming. Logic, Methodology and Philosophy of
Science VI , pages 153–175, 1979.

[24] Maxima, a computer algebra system (free version). Soft-
ware available from http://maxima.sourceforge.net,
2011.

[25] R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences ,
17:348–375, 1978.

[26] J. Moses. Macsyma: A personal history. Journal of Sym-
bolic Computation , 47(2):123–130, 2012.

[27] G. Dos Reis and B. Stroustrup. Specifying C++ con-
cepts. SIGPLAN Not., 41(1):295–308, 2006.

[28] W. A. Stein et al. Sage Mathematics Software . The
Sage Development Team, 2004. Software available from
http://www.sagemath.org.

[29] B. Stroustrup. The C++ Programming Language .
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 3rd edition, 2000.

[30] R. S. Sutor and R. D. Jenks. The type inference and
coercion facilities in the Scratchpad II interpreter. SIG-
PLAN Not., 22(7):56–63, 1987.

[31] The PARI Group, Bordeaux. PARI/GP , 2012. Software
available from http://pari.math.u-bordeaux.fr.

[32] S. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C.
Morrison, J. M. Steinbach, and R. S. Sutor. A first
report on the A# compiler. In Proceedings of the inter-
national symposium on symbolic and algebraic computa-
tion , ISSAC ’94, pages 25–31, New York, NY, USA,
1994. ACM.

[33] S. Watt et al. Aldor programming language. Software
available from http://www.aldor.org, 1994.

[34] S. Wolfram. Mathematica: A System for Doing Mathe-
matics by Computer . Addison-Wesley, second edition,
1991. Mathematica is a trademark of Wolfram Research,
Inc. http://www.wolfram.com/mathematica.

370

