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ABSTRACT
In the past decade there has been a surge of interest in alge-
braic approaches to optimization problems defined by multi-
variate polynomials. Fundamental mathematical challenges
that arise in this area include understanding the structure
of nonnegative polynomials, the interplay between efficiency
and complexity of different representations of algebraic sets,
and the development of effective algorithms. Remarkably,
and perhaps unexpectedly, convexity provides a new view-
point and a powerful framework for addressing these ques-
tions. This naturally brings us to the intersection of alge-
braic geometry, optimization, and convex geometry, with an
emphasis on algorithms and computation. This emerging
area has become known as convex algebraic geometry [1].

This tutorial will focus on basic and recent developments
in convex algebraic geometry, and the associated computa-
tional methods based on semidefinite programming for op-
timization problems involving polynomial equations and in-
equalities; see e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. There has
been much recent progress, by combining theoretical results
in real algebraic geometry with semidefinite programming to
develop effective computational approaches to these prob-
lems. We will make particular emphasis on sum of squares
decompositions, general duality properties, infeasibility cer-
tificates, approximation/inapproximability results, as well
as survey the many exciting developments that have taken
place in the last few years.

Categories and Subject Descriptors
I.1.2 [Symbolic and algebraic manipulation]: Algebraic
algorithms; G.1.6 [Numerical Analysis]: Optimization—
Convex programming
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