
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

Recursive Sparse Interpolation

Andrew Arnold Mark Giesbrecht
Symbolic Computation Group
University of Waterloo, Canada
{a4arnold,mwg}@uwaterloo.ca

Dan Roche
United States Naval Academy, USA

roche@usna.edu

We consider the problem of interpolating a sparse univariate polynomial f over an arbitrary ring, given
by a straight-line program. In this problem we are given a straight-line program that computes f , as well
as bounds D and T on the degree and sparsity (i.e., the number of nonzero terms) of f respectively. We
build on ideas developed in Garg and Schost (2009) and Giesbrecht and Roche (2011) towards algorithms
for this specific problem. We present a Monte Carlo algorithm that improves on the best previously-known
algorithm for this specific problem by a factor (softly) on the order of T/ logD. Thus this new algorithm
is favourable for “moderate” values of T .

Our algorithm is recursive. At a recursive step of the algorithm we have a straight-line program for
f , an approximation f∗ of f , and respective bounds T and D on the sparsity and degree of the difference
g = f − f∗. We initialize f∗ to zero. We will construct an approximation f∗∗ to g such that, with high
probability, g − f∗∗ has at most T/2 terms. We then recurse with f∗ + f∗∗ as our refined approximation
for f .

The algorithms in Garg and Schost (2009) and Giesbrecht and Roche (2011), as well as the algorithm we
will present, interpolate f by using its straight-line program to evaluate f at a symbolic k-th root of unity,
for appropriate choices of k. This effectively gives the image f mod (zk − 1). We call such an evaluation a
probe of degree k. The cost of a degree-k probe to a length-L straight-line program is quasi-linear in kL.
We use the number of probes, multiplied by a bound on the probe degree, as a rough measure of the cost
of an interpolation algorithm.

The image f mod (zk − 1) in practise gives a large amount of useful information about the polynomial
f . Namely, a term cze of f will appear as cze mod k in the image f mod (zk − 1), so the image should give
us f ’s vector of exponents modulo k. However, there are potential obstacles. We may not be able to match
images of the same term in multiple images of f . In addition, terms can collide modulo zk− 1 if they have
the same degree modulo k. Collisions are problematic because it is difficult to detect if a term in an image
f mod (zk − 1) is in fact the image of a sum of colliding terms. Alternatively, colliding terms may sum to
zero modulo zk − 1, which also may be difficult to detect.

Previous Las Vegas interpolation algorithms require a “good” prime, a prime p for which the terms of
f remain distinct modulo zp − 1. If p is a good prime, f mod (zp − 1) has the same number of terms as f .
Thus, once we have a good prime with high probability, we can detect the presence of collisions in other
images of f . In order to guarantee one can find such a prime with high probability, one chooses primes at
random on the order of T 2 logD as probe degrees.

In order to reduce this probe degree, we relax the condition that p separates all the terms of the
difference g. We instead look for an “ok” prime: a prime which separates most of the terms of g. This
allows instead to search over primes p of size O(T logD).

Once we have an “ok” prime, we make probes of degree pqi for a set of co-prime qi, each of size O(logD).
Our probe degree thus becomes O(T log2D). If a term of g does not collide with another term modulo
zp − 1 then it will not collide modulo (zpqi − 1). These probes will allow us to construct a polynomial
f∗∗ containing the non-colliding terms of g, plus potentially a small proportion of deceptive terms: terms

1



ISSAC poster abstracts

constructed from garbage information due to collisions in the images f mod (zpqi − 1). Fortunately, if p is
an ok prime we can give an upper bound on the number of such deceptive terms that can appear in f∗∗.

After we construct f∗∗ we then recursively interpolate the new difference g − f∗∗, with a new sparsity
bound T/2. We continue in this fashion blog T c+1 times until the sparsity bound reaches 0. An advantage
of the recursive nature of the algorithm is that, when we reach a threshold where logD begins to dominate
T , we can plug in a better-suited algorithm to interpolate what remains.

References

Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-line programs. Theor.
Comput. Sci., 410(27-29):2659–2662, June 2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2009.03.030. URL
http://dx.doi.org/10.1016/j.tcs.2009.03.030.

M. Giesbrecht and D.S. Roche. Diversification improves interpolation. ISSAC ’11, pages 123–130, 2011.
doi: 10.1145/1993886.1993909. URL http://doi.acm.org/10.1145/1993886.1993909.

2


