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ABSTRACT
In this paper, we propose two algorithms for verifying the
existence of real solutions of positive-dimensional polyno-
mial systems. The first one is based on the critical point
method and the homotopy continuation method. It targets
for verifying the existence of real roots on each connected
component of an algebraic variety V ∩ Rn defined by poly-
nomial equations. The second one is based on the low-rank
moment matrix completion method and aims for verifying
the existence of at least one real roots on V ∩Rn. Combined
both algorithms with the verification algorithms for zero-
dimensional polynomial systems, we are able to find veri-
fied real solutions of positive-dimensional polynomial sys-
tems very efficiently for a large set of examples.

Categories and Subject Descriptors: G.4 [Mathematics
of computing]: Mathematical Software; I.1.2 [Symbolic and
Algebraic Manipulation]: Algorithms;
General Terms: Algorithms, experimentation
Keywords: positive-dimensional polynomial systems, real
solutions, verification, error bounds.

1. INTRODUCTION
Let F (x) = [f1, . . . , fm]T be a polynomial system in Q[x] =

Q[x1, . . . , xn], and V ⊂ Cn be the algebraic variety defined
by:

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0. (1)

We are interested in verifying the existence of real solutions
on V ∩ Rn.

Suppose I = 〈f1, . . . , fm〉 is a radical ideal and V is equidi-
mensional, i.e., the irreducible components of V have same
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dimensions, then a point x̂ ∈ V is called a regular point of
V , or V is called smooth at x̂ if and only if the rank of the
Jacobian matrix Fx(x̂) satisfies

dimV = n− rank(Fx(x̂)). (2)

The set Vreg of regular points of V is called the regular locus
of V . A point x̂ is called singular at V if and only if

rank(Fx(x̂)) < n− dimV. (3)

The set Vsing := V \Vreg is called the singular locus of V . If
all points on V are regular, then V is called smooth.

Remark 1 If I = 〈f1, . . . , fm〉 is not a radical ideal, then
a point x̂ ∈ V is called a regular point of V if and only
if the rank of the Jacobian matrix Gx(x̂) satisfies dimV =
n−rank(Gx(x̂)), where G(x) = [g1, . . . , gs]

T is a polynomial

basis of
√
I.

Computing real roots of a polynomial system is a funda-
mental problem of computational real algebraic geometry.
There are symbolic methods based on Cylindrical Algebraic
Decomposition [12] and critical point methods [5, 8, 16, 15,
19, 31, 38] for finding real points on the variety V ∩ Rn.
Algorithms proposed in [1, 3, 4, 33, 37] find at least one
real point on each connected component of V ∩ Rn. Recent
work for computing verified real roots based on homotopy
methods include certified homotopy-tracking method in [6],
certifying solutions to polynomial systems using Smale’s α-
theorem [18].

A square zero-dimensional polynomial system . Sup-
pose F (x) is a square and zero-dimensional polynomial sys-
tem, i.e., m = n. Standard verification methods for nonlin-
ear square systems are based on the following theorem [21,
30, 34].

Theorem 1 Let F (x) : Rn → Rn be a polynomial system,
and x̃ ∈ Rn. Let IR be the set of real intervals, and IRn and
IRn×n be the set of real interval vectors and real interval
matrices, respectively. Given X ∈ IRn with 0 ∈ X and
M ∈ IRn×n satisfies ∇fi(x̃ + X) ⊆ Mi,:, for i = 1, . . . , n.
Denote by In the n× n identity matrix and assume

− F−1
x (x̃)F (x̃) + (In − F−1

x (x̃)M)X ⊆ int(X), (4)

where Fx(x̃) is the Jacobian matrix of F (x) at x̃. Then there
is a unique x̂ ∈ X with F (x̂) = 0. Moreover, every matrix
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M̃ ∈ M is nonsingular. In particular, the Jacobian matrix
Fx(x̂) is nonsingular.

The non-singularity of the Jacobian matrix Fx(x̂) restricts
the application of Theorem 1 to regular solutions of a square
polynomial system. If Fx(x̂) is singular and x is an isolated
singular solution of F (x), in [26, 27, 36], by adding smooth-
ing parameters properly to F (x), an extended regular and
square polynomial system is generated for computing veri-
fied error bounds, such that a slightly perturbed polynomial
system of F (x) is guaranteed to possess an isolated singular
solution within the computed bounds. The method in [29]
can also be used to verify the isolated singular solutions.

Remark 2 There are two functions verifynlss and verifynlss2
in the INTLAB package implemented by Rump in Matlab
[35]. The procedure verifynlss can be used to verify the
existence of a simple root of a square and regular zero-
dimensional polynomial system and verifynlss2 can be used
to verify the existence of a double root of a slightly perturbed
polynomial system of F (x). If the polynomial system F (x)
has an isolated singular root with multiplicity larger than 2,
then the function viss designed in [26, 27] and implemented
by Li and Zhu in Matlab can be applied to obtain verified
error bounds such that a slightly perturbed polynomial sys-
tem of F (x) is guaranteed to possess an isolated singular
solution within the computed bounds.

An overdetermined zero-dimensional polynomial sys-
tem . Suppose F (x) is an overdetermined zero-dimensional
polynomial system, i.e., m > n. A natural procedure for
obtaining a square polynomial system from F (x) is to pick
up a full rank random matrix A ∈ Qn×m and form a square
polynomial system A · F (x). According to [42, Theorem
13.5.1], we have the following theorem.

Theorem 2 There is a nonempty Zariski open subset A ∈
Cn×m such that for every A ∈ A, a solution of F (x) is
regular if and only if it is a nonsingular solution of the square
system A · F (x). Moreover, if F (x) is a zero-dimensional
system, then A · F (x) is also a zero-dimensional system.

According to Theorem 2, we can apply Theorem 1 to reg-
ular solutions of the square polynomial system A ·F (x) and
check whether the verified solution of A · F (x) is a solution
of F (x) by computing the residual of F (x̂) as an additional
test, see also [18, Lemma 3.1]. If F (x̂) is small, with high
probability, the verified real solution of A · F (x) is a real
solution of F (x).

A positive-dimensional polynomial system . Suppose
F (x) is a positive-dimensional polynomial system. It is
clear that an underdetermined system F (x) is a positive-
dimensional system whose dimension is at least n−m ≥ 1.
A square polynomial system and an overdetermined sys-
tem can also be positive-dimensional. In [9, 10], the au-
thors transformed an underdetermined system into a regu-
lar square system by choosing m independent variables and
setting n−m remaining variables to be anchors, then they
used a Krawczyk-type interval operator to verify the exis-
tence of the solutions of the transformed regular and square
system. It is very impressive that they can verify a solution

of a polynomial system with more than 10000 variables and
20000 equations with degrees as high as 100. More general
methods using linear slices to reduce the underdetermined
system to a square system were proposed in [40, 41, 42].
We notice that it is very important to choose independent
variables and initial values for the dependent variables or
linear slices. Especially, we might have a big chance to miss
the real points because of the bad choice for values of some
variables.

Example 1 Consider the polynomial Vor2, which appears
in a problem studying Voronoi Diagram of three lines in R3

[13]. Vor2 is a polynomial in five variables with degree 18. It
has an infinite number of real solutions. Let us set four vari-
ables as rational numbers chosen in the range [− 3000

1000
, 3000
1000

],
e.g.

x̂2 =
177

500
, x̂3 =

423

1000
, x̂4 =

209

1000
, x̂5 =

143

50
,

the univariate polynomial V (x1) =Vor2 (x1, x̂2, x̂3, x̂4, x̂5) ∈
Q[x1] has no real solutions.

Remark 3 If there is only one polynomial f(x1, . . . , xn)
and the degree of f with respect to the variable xi is odd, the
univariate polynomial f(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n) will
always have a real root x̂i ∈ R for arbitrary fixed values
x̂j ∈ Q, 1 ≤ j ≤ n, j = i. Hence, it is easy to verify that
(x̂1, . . . , x̂i−1, x̂i, x̂i+1, . . . , x̂n) is the real root of f(x).

The main task of this paper is to construct a square and
zero-dimensional polynomial system for computing verified
real solutions of positive-dimensional polynomial systems.
Let I = 〈f1, . . . , fm〉 and V be an algebraic variety defined
by {f1 = 0, . . . , fm = 0}. We propose below different strate-
gies for computing verified solutions on V ∩ Rn.

1. If the ideal I is radical and contains regular real solu-
tions, we propose two algorithms for computing verified
real solutions on V ∩ Rn:

a. We use theoretical results developed in real algebraic
geometry for finding one point on each connected com-
ponent of V ∩ Rn to construct a square and regular
zero-dimensional polynomial system [1, 3, 4, 33, 37],
then use the homotopy continuation solver HOM4PS-
2.0 [24] to find its approximate real solutions. Finally,
we apply verifynlss in the INTLAB package [35] to ver-
ify the existence of real solutions in the neighborhood
of the computed approximate real solutions on con-
nected components of V ∩ Rn.

b. We compute an approximate real solution x̃ of F (x)
by the low-rank moment matrix completion method
in [28]. If the Jacobian matrix Fx(x̃) is singular, we
compute a normalized null vector v of Fx(x̃) and add

new polynomials
∑m

j=1 vi
∂fj(x)

∂xi
for 1 ≤ i ≤ n to F (x).

Otherwise, we choose a normalized random vector λ
and add polynomials Fx(x)λ − Fx(x̃)λ to F (x). Fi-
nally, we apply verifynlss to verify the existence of a
real solution x̂ in the neighborhood of x̃ on V ∩ Rn.

2. If the ideal I is not radical, we add tiny perturbations to
the polynomial system F (x) and modify above two algo-
rithms accordingly.
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c. The critical variety for the perturbed system is a zero-
dimensional polynomial system containing not only reg-
ular solutions but also approximate singular solutions.
For approximate singular solutions, we apply the veri-
fication algorithms verifynlss2 in [35] or viss in [26, 27]
to compute verified error bounds, such that a slightly
perturbed polynomial system of F (x) possesses a real
solution within the computed error bounds.

d. The real solutions computed by the method in [28] can
be approximate singular solutions. We need to apply
verification algorithms verifynlss2 or viss to compute
verified error bounds of a slightly perturbed polyno-
mial system.

Structure of the paper. In Section 2, we introduce theo-
retical results and methods for computing verified real solu-
tions for positive-dimensional polynomial systems. In Sec-
tion 3, we present three routines: verifyrealroot0 computes
verified real solutions for zero-dimensional polynomial sys-
tems; verifyrealrootpc aims for computing verified real solu-
tions on each connected components of V ∩ Rn; verifyreal-
rootpm is designed for computing at least one verified real so-
lution for positive-dimensional polynomial systems. In Sec-
tion 4, we demonstrate the effectiveness of the algorithms for
computing verified real roots of a set of benchmark systems.

2. POSITIVE-DIMENSIONAL POLYNOMIAL
SYSTEMS

2.1 The Radical Ideal Case
Let us consider the case where the ideal I generated by

f1(x), . . . , fm(x) is radical and V is of dimension d and con-
tains a regular point in Rn.

The critical point method

Theorem 3 [4, Lemma 1]Let C be a connected component
of the real variety V containing a regular point. Then, with
respect to the Euclidean topology, there exists a non-empty
open subset UC of Rn\V that satisfies the following condi-
tion: Let u be an arbitrary point of UC and let x̂ be any
point of V that minimizes the Euclidean distance to u with
respect to V . Then x̂ is a regular point belonging to C.

According to Theorem 3, one can compute a regular real
sample point on V by computing its critical points of a
distance function to a generic point restricted to V . This
method was proposed in [1, 32, 33], see also [2, 4, 7] for
some recent results when F (x) has real singular solutions.
Let us briefly introduce the method in [1].

Definition 1 [1, Notation 2.4] For an arbitrary point u =
(u1, . . . , un) ∈ Rn, let g = 1

2
(x1 − u1)

2 + · · · + 1
2
(xn − un)

2

and

Jg(F ) =

⎡
⎢⎢⎣

∂f1
∂x1

. . . ∂fm
∂x1

∂g
∂x1

...
...

...
∂f1
∂xn

. . . ∂fm
∂xn

∂g
∂xn

⎤
⎥⎥⎦ . (5)

We define the algebraic set:

C(V,u) = {x̂ ∈ V, rank(Jg(F (x̂))) ≤ n− d}. (6)

Let Δu,d(F ) be the set of all the minors of order n − d + 1
in the matrix Jg(F ) such that their last column contains the
entries in the last column of Jg(F ).

Theorem 4 [1, Theorem 2.3] Let V be an algebraic variety
of dimension d and I be a radical equidimensional ideal. If
D is a large enough positive integer, there exists at least one
point u in {1, . . . , D}n such that:

1. C(V,u) meets every semi-algebraically connected com-
ponent of V ∩ Rn;

2. C(V,u) = Vsing ∩ V0,u, where V0,u is a finite set of
points in Cn and Vsing are singular points on V whose
Jacobian matrix have rank less than n− d.

Moreover,

dim(C(V,u)) < dim(V ). (7)

According to Theorem 4, for almost all u, the dimension
of the algebraic variety C(V,u) of Δu,d(F ) ∪ F (x) will be
strict less than the dimension of V . Therefore, inductively,
we will obtain a zero-dimensional polynomial system which
can be used to verify the existence of regular real solutions
on V . As stated in [1, 32], the main bottleneck for the
critical points method is the computation of Δu,d since the
number of elements in Δu,d is equal to

(
m

n−d

) (
n

n−d+1

)
and

the polynomials in Δu,d are usually dense and have large
coefficients. An alternative way to avoid the computation
of the minors is to introduce extra variables λ0, . . . , λn−d

and pick up randomly n− d real numbers a0, . . . , an−d and
polynomials in F (x) such as f1, . . . , fn−d, and replace the
minors in Δu,d by polynomials defined below

pi = λ0
∂g

∂xi
+ λ1

∂f1
∂xi

+ . . .+ λn−d
∂fn−d

∂xi
, for 1 ≤ i ≤ n,

pn+1 = a0λ0 + . . .+ an−dλn−d − 1.

This is the way used in [17, Theorem 5] to generate solution
paths leading to real solutions on V using the homotopy
continuation method.

If V is compact and smooth, and the variables x1, . . . , xn

are in a generic position with respect to f1, . . . , fm, then
as shown in [3, Theorem 10], one can change the distance
function g to a coordinate function g = xi, 1 ≤ i ≤ n such
that the dimension of the real variety of Δu,d(F ) ∪ F (x)
will be zero and contains at least one real point on each
connected component of V ∩Rn. Moreover, in [37], Safey El
Din and Schost extended the result in [3] to deal with the
case where V ∩ Rn is non-compact.

The low-rank moment matrix completion method.
Recently, there is also an arising interest in using numerical
semidefinite programming (SDP) based method [11, 20, 23]
for characterizing and computing the real solutions of poly-
nomial systems. As pointed out in [23], the great benefit
of using SDP techniques is that it exploits the real alge-
braic nature of the problem right from the beginning and
avoids the computation of complex components. For exam-
ple, if V ∩ Rn is zero-dimensional, then the moment-matrix
algorithm in [23] can compute all real solutions of F (x) by
solving a sequence of SDP problems.

If the polynomial system F (x) has an infinite number of
real solutions, then the algorithm in [23] can not be used.

373



Hence, in [20, 22], they replaced the constant object function
by the trace of the moment matrix and showed that their
software GloptiPoly is very efficient for finding a partial set of
real solutions for a large set of polynomial systems [22, Table
6.3, 6.4]. Since the trace of a semidefinite moment matrix is
equal to its nuclear norm defined as the sum of its singular
values, the optimization problem can be transformed to the
following nuclear norm minimization problem:⎧⎪⎪⎨

⎪⎪⎩
min ||Mt(y)||∗
s. t. y0 = 1,

Mt(y) � 0,
Mt−dj (fj y) = 0, j = 1, . . . , m,

(8)

In [28], a new algorithm based on accelerated fixed point
continuation method and alternating direction method was
presented to solve the minimization problem (8) for finding
real solutions of F (x) even when its real variety V ∩ Rn is
positive-dimensional. Although the method based on func-
tion values and gradient evaluations cannot yield as high
accuracy as interior point methods, much larger problems
can be solved since no second-order information needs to be
computed and stored.

Encouraged by the results shown in [28, Table1] and noted
that the main bottleneck for the critical point method is the
computation of Δu,d, we explain below how to avoid the
computation of minors by constructing a zero-dimensional
polynomial system based on the approximate real solution x̃
computed by the algorithm MMCRSolver in [28] for verifying
the existence of real solutions in V ∩Rn in the neighborhood
of x̃ when V is positive-dimensional.

Suppose x̃ is an approximate real root of F (x) computed
by MMCRSolver. If the rank of the Jacobian matrix Fx(x̃) is
less than n−d, then x̃ is a singular point on V . Stimulated by
the deflation method used in [25] for constructing extended
regular polynomial systems, we compute a normalized null
vector v (|v|2 = 1) of Fx(x̃) and generate a new polynomial

system F̃ (x) = F (x) ∪ Fx(x)v. It is clear that x̃ is a real
solution of {

F (x) = 0,
Fx(x)v = 0.

(9)

It is possible that x̃ is still a singular solution of F̃ , then we

can perform the similar deflations to the system F̃ (x) again.
If the approximate solution x̃ is not a singular point on

the variety V ∩ Rn, i.e., the rank of the Jacobian matrix
Fx(x̃) is n− d, then we choose a normalized random vector

λ and construct a new polynomial system F̃ (x) = F (x) ∪
{Fx(x)λ− Fx(x̃)λ}. It is clear that x̃ is a solution of{

F (x) = 0,
Fx(x)λ− Fx(x̃)λ = 0.

(10)

Suppose we obtain a zero-dimensional regular system F̃ (x)
after above steps, then we apply verifynlss [35] to verify the
existence of a real solution x̂ in the neighborhood of x̃ on
V ∩ Rn. However, it is not guaranteed that the variety of

the new polynomial system F̃ (x) generated above will be a
zero-dimensional regular system. In order to obtain a zero-
dimensional regular system, we may need to add more ran-
dom polynomials vanishing at x̃.

The verification algorithm based on using the null vector
of Fx(x̃) or a random vector to construct new polynomial

systems can be more efficient since it avoids the computa-
tions of minors or the introduction of new variables. How-
ever, since we only use local information about the approx-
imate real root x̃ of F (x) in order to construct the new
extended system, it is limited to verify the existence of a
real root x̂ in the neighborhood of x̃. For some interesting
applications, it is enough to verify the existence of one real
solution, e.g., for deciding reachability of the infimum of a
multivariate polynomial [14], if we can verify the existence
of one real solution for f − f∗, then we prove that f∗ is a
minimum which can be attained.

Example 2 [7, Example 4] To illustrate the above method,
consider the polynomial f(x1, x2) = x2

1−x2 (x2+1)(x2+2).
MMCRSolver yields one approximate real solution

x̃ = [3.671518 × 10−8,−0.999902]T .

Since the approximate solution x̃ is not a singular solution of
f(x), we choose a random vector λ = [0.715927,−0.328489]T

and construct a new square polynomial system by adding
one more polynomial g defined by λ and x̃ in (10). The
curves of f and g are displayed in the following figure with
dot and dash line styles respectively.

We run the algorithm verifynlss and prove that f(x1, x2)
has a verified real solution within the inclusion

x1 x2

4.3211387 × 10−8 ± 2.7× 10−15 −1± 2.2× 10−15

2.2 The Non-radical Ideal Case
If the ideal I generated by polynomials in F (x) is not

radical, as pointed out in [1], the inequality (7) in Theorem
4 is not true. It is difficult to verify the exact existence
of real points on singular locus Vsing which might have the
same dimension as V .

Example 3 [43, 5.15] Consider the system F (x) containing
polynomials f1 = x3

1x
2
3 + x3, f2 = x2

1x2 + x3.
The ideal I generated by polynomials f1, f2 is not radical.

The real algebraic variety V ∩Rn defined by {f1 = 0, f2 = 0}
contains three one-dimensional solutions V1 = {x1 = 0, x3 =
0}, V2 = {x2 = 0, x3 = 0}, V3 = {x5

1x2−1 = 0, x3x
3
1+1 = 0}.

Since the rank of the Jacobian matrix at all points on the
variety V1 is 1, we know that the variety C(V,u) defined
in (6) for an arbitrary chosen point u contains the one-
dimensional variety V1. Hence dim(C(V,u)) = dim(V ) = 1,
the inequality (7) in Theorem 4 is not true for this example.

Let us choose u as

{u1 = 1, u2 = 2, u3 = 3}.
The set Δu,1(F ) consists of the determinant of Jg(F ) de-
fined by (5) in Theorem 4. Applying the homotopy solver
HOM4PS-2.0 to the polynomial system F (x)∪Δu,1(F ), we
obtain 5 real approximate solutions of C(V,u).
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• The real solution {x1 = 0, x2 = 0, x3 = 0} is on
V1 ∩ C(V,u). It is not an isolated singular solution.
Therefore, it can not be verified by verifynlss2 or viss.

However, it is interesting to notice that there is another
real root computed by HOM4PS-2.0 which is very near
to V1. Run the algorithms viss, we are able to com-
pute the verified error bound, such that the slightly
perturbed system (within 4.16× 10−15) of F (x) has a
verified real solution within the inclusion

x1 x2 x3

0 2± 4.44 × 10−16 0

• Applying the algorithm verifynlss to other three ap-
proximate real roots computed by HOM4PS-2.0, we
obtain:

– two verified regular real solutions within inclu-
sions on the component V3,

x1 x2 x3

1.7± 2× 10−15 0.07 ± 5× 10−15 −0.2± 8× 10−16

−1.1± 7× 10−16 −0.57± 1× 10−15 0.71± 1× 10−15

– one verified regular real solution within the inclu-
sion on the component V2,

x1 x2 x3

1± 4.4440892 × 10−16 0 0

If I is not radical, a well-known method to get a smooth
algebraic variety is to add one or more infinitesimal de-
formations to polynomials in F (x) and work over a non-
archimedean real closed extension of the ground field [5, 33].
The computation could be quite expensive. Therefore, in-
stead of proving the exact existence of real roots on the
variety defined by a non-radical ideal, we perturb the sys-
tem by a tiny real number and show the existence of real
roots of this slightly perturbed polynomial system.

Theorem 5 [17, Lemma 4] Suppose G consists of n − d
polynomials and V (G) is a pure d-dimensional variety. There
is a nonempty Zariski open set Z ⊂ Cn−d such that, for ev-
ery z ∈ Z, V (G− z) is a smooth algebraic set of dimension
d.

For m = 1, it is a well known consequence of Sard theorem,
see [33, Lemma 3.5].

Let us add a small perturbation 10−25 to f1 above and run
the homotopy solver HOM4PS-2.0 for the perturbed system
{f1 + 10−25, f2} ∪ Δu,1(F ), we also obtain 5 approximate
real solutions on C(V,u). The algorithm verifynlss computes
inclusions of three real solutions near to V2 and V3:

x1 x2 x3

1± 3× 10−16 0 0
1.7± 2× 10−15 0.07 ± 5× 10−15 −0.2± 8× 10−16

−1.1± 7× 10−16 −0.57 ± 1× 10−15 0.71 ± 1× 10−15

Applying the algorithm viss, we obtain inclusions for an-
other two real solutions near to V1:

x1 x2 x3

7.4× 10−9 ± 3× 10−24 1.8× 10−9 ± 2× 10−24 0
0 2± 9× 10−16 0.

Remark 4 Notice here, the perturbed system is smooth,
C(V,u) is a zero-dimensional variety. However, it contains
approximate singular solutions [29]. Hence, it is necessary
to apply the algorithm viss to verify the existence of real
singular solutions of a slightly perturbed system. Moreover,
since computations in Matlab have limited precisions, with
or without tiny perturbations, we may get similar results.

We can also apply MMCRSolver to obtain an approximate
real solution of F (x) near to (0, 0, 0). Running the algo-
rithms verifyrealrootpm and verifynlss2, we prove that the
slightly perturbed system (within 10−58) of F (x) has a ver-
ified real solution within the inclusion

x1 x2 x3

1.35 × 10−15 ± 2× 10−30 6.77 × 10−15 ± 9× 10−29 0

3.

Based on discussions in above sections, we present three
procedures: verifyrealroot0 is based on the verification al-
gorithms verifynlss, verifynlss2 [35] and viss [26, 27], and
computes verified real solutions for zero-dimensional poly-
nomial systems; verifyrealrootpc is based on the critical point
method and the homotopy continuation method, and aims
for computing at least one verified real solution on each con-
nected component of V ∩Rn; verifyrealrootpm is based on the
low-rank moment matrix completion method in [28], and
aims for computing at least one verified real solution for
positive-dimensional polynomial systems. Before we show
the algorithms, we would like to point out that unlike sym-
bolic methods [1, 32, 33, 37], our algorithms can not be used
to verify the nonexistence of real solutions on V ∩ Rn, i.e.,
the failure of our algorithms does not mean there exist no
real solutions on V ∩ Rn.

Remark 5 According to Theorem 4, suppose I is a radical
equidimensional ideal, then the variety C(V,u) meets every
semi-algebraic connected component of V ∩ Rn. Further-
more, applying Theorem 4 recursively, one is able to obtain
a zero-dimensional overdetermined system, which contains
a regular real root on V ∩ Rn if it is not empty. It should
be pointed out that we do not perform the equidimensional
decomposition of the ideal I = 〈f1, . . . , fm〉. The function
verifyrealrootpc does not guarantee to verify real roots on
each connected component of V ∩Rn if V is not equidimen-
sional.

Remark 6 If I is not radical, it is still possible to verify
the existence of regular real solutions. However, as observed
from the Example 3, the variety C(V,u) may have singular
locus with the same dimension as the variety V . Hence, we
could only verify the existence of a singular real root near to
the slightly perturbed polynomial system. Another possibil-
ity would be to perturb the polynomial system F (x) at the
beginning by a tiny number. We notice in the non-radical
case, it is necessary to call verifynlss2 or viss for verifying
the existence of a singular solution of a slightly perturbed
polynomial system.
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verifyrealroot0
Input: A zero-dimensional polynomial system F (x) =

[f1, . . . , fm]T in Q[x1, . . . , xn],
a given small tolerance ε ∈ R.

Output: A set L of real root inclusions X.

1. If m > n, choose a random matrix A ∈ Qn×m; other-
wise, set A = In.

2. Set F̃ = A · F (x), apply MMCRSolver or HMO4PS-2.0

to obtain approximate real roots of F̃ (x), denoted by
x̃1, . . . , x̃k.

3. Set L = {}. For i = 1, . . . , k do:

(a) If the Jacobian matrix F̃x(x̃i) is regular

call verifynlss to obtain the real root

inclusion X of F̃ (x), set b = 0.

Otherwise

call verifynlss2 or viss to obtain the verified

error bound b and the real root inclusion X.

(b) Compute the residue τ = F (X). If τ < ε and
b < ε, set L = L ∪ {X}.

4. Output L.

Figure 1: The Verification Algorithm for Zero-
Dimensional Polynomial Systems.

verifyrealrootpc
Input: A positive-dimensional polynomial system

F (x) = [f1, . . . , fm]T in Q[x1, . . . , xn],
a given small tolerance ε ∈ R.

Output: A set L of real root inclusions X.

1. Construct a zero-dimensional overdetermined system,

denoted by F̃ (x) via the critical point method.

2. Suppose the number of polynomials in F̃ (x) is s,

choose a random matrix A = Qn×s and update F̃ (x)

to be A · F̃ (x).

3. Apply HOM4PS-2.0 to obtain approximate real roots

of F̃ (x), denoted by x̃1, . . . , x̃k.

4. Run Step 3 of verifyrealroot0 for F̃ (x) and x̃1, . . . , x̃k.

5. Output L.

Figure 2: The Verification Algorithm for Positive-
Dimensional Polynomial Systems Based on the Crit-
ical Point Method and the Homotopy Continuation
Method

Remark 7 The polynomial system F̃ (x) generated in Step
2(a) of verifyrealrootpm is not guaranteed to be of zero di-

mension. If F̃ (x) is still of positive dimension and Step 2(c)
fails for x̃i, then we add more polynomials vanishing at x̃i

to F̃ (x).

verifyrealrootpm
Input: A positive-dimensional polynomial system

F (x) = [f1, . . . , fm]T in Q[x1, . . . , xn],
a given small tolerance ε ∈ R.

Output: A set L of real root inclusions X.

1. Apply MMCRSolver to obtain approximate real roots
of F (x), denoted by x̃1, . . . , x̃k.

2. Set L = {}. For i = 1, . . . , k do:

(a) i. If Fx(x̃i) is singular
compute a normalized null vector v of Fx(x̃i)

F̃ (x) =
{∑m

j=1 vi
∂fj(x)

∂xi
, 1 ≤ i ≤ n

}
∪ F (x).

ii. Otherwise
compute a normalized random vector λ

F̃ (x) = F (x) ∪ {Fx(x)λ− Fx(x̃i)λ}
(b) Choose a random matrix A = Qn×(m+n), update

F̃ to be A · F̃ .

(c) Run Step 3(a)(b) of verifyrealroot0 for F̃ (x) and
x̃i.

3. Output L.

Figure 3: The Verification Algorithm for Positive-
dimensional Polynomial Systems Based on Low-rank
Moment Matrix Completion Method.

Remark 8 In verifyrealrootpc and verifyrealrootpm, if the
polynomial system F (x) is underdetermined, i.e., m < n,
our first choice of the random matrix A will always have the

block structure

[
Im 0
0 Asub

]
, where Asub is chosen randomly.

In this case, we do not need to compute the residue. The

verified solution of F̃ will be a verified solution of F (x).

4. EXPERIMENTS
Our algorithms have been implemented in Matlab (2011R)

and the performance is reported in the following tables. All
examples are run on Intel(R) Core(TM) at 2.6GHz under
Windows. We also translate the Maple codes of MMCR-
Solver [28] and viss [26, 27] into Matlab codes. The codes can
be downloaded from http://www.mmrc.iss.ac.cn/~lzhi/

Research/hybrid/VerifyRealRoots/

In Table 1, we exhibit the performance of the algorithm
verifyrealroot0 for computing verified real solutions of zero-
dimensional polynomial systems. All problems are taken
from the homepage of Jan Verschelde http://www.math.

uic.edu/~jan/. Here var and deg denote the number of
the variables and the highest degree of polynomials; ctrs
denotes the number of the equations; verifyrealroot0(M) and
verifyrealroot0(H) refer to the two methods based on the low-
rank moment matrix completion method and the homotopy
method respectively for computing approximate roots in ver-
ifyrealroot0; sol denotes the number of the verified solutions;
time is given in seconds for computing verified real solutions;
whereas width denotes the largest of widths of all verified so-
lutions computed by our algorithms.

In Table 2, Table 3 and Table 4, we exhibit the perfor-
mance of our algorithms on positive dimensional polynomial
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verifyrealroot0(M) verifyrealroot0(H)
problem var deg

time sol width time sol width
cohn2 4 6 10.8 1 6.3e-29 20.1 3 6.5e-12
cohn3 4 6 24.7 1 2.4e-26 137 5 2.9e-9

comb3000 10 3 1.56 1 2.0e-20 1.38 4 2.7e-20
d1 12 3 52.3 2 1.7e-14 6.24 16 1.8e-14

boon 6 4 27.6 1 5.1e-15 1.98 8 2.9e-15
des22 24 10 2 1.79 1 2.5e-14 1.73 10 1.1e-8
discret3 8 2 51.5 1 1.3e-13 107 102 1.5e-14
geneig 6 3 6.53 2 6.7e-15 4.63 10 2.7e-13
heart 8 4 24.9 2 5.3e-15 1.40 2 4.9e-15
i1 10 3 1.23 1 1.7e-16 11.0 16 9.1e-08

katsura5 6 2 1.35 1 2.2e-16 3.26 12 1.8e-15
kin1 12 3 52.3 2 1.8e-14 5.91 16 1.8e-14
ku10 10 2 37.8 1 4.7e-14 0.96 2 6.7e-14
noon3 3 3 1.88 1 1.6e-16 11.7 8 1.6e-15
noon4 4 3 9.70 1 3.6e-15 30.2 22 3.9e-15
puma 8 2 5.85 2 2.9e-14 3.99 16 1.8e-13

quadfor2 4 4 1.48 2 5.6e-16 0.71 2 2.2e-16
rbp1 6 3 5.59 1 2.6e-15 23.2 4 8.4e-14

redeco5 5 2 0.95 1 8.3e-17 1.07 4 1.3e-15
reimer5 5 6 26.7 3 8.4e-14 5.83 24 3.2e-13

Table 1: Algorithm Performance on Zero-
dimensional Polynomial Systems

systems. The symbol � denotes the singular solutions ver-
ified by verifynlss2 or viss; the symbol ∗ denotes that the
verified solution is a real solution of the original polynomial
system with high probability. curve0-5 are examples from
[7]; ex4 and ex5 are cited from [33]; Vor2 is from [13]; the
remaining examples are taken from the homepage of Jan
Verschelde and the polynomial test suite of D. Bini and B.
Mourrain http://www-sop.inria.fr/saga/POL/.

verifyrealrootpm verifyrealrootpc
problem var ctrs deg

timesol width time sol width
curve1 2 1 6 3.43 1 1.1e-14 4.13 9 5.0e-14
curve2 2 1 12 8.87 1 9.5e-20 160 27, 11� 5.2e-10
curve3 2 1 6 2.02 1 8.7e-15 20.0 8 2.1e-14
curve4 2 1 3 1.26 1 8.7e-15 3.96 3 3.3e-15
curve5 2 1 6 6.11 1� 4.9e-16 12.9 4 4.7e-11
ex4 3 1 5 4.72 1 5.0e-14 46.6 10 6.0e-12
ex5 4 1 4 5.13 1 1.4e-26 122 46, 2� 2.2e-9

adjmin22e4 6 2 2 9.86 1 9.0e-30 234 14, 22� 1.8e-12
butcher 4 2 3 3.41 1 8.9e-15 319 30 1.7e-12
gerdt2 5 3 4 4.82 1 1.6e-15 506 31 1.2e-10

Table 2: Algorithm Performance on Positive-
dimensional Polynomial Systems

The algorithm verifyrealrootpc is designed for computing
the verified solutions on each connected component on V
by adding all minors in Δn,d. However, it is well-known
that polynomials in Δn,d are usually dense and have large
coefficients. It is difficult for HOM4PS-2.0 to handle large
polynomials in Matlab. Therefore, verifyrealrootpc can only
find successfully verified real solutions for polynomial sys-
tems in Table 2. In order to apply verifyrealrootpc to poly-

nomial systems in Table 3, we use the most possible canon-
ical projections, i.e., fixing as many variables as possible,
to construct the zero-dimensional polynomial system. The
modified version of verifyrealrootpc is denoted as verifyreal-
rootpc*. Therefore, in Table 3, both algorithms are aiming
only for verifying the existence of at least one real root of
polynomial systems.

verifyrealrootpm verifyrealrootpc*
problem var ctrs deg

time sol width time sol width
vor2 5 1 18 19.9 1� 3.2e-11 587 1� 1.7e-6
curve0 2 1 12 9.28 3� 3.9e-15 10.8 4� 4.4e-16
birkhoff 4 1 10 127 1� 2.2e-26 7.72 7 1.0e-14

adjmin23e5 8 3 2 1.24 1 2.3e-28 1.09 1 7.8e-16
adjmin24e6 10 4 2 1.68 1 4.8e-28 1.46 1 1.1e-15
adjmin25e7 12 5 2 6.19 1 3.7e-27 1.68 1 6.2e-15
adjmin26e8 14 6 2 4.05 1 3.3e-29 2.32 1 3.1e-15
adjmin27e9 16 7 2 3.51 1 1.0e-29 1.98 1 2.7e-15
adjmin28eA 18 8 2 26.6 1 3.9e-29 3.29 1 3.3e-15
adjmin29eB 20 9 2 6.39 1 2.3e-29 9.22 1 4.0e-15
geddes2 5 4 6 18.9 1 5.8e-14 5.43 11 3.6e-11
geddes3 11 2 3 2.58 1 5.5e-28 1.26 1 7.1e-15
geddes4 12 3 3 3.05 1 1.3-27 1.34 1 7.1e-15
hairer1 8 6 3 2.06 1 1.2e-14 1.25 1 5.8e-15
hairer2 9 7 4 244 3 1.3e-12 17.7 6 9.3e-12

lanconelli 8 2 3 5.38 1 6.7e-15 1.48 2 4.9-13
bronestein2 4 3 4 14.7 1� 1.3e-25 3.18 2 3.8e-15

hawesl 5 4 9 16.1 1� 4.5e-19 2.09 1 3.6e-14
raksanyi 8 4 3 2.47 1 1.4e-19 1.69 2 1.2e-15

spatburmel 6 5 2 11.9 1 5.9e-15 3.92 2 1.6e-12

Table 3: Algorithm Performance on Positive-
dimensional Polynomial Systems

In Table 4 we show the performance of our algorithms on
non-radical polynomial systems cited from [40, 43, 44]. Let
pert. denote the real number added to the original polyno-
mial system. It should be noticed that only a very limited
number of small non-radical polynomial systems are tested
above. We are working on providing a more reliable al-
gorithm for certifying real roots of non-radical polynomial
systems.

verifyrealrootpm verifyrealrootpcEx var ctrs deg
pert. time sol width pert. time sol width
0 18.9 1� 2.5e-16 0 18.7 1 1.4e-15Ex.1 3 2 4

1e-15 1.48 1 5.6e-17 1e-14 8.84 1, 1� 1.6e-15
0 3.33 1∗ 4.2e-27 0 7.12 3∗ 2.2e-11Ex.2 3 3 2

1e-15 0.99 1 8.5e-21 1e-15 0.48 1 9.9e-31
0 3.90 1∗ 4.4e-9 0 3.13 1 3.3e-16Ex.3 3 3 2

1e-10 22.2 1 8.9e-15 1e-14 2.63 1 8.5e-9
0 3.51 1∗ 2.3e-19 0 22.9 2∗, 1∗� 5.6e-13

Ex.4 2 2 5
1e-20 8.01 1 2.0e-31 1e-15 0.655 1 1.9e-11
0 8.92 1� 4.2e-17 0 32.3 3 2.0e-15Ex.5 3 2 5

1e-14 11.5 1� 5.7e-18 1e-15 6.98 5 2.2e-15
0 92.9 1� 6.6e-16 0 15.2 3 2.6e-15Ex.6 2 2 8

1e-9 43.6 1 3.6e-12 1e-8 11.3 5 2.9e-12

Table 4: Algorithm Performance on Nonradical
Positive-dimensional Polynomial Systems
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connected components of a semialgebraic set in single
exponential time. Discrete & Computational Geometry 11
(1994), 121–140.

[20] Henrion, D., and Lasserre, J. Detecting global optimality and
extracting solutions in GloptiPoly. In Positive polynomials in
control, vol. 312 of Lecture Notes in Control and Inform. Sci.
Springer, Berlin, 2005, pp. 293–310.

[21] Krawczyk, R. Newton-algorithmen zur bestimmung von
nullstellen mit fehlerschranken. Computing (1969), 187–201.

[22] Lasserre, J. Moments, Positive Polynomials and Their
Applications. Imperial College Press, 2009.

[23] Lasserre, J., Laurent, M., and Rostalski, P. Semidefinite
characterization and computation of zero-dimensional real
radical ideals. Foundations of Computational Mathematics 8
(2008), 607–647.

[24] Lee, T.-L., Li, T.-Y., and Tsai, C.-H. Hom4ps-2.0: a software
package for solving polynomial systems by the polyhedral

homotopy continuation method. Computing 83, 2-3 (2008),
109–133.

[25] Leykin, A., Verschelde, J., and Zhao, A. Newton’s method
with deflation for isolated singularities of polynomial systems.
Theoretical Computer Science 359, 1 (2006), 111–122.

[26] Li, N., and Zhi, L. Verified error bounds for isolated singular
solutions of polynomial systems. Preprint,
arxiv.org/pdf/1201.3443.

[27] Li, N., and Zhi, L. Verified error bounds for isolated singular
solutions of polynomial systems: case of breadth one. To
appear in Theoretical Computer Science, DOI:
10.1016/j.tcs.2012.10.028.

[28] Ma, Y., and Zhi. Computing real solutions of polynomial
systems via low-rank moment matrix completion. In ISSAC
(2012), ACM, pp. 249–256.

[29] Mantzaflaris, A., and Mourrain, B. Deflation and certified
isolation of singular zeros of polynomial systems. In
Proceedings of the 36th international symposium on Symbolic
and algebraic computation (New York, NY, USA, 2011),
A. Leykin, Ed., ISSAC ’11, ACM, pp. 249–256.

[30] Moore, R. E. A test for existence of solutions to nonlinear
systems. SIAM Journal on Numerical Analysis 14, 4 (1977),
pp. 611–615.

[31] Renegar, J. On the computational complexity and geometry of
the first-order theory of the reals. part i: Introduction.
preliminaries. the geometry of semi-algebraic sets. the decision
problem for the existential theory of the reals. Journal of
Symbolic Computation 13, 3 (1992), 255 – 299.

[32] Rouillier, F. Efficient algorithms based on critical points
method. In Algorithmic and Quantitative Aspects of Real
Algebraic Geometry in Mathematics and Computer Science

(2001), S. Basu and L. Gonźlćlez-Vega, Eds., American
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