
A Term Rewriting System for the Calculus of Moving
Surfaces

Mark Boady
Department of Computer

Science
Drexel University
3141 Chestnut St.

Philadelphia, PA 19104, USA
mwb33@drexel.edu

Pavel Grinfeld
Department of Mathematics

Drexel University
Korman Center

33rd and Market Streets
Philadelphia, PA 19104, USA

pg77@drexel.edu

Jeremy Johnson
Department of Computer

Science
Drexel University
3141 Chestnut St.

Philadelphia, PA 19104, USA
jjohnson@cs.drexel.edu

ABSTRACT

The calculus of moving surfaces (CMS) is an analytic frame-
work that extends the tensor calculus to deforming mani-
folds. We have applied the CMS to a number of boundary
variation problems using a Term Rewrite System (TRS).
The TRS is used to convert the initial CMS expression into
a form that can be evaluated. The CMS produces expres-
sions that are true for all coordinate spaces. This makes
it very powerful but applications remain limited by a rapid
growth in the size of expressions. We have extended re-
sults on existing problems to orders that had been previ-
ously intractable. In this paper, we describe our TRS and
our method for evaluating CMS expressions on a specific co-
ordinate system. Our work has already provided new insight
into problems of current interest to researchers in the CMS.

Categories and Subject Descriptors

l.1 [SYMBOLIC AND ALGEBRAIC MANIPULA-

TION]: Simplification of expressions; l.1.3 [SYMBOLIC

AND ALGEBRAIC MANIPULATION]: Languages
and Systems—Special-purpose algebraic systems

Keywords

Calculus of Moving Surfaces, Tensor Analysis, Term Rewrite
Systems

1. INTRODUCTION
In recent papers, [3] and [4], we have examined bound-

ary variation problems using the calculus of moving surfaces
(CMS). The CMS provided valuable insight into these prob-
lems. The results provided in our previous publications,
[3] and [4], were derived by using a custom Term Rewrite
System (TRS) and evaluated in Maple [24]. The TRS was
treated as a black box in those papers. Here we detail its
implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

In 2004, Grinfeld and Strang [10] posed the following bound-
ary problem. What is the series in 1/N for the simple
Laplace eigenvalues λN on a regular polygon with N sides
under Dirichlet boundary conditions? More precisely, con-
sider a regular polygon ΩN with N sides inscribed into a
unit circle Ω∞. We view ΩN as a boundary perturbation
of Ω∞ and ask the question of the relationship between the
radial eigenvalues λ∞,n on the unit circle and the corre-
sponding eigenvalues λN,n on the polygon. In [10], the idea
of expressing λN,n as a series in 1/N was put forth and in
[11] the first several terms were computed using the calculus
of moving surfaces.

Determining additional terms in this series was restricted
by the rapid growth in complexity. A recipe for calculating
terms was known, but the process is error-prone when done
by hand and quickly becomes intractable. This problem is
one of the motivations for our TRS. The TRS automates the
derivation and assists the final evaluation. Our automated
tools found an error in the fourth term of the hand calcula-
tion in the series expansion in [11] and was used to compute
additional terms.

A model CMS problem was examined in [4]. We analyzed
the evolution of Poisson’s equation under arbitrary smooth
deformations of the domain. Specifically, an approximate
solution to ∆u = 1 on a regular N-sided polygon was found.
We also derived a partial series in 1/N for the Poisson energy
EN . This series was used to study the asymptotic behavior
as N → ∞.

In [3], we examined a classical question in boundary vari-
ations [17] that had been established correctly to second
order. The seminal work [17] gives a third order expression.
We obtained a partial series for the Laplace eigenvalues on
an ellipse. The deforming surface was an expanding ellipse
Ω(t) with semi-axes A = 1 and B = 1 + t. We determined
the first seven Taylor terms of the series. The sixth term re-
quired calculating the sum of 11,024 terms and the seventh
included 115,249 terms. This rapid increase in the number
of terms is a consistent feature of high order perturbation
problems. Many problems can be described by the CMS,
but their calculation quickly becomes intractable.

Equations from the CMS were translated into directional
rewrite rules. The direction of each rule was selected to
provide results that can be evaluated, most importantly re-
moval of the δ

δt
-derivative, the central differential operator

in the CMS. Our rule set leads to normal forms that can be
evaluated. The normal form expression is true for any coor-ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.

Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

69

dinate system. The evaluation is performed by generating
Maple code in a specific coordinate system. We demo how
these rules are applied to an example problem in Section 7.
Given a circle being stretched into an ellipse at rate c, de-
termine an expression for the contour length of the shape in
terms of c.

We begin with background information in Section 2. The
formal language of the CMS and the signature of our TRS
are given in Section 3. After listing our reduction rules in
Section 4 and showing that they produce a unique normal
form in Section 5, we describe the implementation in Section
6. Finally, we detail the solution to our example problem in
Section 7 and describe our applications in Section 8.

2. BACKGROUND
The CMS is an extension of tensor calculus to support

deforming manifolds. To our knowledge, existing algebraic
packages do not address moving surfaces. A key feature of
the tensor calculus is that its expressions can be evaluated in
any coordinate system. A general purpose computer algebra
system can be used if a problem is restricted to a specific
coordinate system.

A TRS is a computational model for equational reasoning.
The TRS has two components. A signature describes the
language of the TRS. The signature contains all the function
symbols that are used to generate terms. The TRS also
contains a set of directional rewrite rules. Each rewrite rule
follows the form l → r. When a term is matched against
the l pattern it is rewritten or reduced to the r pattern.
Reduction continues until the term can no longer be matched
to the left side of any rules. A term that does not match any
rules is called a normal form. A normal form is the result
of applying the TRS to an input term. The TRS provides
an important method for algebraic simplification [1]. It can
also automate mathematical formalism outside of general
purpose computer algebra systems. A survey on the theory
of TRSs can be found in [16].

Although no computer algebra systems have been devel-
oped for the CMS, software exists for tensor calculus. These
packages originated in the theory of relativity and do not
implement stationary manifolds, let alone the CMS. The
two packages which closely resemble our TRS are MathT-
ensor [26] and Cadabra [28]. In addition to rewriting, the
symbolic manipulation of tensor indexes is also a challeng-
ing problem [25]. Other symbolic manipulation packages
focusing on relativity have been developed.

These packages have proven quite successful in their fields,
typically relativity. MathTensor has supported research in
general relativity, such as [29] and [19]. It has also been
successful in quantum field theory [13]. Cadabra is also used
in general relativity [5, 23].

These packages could be modified to solve our example
problem in Section 7, but the extensions needed for [3] and
[4] would require fundamental changes to the basic data
structures. This provided a motivation to begin with a new
TRS instead of extending existing ones.

3. CALCULUS OF MOVING SURFACES
The signature of our TRS is derived from the formalism

of the CMS. In this section, we describe the language of the
CMS. We restrict our view to those objects and functions
required for our model problems. The CMS has been de-

scribed in great detail in earlier publications [12, 8]. The
CMS, deeply rooted in tensor calculus [21], [27], [31], was
originated by Jacques Hadamard. A historical review of the
CMS can be found in [7].

In Section 7, we will use the CMS to examine a circle
being stretched into a ellipse. At time zero, the unit circle
has a contour length of 2π. We stretch the horizontal axis of
the circle to 1+ ct to create an ellipse. Our goal is to create
a Taylor series, in terms of c, for the contour length at time
t = 1. For this simple problem, a series can be calculated
without the CMS. The beauty of the CMS is its generality.
The CMS expressions we derive are correct for the contour
length of any deforming manifold.

The fundamental object of the CMS is the tensor. A ten-
sor is a geometric field defining a linear and homogeneous
transformation [30]. In the TRS, a tensor is a named value
and has a set of properties. The tensor can be a spacial
tensor, existing in the entire space, or a surface tensor, re-
stricted to a manifold. The tensor also has an ordered list
of named indexes. Each index can be a spacial or surface
index. The index is either a contravariant or covariant in-
dex. This property describes how the tensor changes with
respect to a change in coordinate systems [30].

We give two example tensors to clarify this description Xi
.j

and Yα. The symbol Xi
.j is a spacial tensor named X. It has

two indexes. The first index is named i and is a contravari-
ant space index. The second index, j, is a covariant space
index. Lower case Roman letters are used for space indexes
and lower case Greek letters for surface indexes. Contravari-
ant indexes are upper indexes. Covariant indexes are lower
indexes. The indexes are a single ordered list. A dot is used
to show that j is after i in Xi

.j . This will be done when the
position of indexes is not clear. The second tensor, Yα, is a
surface tensor with one covariant surface index named α.

The indexes of the tensor are ordered. Returning to the
previous examples, Xi

.j is a two dimensional system and Yα

is a one dimensional system. To give explicit values, a co-
ordinate system must be selected. The number of elements
in each dimension is determined by the dimensions of the
space.

We now give the tensor objects needed to describe our
TRS. The covariant metric tensor, Zij , describes the ambi-
ent coordinate space.

The surface is described by its own coordinate system.
The shift tensor Zi

.α selects the surface part of a space ten-
sor. Multiplication is the outer product. Contraction is a
summation over a pair of indexes, shown by a repeated in-
dex. The covariant or contravariant property of an index
can be changed by multiplication and contraction with the
metric tensor. Raising or lowering an index is called index
juggling. When contracting an index, the contracted name
must appear exactly twice, once as a covariant index and
once as a contravariant index. Both indexes must be of the
same type, space or surface. This notation provides a short-
hand for the summation ZkiZ

k
.α =

∑

k=···

(

ZkiZ
k
.α

)

.
The surface metric tensors are defined by the shift tensor

Sαβ = ZiαZiβ and it’s inverse Sαβ.The surface normal is
given by N i. The curvature tensor is Bα

β and its trace Bα
α

is mean curvature.
We can take derivatives with respect to the space and sur-

face coordinate. The covariant surface derivative is a func-
tion of one input ∇α. Contravariant and spacial derivatives

70

Symbol Description
C Surface Velocity

N i Surface Normal
Bα

.β Curvature

Zi
.α Shift Tensor

Rγ
.αβ Commutator

+ Addition
Juxtaposition Multiplication

Repeated Indexes Contraction
Integer Superscript Exponent

∇i Covariant Space Derivative
∇α Covariant Surface Derivative
δ
δt

δ/δt-derivative
∂
∂t

Partial Time Derivative

Table 1: TRS Signature

all exist and are defined by the index of the ∇ symbol. The
mechanics can be found in [30].

The CMS describes surfaces that deform over time. The
surface velocity C is the rate of deformation of the surface in
the normal direction. Tensors on the surface now changes as
the surface changes. We can study how these fields change
over time by using the δ

δt
-derivative. These functions are

described in [7]. The mean curvature of an ellipse can be
described with respect to time, and the derivative taken di-
rectly. The curvature of a red blood cell is more difficult to
describe and evaluate [22].

We introduce the commutator tensor to facilitate switch-
ing the order of δ

δt
and ∇α [7]. It is a shorthand for the

following:

Rγ
.αβ = ∇γ(CBαβ)−∇α(CBγ

β)−∇β(CBγ
α) (1)

The signature of our TRS is summarized in Table 1. Ten-
sors that are only required for the evaluation of expressions
are not included. Transformations given by index juggling
are implemented but not explicitly listed. The integers and
rationals are implemented but not listed in the table.

4. REWRITE RULES
The majority of our rewrite rules are related to derivative

calculations. For the reduction rules, index names are al-
ways considered variables. Unless explicitly noted, all other
properties of the index must match exactly. F and G are
variables for general tensors. In the CMS any valid expres-
sion is a tensor. If no indexes are attached to the variables F
and G, then any combination of indexes is valid. Constant
integers and rationals are given by x1, x2, · · · , xn.

The covariant and contravariant derivatives are defined by
rules (2) to (5). These rules are true for any index of the
derivative. Only the rules for ∇α are shown. These rules
are repeated for the other indexes of the derivative. The
summation symbol is used to show a contraction summation
in rule (5).

∇α(FG) → G∇α(F) + F∇α(G) (2)

∇α(x1) → 0 (3)

∇α(F +G) → ∇α(F) +∇α(G) (4)

∇α(
∑

i

F ···i···
···i···) →

∑

i

∇α(F
···i···
···i···) (5)

The δ
δt
-derivative is at the heart of the CMS. Calculat-

ing expressions using this derivative was the original moti-
vation for our TRS. Although a mechanism for evaluating
this derivative exists, it is challenging to evaluate. In [22],
the Helfrich energy governing the shape of a red blood cell
is examined. The fourth order derivative is essential to its
analysis, but remains an open problem for a distorted torus.
The application of the δ

δt
-derivative to the problem in [10]

becomes intractable because some fields are described by in-
finite Fourier series. Our target normal form is an expression
where δ

δt
-derivatives can be evaluated. The only appearance

of the δ
δt
-derivative is when it is applied to the Surface Ve-

locity or Commutator tensors.
First, the differentiation table for specific tensor objects

is given.

δBα
.β

δt
→ ∇α∇βC + CBα

.γB
γ
.β (6)

δBαβ

δt
→ ∇α∇βC + 3CBα

.γB
γβ (7)

δBαβ

δt
→ ∇α∇βC − CBαγB

γ
.β (8)

δN i

δt
→ −Zi

.α∇
αC (9)

δNi

δt
→ −Ziα∇

αC (10)

δZi
.α

δt
→ N i∇αC − CZi

.βB
β
.α (11)

δZiα

δt
→ Ni∇αC − CZiβB

β
.α (12)

δZiα

δt
→ N i∇αC − CZi

.βB
βα (13)

δZ.α
i

δt
→ Ni∇

αC − CZiβB
βα (14)

δCx1

δt
→ x1C

x1−1 δC

δt
(15)

δx1

δt
→ 0 (16)

The δ
δt
-derivative commutes with contraction and satisfies

the sum and the product rules. The summation symbol is
again used to show a contraction.

δ
∑

i F
···i···
···i···

δt
→

∑

i

δF ···i···
···i···

δt
(17)

δFG

δt
→ G

δF

δt
+ F

δG

δt
(18)

δ(F +G)

δt
→

δF

δt
+

δG

δt
(19)

Reordering the δ
δt
-derivative and surface derivative intro-

duces a collection of rules. These rules are given for the
variable tensor with no indexes A. For each index in A,
an additional term is added to the sum. Examples for all
variations of A with one index are shown.

71

δ∇αA

δt
→ ∇α

δA

δt
(20)

δ∇αA
β

δt
→→ ∇α

δAβ

δt
+Rβ

.αγA
γ (21)

δ∇αAβ

δt
→→ ∇α

δAβ

δt
−Rγ

.αβAγ (22)

δ∇αA

δt
→ ∇α δA

δt
+ 2CBαγ∇γA (23)

δ∇αAβ

δt
→ ∇α δAβ

δt
+ 2CBαγ∇γA

β +Rβα
..γA

γ (24)

δ∇αAβ

δt
→ ∇α δAβ

δt
+ 2CBαγ∇γAβ −Rγα

..βAγ (25)

For each index in the A tensor, a new R···

···A
···

··· term is
added. The form and contraction are defined by the index.
The four possible terms are shown. The sign of the term is
determined by the contracted index’s status as covariant or
contravariant.

The partial derivative ∂
∂t

is defined by the following rules.

∂FG

∂t
→ F

∂G

∂t
+G

∂F

∂t
(26)

∂x1

∂t
→ 0 (27)

∂(F +G)

∂t
→

∂F

∂t
+

∂G

∂t
(28)

∂
∑

i F
···i···
···i···

∂t
→

∑

i

∂F ···i···
···i···

∂t
(29)

∂∇αF

∂t
→ ∇α

∂F

∂t
(30)

Rule (30) is true for all index variations of the derivative.
To complete the TRS, we add a few additional rules for

simplification.

Ax1Ax2 → Ax1+x2 (31)

A+ 0 → A (32)

A(F +G) → AF + AG (33)

0A → 0 (34)

Expressions with rationals are calculated immediately. Af-
ter reaching a normal form, like terms are combined to de-
crease the size of the result term. This is handled by a
separate routine outside the TRS. We store the terms as an
expression tree and implement tree matching algorithms to
combine terms.

5. CONFLUENCE AND TERMINATION
For successful application of our TRS, it is crucial that

expressions only contain symbols that can be evaluated. The
TRS terminates when it reaches a normal form, a term that
does not match any reduction rules. We oriented our rules
so that if a normal form is reached it can be evaluated.
Additionally, we required that the TRS provides a consistent
output given a consistent input.

If a term matches more than one rule, the decision of
which rule to apply could result in multiple normal forms.
If a TRS is confluent, all paths that diverge will eventu-
ally converge. This property ensures that normal forms are

unique. We will briefly justify that our system is conflu-
ent and terminating. A more comprehensive examination of
these concepts is presented in [16].

Our TRS includes associative and commutative operators,
but both these properties can be extended to TRSs modulo
sets of equations as shown in [18] and [2]. This extensions
means that normal forms will be unique in the equivalence
class defined by the associative and commutative properties.
Index juggling and renaming of contracted indexes follow the
same logic as these properties, allowing them to be used as
an equivalence class.

Critical pairs can be used to prove confluence in a TRS
as shown in the classic work by Knuth & Bendix [20]. A
terminating TRS is confluent if and only if no critical pair
diverges [20, 15]. This can be extended to TRS modulo
equational theories [18].

A critical pair (s, t), is a pair of terms created by a pat-
tern that matches multiple rules. Using the tensor variables
F and G we create a pattern that matches reduction rules
(32) and (33). The pattern F (G + 0) is matched to both
rules. A critical pair is created by following both possible
reduction paths. First, F (G + 0) →32 FG. The second
possible reduction is F (G + 0) →33 FG + F0. The critical
pair is the set (FG,FG + F0). The critical pair (s,t) con-
verges if s ։ s′, t ։ t′, and s′ = t′. The ։ notation is
used to show a sequence of reductions. In this case, equals
is defined specifically as syntactically equal with respect to
associativity, commutativity, and index juggling. For our
example critical pair, FG has no remaining reductions and
FG + F0 →32 FG. This shows that the critical pair con-
verges to the term FG. It is easy to show that there exist no
diverging critical pairs in our TRS, therefore it is confluent
if it is terminating.

A TRS is terminating if there exists a well-founded order-
ing on the terms. Again referring to [20], a TRS is terminat-
ing if there exists a well-founded ordering > such that for
each reduction rule l → r, l > r. An ordering is well-founded
if it contains a minimum element. We define the ordering on
our reduction rules by giving an ordering on the signature
and referring to the process of Associative Path Ordering
described in [2]. A termination ordering on the function
symbols is given in equation (35). For readability, we have
introduced symbols: xy for exponents,

∑

for contraction,
and * for multiplication. A constant is any function symbol
that takes no inputs, therefore both 10 and Bα

β would be
considered constants for this ordering.

δ

δt
>

∂

∂t
> ∇ > ∗ > xy > + >

∑

> Constant (35)

We now compare the left and right hand sides of our rules
using this ordering. Rules that select elements, such as rule
(32), or reduce to a constant, rule (16), are trivially ordered.

The remaining rules are ordered using a recursive exam-
ination of the function symbols. As an example, we exam-
ine rule (20). The outermost function symbol for this rule
is decreasing by the ordering from equation (35), δ

δt
> ∇.

In addition, we must recursively compare the inputs to the
function on the right hand side. The rule is not decreasing if
a larger element has been created as a subterm of the right
hand side. This means that the next test is between δ∇αA

δt

and δA
δt

. In this recursive test, the outermost function sym-

72

bols are equal and ∇αA > A. This proves that the entire
reduction rule is decreasing with respect to our ordering.

In rule (21), the same process is used. The outermost
level is decreasing, δ

δt
> +. The first input to the addition

function is less then the left side by the same process we

used for rule (20). It remains to be shown that δ∇αAβ

δt
>

Rβ
αγA

γ . A continuation of the recursive process shows that
this ordering is correct and the reduction is decreasing. By
extension, the reduction patterns given by rules (21) to (25)
are decreasing.

The process of critical pair convergence and path ordering
show that our TRS is both confluent and terminating. This
means that any input will lead to a unique normal form.
These properties ensure our TRS produces expressions that
we can evaluate.

This is true for the CMS objects for which we have de-
fined rules. Additional objects, such as ǫijk, a Levi-Civita
Symbol, have rules that do not lead to obvious termination
orderings. We will attempt the Knuth-Bendix Algorithm
[20] when extending our rule set for these objects.

6. IMPLEMENTATION
We implemented our TRS in the Java programming lan-

guage. In addition to providing basic TRS functionality, we
also implemented automatic code generation to Maple. This
allowed for the automated testing of results without an in-
termediate program. The TRS implemented class objects
for the signature described in Section 3. Expressions were
then stored in a tree structure. The rules from Section 4
were implemented to match and transform the expression
tree. The associative and commutative properties of func-
tions were handled by allowing these objects children to have
an unordered set of children and flattening repeated function
applications. Automating the solution to a problem such as
that in Section 7 required creating a driver program to gen-
erate terms, call the TRS for reduction to normal form, and
then generate Maple code. The expression tree resulting
from one iteration was used to create the starting term of
the next iteration.

There were a number of reasons we decided to implement
a custom TRS instead of building on an existing TRS such
as Maude [6] or Mathematica [32]. The symbols of the
CMS are inherently objects. This meant that implement-
ing them as objects proved more efficient then using a flat
functional notation. The language of object oriented pro-
gramming closely matches the native language of the CMS.
The ability to use inheritance also decreased the total num-
ber of rules that needed to be implemented. For example,
rules (2) to (5) were easily implemented using an inheritance
model on derivatives. The sequence of rules starting with
rule (20), was also simple to implement using loops and ob-
jects. These problems could all be overcome in a standard
TRS framework, but we felt that these gains were signif-
icant. Additionally, using a custom TRS allowed for two
additional components to be built in the same framework.
To minimize the number of terms that need to be evaluated,
it is convenient to combine terms using associativity, com-
mutativity, and index juggling. The most important of these
equivalence classes is the ability to exchange the contravari-
ant and covariant property of contracted indexes. While we
could implemented a secondary module for compressing the
normal form by combining terms, it was helpful to do this

as part of the TRS. Since the result of the TRS was already
a tree structure, matching subterms was reduced to a graph
matching problem. A final motivation for creating our own
TRS was code generation.

To evaluate expressions, they were translated to a com-
puter algebra system. The object oriented nature of our
TRS allowed this code generation to be encapsulated by the
object classes. Maple code for the expression could then be
generated using a simple tree walk. We created a custom
Maple library for working with CMS expressions. Maple
provides a library for tensor calculus, but it does not pro-
vide support for embedded manifolds, which required more
general data structures and operations. Our libraries di-
rectly implemented the textbook definitions of the objects
and functions from [30] and [7].

We initialized our Maple worksheet by defining the sur-
face and spacial coordinate system. We provided function
calls to create the primary objects which are generated from
the coordinate system. Using function calls, we built up the
remaining objects. For example, Bα

α is created by evaluat-
ing AαβBαβ . The Maple code for this using our library is
BAb:=contract(prod(SAB,Bab),[2,3]):. Our Maple code
can generate all the objects in our signature. We can de-
scribe our expressions using these objects and functions.
The generated code allows us to evaluate our CMS expres-
sions for a defined coordinate system.

7. CONTOUR LENGTH
In this section, we show an example of calculations per-

formed using our TRS. We have selected a simple contour
length problem. This problem is based on [4] but can be
easily calculated outside the CMS.

Consider the problem of evaluating the contour length of
an ellipse with semiaxes 1 + c and 1. It is a simple problem
for which the answer is known by other means. This makes
it a good test problem. The CMS approaches this problem
by considering a smooth evolution from the unit circle at
time t = 0 to the ellipse at time t = 1. Such an evolution
may be parameterized as follows:

x(t, θ) = (1 + ct) cos θ (36)

y(t, θ) = sin θ (37)

Let L(t) denote the contour length at time t:

L(t) =

∫

S(t)

1dS (38)

The contour length of the ellipse with semiaxes 1+c and
1 is given by L(1). It is estimated by the Taylor series

L(1) = L(0) + L′(0) +
1

2
L2(0) +

1

6
L3(0) + · · · (39)

where the expressions for the derivatives, Ln(0), are derived
by evaluating expressions generated by our TRS. We calcu-
late repeated derivatives and evaluate them at t = 0. The
first term in the series is L(0) =

∫

S
1dS = 2π.

The CMS is used to determine the higher order derivatives
of L(t). The first derivative is

73

L′(t) =
δ

δt

∫

S

1dS

=

∫

S

(
δ1

δt
−CBα

α)dS

= −

∫

S

CBα
αdS (40)

The CMS provides a means for taking the δ
δt

derivatives of

an integral
∫

S
dS. In addition to the base derivative δ1

δt
= 0,

new terms are added to account for the changing surface.
The integral range will be the same for each order deriva-

tive. Our TRS calculates the series of integrands, which are
then evaluated and integrated in Maple. To calculate the
nth order derivative, we determine

Mn =
δMn−1

δt
−CBα

αMn−1 (41)

Ln(0) =

∫

S

Mn|t=0 dS (42)

Having already determined the first integrandM1 = −CBα
α ,

we apply this recursive definition for M2.

M2 = −
δ (CBα

α)

δt
+ C2Bα

αB
β
β (43)

Equation (43) is the first expression that requires rewrit-
ing by our TRS. This expression is invariant; it is valid for
the contour length of any surface deformation. In our spe-

cific case, the value
δBα

α

δt
can be evaluated directly. For many

surfaces, evaluating the derivative of mean curvature is ex-
tremely complex. Our TRS produces a normal form where
all terms can be evaluated. This means the δ

δt
-derivatives

will only be on the Surface Velocity and Commutator. These
are defined by the change in surface and their δ

δt
-derivatives

can be evaluated.
The TRS reduces this expression to a normal form. The

total reduction takes 31 rewrites including structure changes
like rule (17) and simple reductions like rule (32). We high-
light some of key reductions below. Subscripts are attached
to the arrow symbol referencing the rule list in Section 4.

δ (−CBα
α)

δt
+ C2Bα

αB
β
β →18 −Bα

α

δC

δt
− C

δBα
α

δt
+ C2Bα

αB
β
β

→6 −Bα
α

δC

δt
− C(∇α∇αC + CBα

γB
γ
α) +C2Bα

αB
β
β

→33 −Bα
α

δC

δt
− C∇α∇αC − C2Bα

γ B
γ
α + C2Bα

αB
β
β (44)

The normal form for M2 is given by equation (44). This
expression is true for the contour length of any deform-
ing manifold. We now generate code to evaluate the ex-
pression for our realization of the problem. Given a spe-
cific coordinate system, our Maple library calculates the
value of the symbols. We precalculate the derivatives of C
as C0, C1, C2, · · · . Tensors are stored as multidimensional
Maple Arrays. The Maple tensor library does not support
rectangular tensors, so we created our own functions using
the existing libraries. The Maple code used for evaluation is
shown below.

Temp0:=contract(prodlist(intTensor(-1/1), BAb, C1),

[1,2]):

Temp0:=Temp0:-apply([θ,0]):
Temp1:=contract(prodlist(intTensor(-1/1), C0, ddSA(

ddSa(C0))), [1,2]):

Temp1:=Temp1:-apply([θ,0]):
Temp2:=contract(prodlist(intTensor(-1/1), BAb, BAb,

TensorExp(C0, 2)), [1,4 , 2,3]):

Temp2:=Temp2:-apply([θ,0]):
Temp3:=contract(prodlist(BAb, BAb, TensorExp(C0,

2)), [3,4 , 1,2]):

Temp3:=Temp3:-apply([θ,0]):
solution:=lin_com(Temp0, Temp1, Temp2, Temp3);

Each term in the sum is calculated, evaluated at t = 0,
and then the sum is evaluated. The result of this expression
in our coordinate system, equation (48), is

M2|t=0 = c2(7 cos2 θ − 5) cos2 θ (45)

Taking the integral gives the second term in the series.

∫ 2π

0

(M2|t=0) dθ =
1

4
c2π (46)

The TRS repeats this process and determines the normal
form of M3 which requires 118 rewrites. In addition, we
have combined terms to shorten the expression.

M3 =− C3Bα
αB

β
βB

γ
γ + 3C3Bα

βB
β
αB

γ
γ − 2C3Bα

βB
γ
αB

β
γ

+ 3C2Bα
α∇

β∇βC − 4C2Bαβ∇β∇αC

+ 3C
δC

δt
Bα

αB
β
β − 3C

δC

δt
Bα

βB
β
α − 2

δC

δt
∇α∇αC

−
δ2C

δ2t
Bα

α −C∇α∇α
δC

δt
+ CRαβ

β ∇αC (47)

Equation (47) already shows the rapid growth of expres-
sions in the CMS. The challenge of calculating M4 without
an automated system is obvious. M4 is the sum of 94 prod-
ucts and requires 595 rewrites. An important feature of the
CMS remains in M3, this expression is valid for any surface
deformation.

Although these expressions are true for any surface, the
values for each tensor can only be defined after selecting
surface and space coordinate systems. In Maple, these are
defined as global variables and the objects are calculated by
library calls. We will now evaluate equation (40) to show
the process. For the ambient space, we will use Cartesian
coordinates [x, y]. For the surface, we will define a circle that
is being stretched into an ellipse. The function S(θ, t) maps a
point in the surface coordinates to the ambient coordinates.
The constant c controls the rate of change over time.

S(θ, t) = [(1 + ct) cos θ, sin θ] (48)

First, we generate the tensors needed to determine Bα
α

and C. We evaluate all tensors at t = 0. The shift tensor is
defined by the surface, it is used to restrict a spacial field to
the surface.

Zi
α =

[[

−(1 + ct) sin θ
]

[

cos θ
]

]

(49)

The surface normal, Ni, surface velocity, C, and surface
metric Sαβ , are also derived from the surface.

74

Ni|t=0 =

[

cos θ
sin θ

]

C|t=0 = c cos2 θ

Sαβ|t=0 =
[[

1
]]

Having defined these symbols, we now evaluate the mean
curvature Bα

α .

∇βNi|t=0 =

[[

− sin θ
cos θ

]]

Bαβ|t=0 =
(

−Zi
α∇βNi

)

|t=0 =
[[

− sin2 θ − cos2 θ
]]

Bα
β |t=0 = (SαγBγβ) |t=0 =

[[

− sin2 θ − cos2 θ
]]

Bα
α |t=0 = − sin2 θ − cos2 θ = −1

Now that the values of C and Bα
α are known, we evaluate

M1|t=0 = −CBα
α = c cos2 θ (50)

Next we determine the integral of equation (50) to find
L′(0).

L′(0) =

∫ 2π

0

c cos2 θdθ = cπ (51)

The series for L(1) can be calculated independently of the
CMS to determine if this result is correct.

L(1) =

∫ 2π

0

(

√

(1 + c)2 cos2(θ) + sin2(θ)

)

dθ

=

(

2 + c+
1

8
c2 −

1

16
c3 +

17

512
c4 −

19

1024
c5 + · · ·

)

π

(52)

We calculate the next two terms in the series using equa-
tions (44) and (47).

1

2!
L2(0) =

1

2

(

1

4
c2π

)

=
1

8
c2π (53)

1

3!
L3(0) =

1

6

(

−
3

8
πc3

)

= −
1

16
c3π (54)

Using our TRS and evaluating in Maple, we were able to
confirm that the first 7 terms in the series are correct.

8. APPLICATIONS
We have applied our TRS to problems that are of current

interest to researchers in the CMS. In [4], our implementa-
tion was used to analyze the evolution of Poisson’s equation
under arbitrary smooth deformations of the domain. We
minimized the energy E

E =

∫

Ω

(

1

2
∇iu∇

iu+ fu

)

dΩ (55)

on the domain Ω with the zero Dirichlet boundary condition

u|S = 0 (56)

Order Products TRS Maple
2 5 85 millisec 1 second
3 25 149 millisec 1 second
4 152 746 millisec 6 seconds
5 1,138 7,169 millisec 2.6 minutes

Table 2: Number of terms and time to evaluate the

Poisson series.

Order Products TRS Maple
2 4 1 sec 1 sec
3 24 1 sec 1 sec
4 155 5 sec 4 min
5 1,221 42 sec 6 min
6 11,024 11 min 1.5 hours
7 115,249 3 hours 18 hours

Table 3: Number of terms and time to evaluate the

λ(c) series.

along the boundary S. Minimizing u is governed by the
Poisson equation

∇iu∇
iu = f. (57)

We have calculated the first 5 derivatives and evaluated
them at time t = 0, providing the terms in a series for the
energy. The number of CMS products that needed to be
summed and the time to calculate values are given in Table
2.1 We give the initial terms in the series:

EN = −
π

16

(

1−
8ζ(2)

N2
−

8ζ(3)

N3
+ · · ·

)

. (58)

We have also used our system to calculate the Laplace-
Dirichlet eigenvalues on an ellipse in [3]. This is a classical
question in boundary variations [17] and has been estab-
lished correctly to second order. We have used our system
to determine the first 7 terms. We give the first four terms
in the series in eccentricity e for the lowest eigenvalue λ (e)
below

λ (e) =λ−
λ

2
e2 +

λ− 6

32
e4λ+

λ− 6

64
e6λ

−
7λ3 − 58λ2 − 192λ + 1792

32768
e8λ+ · · · (59)

In this equation, λ is the corresponding eigenvalue on the
unit circle. The number of products that needed to be
summed and time to evaluate each expression is given in
Table 3. The first 7 terms are presented in [3].

9. CONCLUSIONS
Although we have limited the objects defined in our initial

implementation, the CMS has a wide range of uses. In high
order stability analysis, the CMS can be used for shape op-
timization [14]. Biological models, such as blood cell mem-
branes, can also be modeled [8]. The CMS introduces a great
deal of analytical order into fluid film dynamics [9]. Having
shown the success of a TRS for the CMS on boundary vari-
ation problems, we plan to expand the rule set to include
additional rules and objects from the CMS. This will make
proving confluence and termination more difficult problems.

1All timings run on Mac OS 10.7 3.06 GHz Intel 4GB ram
with Maple 16 and Java 1.7.

75

The CMS has been hindered by a lack of automated com-
putation and a rapid growth in expression length. We have
proposed a TRS to solve boundary variation problems in the
CMS. This system has already shown the power of applying
a TRS to the CMS. It was used to support current research
in the CMS, with results presented in [3] and [4].

Although we have only implemented a subset of the CMS,
these results illustrate the power of applying a TRS to the
problems of the CMS. We have found high order variations in
problems that had previously been intractable. We view this
TRS as a first step towards comprehensive implementation
of the CMS.

10. REFERENCES

[1] L. B. Buchberger and K. R. Loos. Algebraic
simplification. Computing, Suppl., 4:11–43, 1982.

[2] L. Bachmair and D. A. Plaisted. Termination
orderings for associative-commutative rewrite systems.
J. Symbolic Computation, 1:329–349, 1985.

[3] M. Boady, P. Grinfeld, and J. Johnson. Laplace
eigenvalues on the ellipse and the symbolic calculus of
moving surfaces. In preparation.

[4] M. Boady, P. Grinfeld, and J. Johnson. Boundary
variation of poisson’s equation: a model problem for
symbolic calculus of moving surfaces. Int. J. Math.
Comp. Sci., 6(2), 2011.

[5] A. J. Christopherson, K. A. Malik, D. R. Matravers,
and K. Nakamura. Comparing two different
formulations of metric cosmological perturbation
theory. Classical and Quantum Gravity, 28(22):225024,
2011.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. The
maude 2.0 system. Proc. Rewriting Techniques and
Applications, pages 76–87, June 2003.

[7] P. Grinfeld. Hadamard’s formula inside and out. J.
Opt. Theory and Appl., 146(3):654–690, 2009.

[8] P. Grinfeld. Hamiltonian dynamic equations for fluid
films. Stud. Appl. Math., 125:223–264, 2010.

[9] P. Grinfeld. A variable thickness model for fluid films
under large displacements. Phys. Rev. Lett.,
105:137802, 2010.

[10] P. Grinfeld and G. Strang. Laplace eigenvalues on
polygons. Computers and Mathematics with
Applications, 48:1121–1133, 2004.

[11] P. Grinfeld and G. Strang. Laplace eigenvalues on
regular polygons: A series in 1/N . Journal of
Mathematical Analysis and Applications, 385(1):135 –
149, 2012.

[12] P. Grinfeld and J. Wisdom. A way to compute the
gravitational potential for near-spherical geometries.
Quart. Appl. Math., 64(2):229–252, 2006.

[13] Y. V. Gusev. Heat kernel expansion in the covariant
perturbation theory. Nuclear Physics B, 807(3):566 –
590, 2009.

[14] H. Howards, M. Hutchings, and F. Morgan. The
isoperimetric problem on surfaces. The American
Mathematical Monthly, 106(5):pp. 430–439, 1999.

[15] G. Huet. Confluent reductions: Abstract properties
and applications to term rewriting systems. J. Assoc.
Comp. Mach., 27:797–821, 1980.

[16] G. Huet and D. C. Oppen. Equations and rewrite
rules – a survey. Technical report, Stanford University,
Jan 1980.

[17] D. Joseph. Parameter and domain dependence of
eigenvalues of elliptic partial differential equations.
24(5):325–361, 1967.

[18] J.-P. Jouannaud and H. Kirchner. Completion of a set
of rules modulo a set of equations. In Proceedings of
the 11th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’84,
pages 83–92, New York, NY, USA, 1984. ACM.

[19] J. Katz and G. I. Livshits. Superpotentials from
variational derivatives rather than lagrangians in
relativistic theories of gravity. Classical and Quantum
Gravity, 25(17):175024, 2008.

[20] D. Knuth and P. Bendix. Simple word problems in
universal algebras. Computational Problems in
Abstract Algebra, pages 263–297, 1970.

[21] T. Levi-Civita. The Absolute Differential Calculus
(Calculus of Tensors). Dover Publications, 1977.

[22] C.-H. L. Lin, M.-H. Lo, and Y.-C. Tsai. Shape Energy
of Fluid Membranes —Analytic Expressions for the
Fourth-Order Variation of the Bending Energy—.
Progress of Theoretical Physics, 109:591–618, Apr.
2003.

[23] T. Málek and V. Pravda. Kerra-schild spacetimes with
an (a)ds background. Classical and Quantum Gravity,
28(12):125011, 2011.

[24] Maplesoft, a division of Waterloo Maple Inc.,
Waterloo, Ontario, Canada. Maple User Manual, 2012.

[25] J. M. Maran-Garca. xperm: fast index
canonicalization for tensor computer algebra.
Computer Physics Communications, 179(8):597 – 603,
2008.

[26] MathTensor Inc. Mathtensor - tensor analysis for
mathematica. http://smc.vnet.net/MathTensor.html.

[27] A. McConnell. Applications of Tensor Analysis. Dover
Publications, New York, 1957.

[28] K. Peeters. Cadabra: reference guide and tutorial.
http://cadabra.phi-sci.com/cadabra.pdf, June 2008.

[29] C. F. Steinwachs and A. Y. Kamenshchik. One-loop
divergences for gravity nonminimally coupled to a
multiplet of scalar fields: Calculation in the jordan
frame. i. the main results. Physical Review D,
84(2):024026, July 2011.

[30] J. Synge and A. Schild. Tensor Calculus. Dover
Publications, Inc., 1949.

[31] T. Thomas. Concepts from Tensor Analysis And
Differential Geometry. Academic Press, New York,
1965.

[32] Wolfram Research, Champaign, IL. Wolfram
Mathematica 9 Documentation Center, 2012.

76

