
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

Towards Parallel General-Size Library Generation for Polynomial

Multiplication

Lingchuan Meng and Jeremy Johnson
Department of Computer Science

Drexel University
Philadelphia, PA 19104

lm433@drexel.edu,jjohnson@drexel.edu

Fast Fourier Transforms (FFTs) are at the core of many operations in scientific computing. In computer
algebra, FFTs are used for fast polynomial and integer arithmetic and other modular methods. FFT-based
polynomial multiplication outperforms multiplication based on classical and Karatsuba-based algorithms.
Computer algebra libraries, such as modpn [3], provide hand-optimized low-level routines implementing fast
algorithms for multivariate polynomial computations over finite fields, in support of higher-level code. Such
libraries do not fully utilize the underlying hardware, and in order to take advantage of platform-dependent
optimizations, automated performance tuning that supports general input sizes should be incorporated.

Recently, we extended [2] the use of Spiral from fixed-size code generation to general input size library
generation to produce a modular FFT [1] library. By incorporating and extending the new library genera-
tion mechanism in Spiral [4], the generated library provides similar speedup as the fixed-size code, which
is an order of magnitude faster over the original implementations in modpn, and allows arbitrary input
sizes. Additional parallelism exploiting multi-core architecture leading to further speedup also has been
implemented. This addition required adding new rules and a new transform definition and parameteriza-
tion in the library generation framework in order to generate recursive function closure in the resulting
library. The backend was also extended to enable the generation of scalar and vectorized code for modular
arithmetic.

Let the n-point modular DFT matrix be ModDFTn,p,ω =
[
ωk`
n

]
0≤k,`<n

, where ωn is a primitive nth
root of unity in Zp. Let n = rs, then the divide and conquer step in the Cooley-Tukey algorithm can be
represented as the parameterized matrix factorization:

ModDFTn,p,ω = (ModDFTr,p,ωr ⊗ Is) Tn
s (Ir ⊗ModDFTs,p,ωs) Ln

r ,

where Tn
s is a diagonal matrix containing twiddle factors; the stride permutation matrix Ln

r permutes the
input vector as is+ j 7→ jr + i, 0 ≤ i < r, 0 ≤ j < s ; Is is the s× s identity matrix; and the tensor product
is defined as A⊗B = [ak,lB] , A = [ak,l] .

The tensor product serves as the key construct in Spiral and its many fast algorithms, in that it
captures loops, data independence, and parallelism concisely. For instance, Fig. 1 shows that it produces
substructures that can be interpreted as vector and parallel operations. Furthermore, the formulae can be
transformed to adapt to a given vector length and number of cores; and permutations can be manipulated
to obtain desired data access patterns. Rewriting systems and hardware tags have been developed in
Spiral to fully exploit two levels of parallelism: vector parallelism and thread parallelism.

We report experimental data comparing the performance of hand-optimized FFTs from the modpn

library, fixed-size FFTs and general size parallel FFT library generated by Spiral. Performance is reported
in Gops (giga-ops) or billions of operations per second (higher is better). As shown in Fig. 2, all Spiral
generated codes are faster than the hand-optimized implementation in modpn by an order of magnitude. The

1



ISSAC poster abstracts

DF T 4 ⊗ I 4 I 4⊗ L 16
4

DFT16 =Mod

Mod 16
4T DF T 4Mod

Figure 1: Representation of the matrix factorization based on the Cooley-Tukey algorithm.
Shades of gray represent values that belong to the same tensor substructure

performance of general size library’s scalar and vector codes are within 81% to 91% of that of corresponding
fixed-size codes. For large sizes, the library code is up to 1.5 time faster than the fixed-size code, due to
the use of thread level parallelism.

Figure 2: Performance comparison

To eventually generate an optimized parallel library for polynomial multiplication, we are developing
additional algorithms for modular FFT, including Prime-factor algorithm and Rader’s algorithm. We
have also developed a Cooley-Tukey type algorithm for the Truncated Fourier Transform and its inverse
(TFT/ITFT) for non-contiguous and non-power-of-two input/output. We have proved block symmetry
of the ITFT matrices and derived direct generation formulae that can be used during library generation.
Convolutions by definition and the Convolution Theorem have also been implemented in Spiral, whose
performance relies on the auto-tuned underlying transforms, such as modular DFT and TFT, and the
exploration of hybrid algorithms and automatic tuning of threshold parameters.

References

[1] L. Meng, J. Johnson. Automatic Parallel Library Generation for General-Size Modular FFT Algo-
rithms. To appear in Proc. of the CASC 2013, 2013

[2] L. Meng, J. Johnson, F. Franchetti, Y. Voronenko,M. Moreno Maza and Y. Xie. Spiral-Generated
Modular FFT Algorithms. In Proc. of PASCO 2010, p. 169–170, 2010.

[3] X. Li and M. Moreno Maza: Efficient implementation of polynomial arithmetic in a multiple-level
programming environment. In Proc. Intl. Congress of Mathematical Software, p. 12–23, Springer,
2006.

[4] Y. Voronenko. Library Generation for Linear Transforms. PhD. thesis, Electrical and Computer
Engineering, Carnegie Mellon University, 2008

2


