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ABSTRACT
Critical point methods are at the core of the interplay between poly-
nomial optimization and polynomial system solving over the reals.
These methods are used in algorithms for solving various problems
such as deciding the existence of real solutions of polynomial sys-
tems, performing one-block real quantifier elimination, computing
the real dimension of the solution set, etc.

The input consists of s polynomials in n variables of degree at
most D. Usually, the complexity of the algorithms is (sD)O(nα)

where α is a constant. In the past decade, tremendous efforts have
been deployed to improve the exponents in the complexity bounds.
This led to efficient implementations and new geometric proce-
dures for solving polynomial systems over the reals that exploit
properties of critical points. In this talk, we present an overview
of these techniques and their impact on practical algorithms. Also,
we show how we can tune them to exploit algebraic and geometric
structures in two fundamental problems.

The first one is real root finding of determinants of n-variate
linear matrices of size k × k. We introduce an algorithm whose
complexity is polynomial in

(
n+k
k

)
(joint work with S. Naldi and

D. Henrion). This improves the previously known kO(n) bound.
The second one is about computing the real dimension of a semi-
algebraic set. We present a probabilistic algorithm with complexity
(sD)O(n), that improves the long-standing (sD)O(n2) bound ob-
tained by Koiran (joint work with E. Tsigaridas).

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—al-
gebraic algorithms; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Non numerical algorithms and problems—complex-
ity of proof procedures

General Terms
Theory, algorithms

Keywords
polynomial system solving, real roots, effective real algebraic ge-
ometry

Introduction. Many important results in combinatorial and com-
putational geometry (see e.g. [12, 27]), in theoretical computer sci-
ence (see e.g. results on non-negative matrix factorization [1] or
game theory [18]) rely on effective real algebraic geometry. Poly-
nomial system solving over the reals has also many applications in
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engineering sciences, e.g. in robotics [2], and control theory [11]
among other areas.

Typical computational challenges in real algebraic geometry are:
deciding the emptiness of semi-algebraic sets, performing geomet-
ric operations such as projection (quantifier elimination), answer-
ing connectivity queries (roadmaps), computing the real dimension
or computing the Euler-Poincaré characteristic, Betti numbers, etc.

Huge efforts have been invested during the last 25 years to de-
rive algorithms that improve the doubly exponential complexity in
n of Cylindrical Algebraic Decomposition [13]. This has led to al-
gorithms for deciding the emptiness of semi-algebraic sets (in time
(sD)O(n)) [7], performing one-block quantifier elimination [6],
computing the real dimension [22], answering connectivity queries
(in time (sD)O(n2)) [8, 12]; see [9] for a self-contained overview.

Critical point methods are at the heart of these results. They con-
sist in extracting important properties of semi-algebraic sets from
the critical points of a well-chosen map. These are points at which
the differential (of the map) is not surjective; local extrema of the
map are reached at its critical points. These methods were used
in combination with the introduction of infinitesimals that deform
the input. This allows us to obtain cheap reductions to smooth and
bounded semi-algebraic sets but affects the cost of arithmetic oper-
ations and hence practical performance.

It has been a long-standing problem to obtain efficient imple-
mentations for real-world problems based on critical point meth-
ods. Indeed, it requires to improve the exponents in the complexity
bounds by introducing new algebraic and geometric techniques to
avoid the use of infinitesimals. One successful research direction is
to identify properties of critical points or polar varieties and to ex-
ploit them computationally using algorithms of elimination theory.

This trend started with [3] and has been developed for a decade
(e.g. [4, 15, 19, 23, 24] and references therein) to understand the
properties of these sets of points. We refer to [5] for an exposition
of properties of polar varieties. Once these properties are under-
stood, they can be exploited to design geometric procedures for
solving. For instance, the first improvement of the long-standing
O(n2) exponent in the complexity of Canny’s probabilistic algo-
rithm [12] to O(n3/2) is based on a new geometric connectivity
result obtained by investigating properties of polar varieties in [25]
(see also [10] for a further generalization to general algebraic sets).

This talk presents an overview of critical point methods. We
highlight recent advances that lead to practically fast algorithms
for deciding the existence of real solutions of polynomial systems.
We describe new ways of exploiting structural properties of critical
points and we introduce new geometric procedures to improve the
complexity bounds for solving two important problems: (i) real
root finding of determinants of matrices whose entries are linear
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forms (linear matrices) and (ii) computing the real dimension of a
semi-algebraic set.

Real root finding of determinants of linear matrices.
Let M0, . . . ,Mn be matrices of size k × k with rational entries,
X1, . . . , Xn be variables and M = M0 +X1M1 + · · · +XnMn.
We consider the problem of finding real roots of the determinant of
M. This is a generalization of the eigenvalue problem. It is also re-
lated to simultaneous stabilization problems in control theory (e.g.
[11]). Moreover, if M is symmetric and of full rank, then det(M)
shapes the boundary of the feasible solution set of the Linear Ma-
trix InequalityM � 0. In this case, exact algorithms for finding real
points in the feasible set start by computing points on its boundary.

To compute real roots of the determinant of M, the traditional
procedure consists in applying algorithms for deciding the empti-
ness of the real solution set of the equation det(M) = 0. Using
this strategy, the cost is kO(n) arithmetic operations. Additionally,
the equation det(M) = 0 defines a hypersurface with generic sin-
gularities (corresponding to rank deficiencies greater than 1).

Our approach consists in studying the variety defined by the bi-
linear system M.Y = 0 where Y is a vector of new homogeneous
variables. Under some genericity assumptions on the entries of M,
this new set of bi-linear equations defines a smooth algebraic set.
We show how to reduce our problem to global optimization prob-
lems that preserve the bi-linear structure of the system. We model
the global optimization problems using Lagrange multipliers that
in turn leads to solve multi-linear polynomial systems. The multi-
homogeneous bound associated to these systems is dominated by(
n+k
k

)2
. Using algebraic elimination routines which take advan-

tage of multi-linear structures (e.g. [14, 17]), we obtain algorithms
whose complexity is polynomial in this quantity. Hence, families
of problems where k remains constant can be solved in polyno-
mial time. Preliminary implementations allow to handle problems
involving 20 variables (for 6× 6 matrices).

Computation of the dimension of semi-algebraic sets.
For computing the real dimension of a semi-algebraic set, the best
previously known complexity bound, due to Koiran, was (sD)O(n2)

[22] in the worst case (see also [28] for a partial improvement). It
is based on quantifier elimination techniques, see [9, Alg. 14.10]
and references therein. On the other hand, in the complex case, it
is well understood that we can compute the (Krull) dimension of
an algebraic variety over algebraically closed fields in time DO(n)

[16], see also [21].
It is of great interest to know if the problem of computing the

dimension admits the same complexity bound in the real case and in
the algebraically closed case. This problem also finds applications
in geometric modeling and mechanics (see e.g. [20]).

We present a probabilistic algorithm for computing the real di-
mension of a semi-algebraic set S ⊂ R

n in time (sD)O(n) [26].
First, we perform a classical reduction to the case of bounded semi-
algebraic sets. Next, we consider the critical loci Wi of the restric-
tions of projections (x1, . . . , xn) → (x1, . . . , xi) to a smooth de-
formation of S . It turns out that these critical loci coincide with S
when i ≥ dim(S )+1. The algorithm exploits this structural prop-
erty. It uses a subroutine that finds the largest integer i such that
Wi �= Wi−1 in time (sD)O(n); this integer equals dim(S ) + 1.
Finally, we obtain an algorithm which computes the real dimension
of a semi-algebraic set in time (sD)O(n).
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