ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

Recursive Sparse Interpolation

Andrew Arnold Mark Giesbrecht Dan Roche
Symbolic Computation Group United States Naval Academy, USA
University of Waterloo, Canada roche@usna.edu

{a4arnold,mwglt@uwaterloo.ca

We consider the problem of interpolating a sparse univariate polynomial f over an arbitrary ring, given
by a straight-line program. In this problem we are given a straight-line program that computes f, as well
as bounds D and T on the degree and sparsity (i.e., the number of nonzero terms) of f respectively. We
build on ideas developed in Garg and Schost (2009) and Giesbrecht and Roche (2011) towards algorithms
for this specific problem. We present a Monte Carlo algorithm that improves on the best previously-known
algorithm for this specific problem by a factor (softly) on the order of 7'/log D. Thus this new algorithm
is favourable for “moderate” values of T'.

Our algorithm is recursive. At a recursive step of the algorithm we have a straight-line program for
f, an approximation f* of f, and respective bounds T and D on the sparsity and degree of the difference
g = f— f*. We initialize f* to zero. We will construct an approximation f** to g such that, with high
probability, g — f** has at most 7'/2 terms. We then recurse with f* 4+ f** as our refined approximation
for f.

The algorithms in Garg and Schost (2009) and Giesbrecht and Roche (2011), as well as the algorithm we
will present, interpolate f by using its straight-line program to evaluate f at a symbolic k-th root of unity,
for appropriate choices of k. This effectively gives the image f mod (z* —1). We call such an evaluation a
probe of degree k. The cost of a degree-k probe to a length-L straight-line program is quasi-linear in kL.
We use the number of probes, multiplied by a bound on the probe degree, as a rough measure of the cost
of an interpolation algorithm.

The image f mod (2 — 1) in practise gives a large amount of useful information about the polynomial
f. Namely, a term cz® of f will appear as cz®™4* in the image f mod (z¥ — 1), so the image should give
us f’s vector of exponents modulo k. However, there are potential obstacles. We may not be able to match
images of the same term in multiple images of f. In addition, terms can collide modulo z* — 1 if they have
the same degree modulo k. Collisions are problematic because it is difficult to detect if a term in an image
f mod (z¥ — 1) is in fact the image of a sum of colliding terms. Alternatively, colliding terms may sum to
zero modulo z* — 1, which also may be difficult to detect.

Previous Las Vegas interpolation algorithms require a “good” prime, a prime p for which the terms of
f remain distinct modulo 2P — 1. If p is a good prime, f mod (2P — 1) has the same number of terms as f.
Thus, once we have a good prime with high probability, we can detect the presence of collisions in other
images of f. In order to guarantee one can find such a prime with high probability, one chooses primes at
random on the order of T7%log D as probe degrees.

In order to reduce this probe degree, we relax the condition that p separates all the terms of the
difference g. We instead look for an “ok” prime: a prime which separates most of the terms of g. This
allows instead to search over primes p of size O(T log D).

Once we have an “ok” prime, we make probes of degree pg; for a set of co-prime g;, each of size O(log D).
Our probe degree thus becomes O(T log® D). If a term of g does not collide with another term modulo
2P — 1 then it will not collide modulo (2P% — 1). These probes will allow us to construct a polynomial
f** containing the non-colliding terms of g, plus potentially a small proportion of deceptive terms: terms

ISSAC poster abstracts

constructed from garbage information due to collisions in the images f mod (2% — 1). Fortunately, if p is
an ok prime we can give an upper bound on the number of such deceptive terms that can appear in f**.

After we construct f** we then recursively interpolate the new difference g — f**, with a new sparsity
bound 7T'/2. We continue in this fashion |log 7| 4+ 1 times until the sparsity bound reaches 0. An advantage
of the recursive nature of the algorithm is that, when we reach a threshold where log D begins to dominate
T, we can plug in a better-suited algorithm to interpolate what remains.

References

Sanchit Garg and Eric Schost. Interpolation of polynomials given by straight-line programs. Theor.
Comput. Sci., 410(27-29):2659-2662, June 2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2009.03.030. URL
http://dx.doi.org/10.1016/j.tcs.2009.03.030.

M. Giesbrecht and D.S. Roche. Diversification improves interpolation. ISSAC ’11, pages 123-130, 2011.
doi: 10.1145/1993886.1993909. URL http://doi.acm.org/10.1145/1993886.1993909.

