
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

A Parallel Algorithm to Compute the Greatest Common Divisor of

Sparse Multivariate Polynomials

Jiaxiong Hu and Michael Monagan
Department of Mathematics, Simon Fraser University

Burnaby, Canada, V5A 1S6
jha107@sfu.ca and mmonagan@cecm.sfu.ca

Extended Abstract

Efficient algorithms for computing greatest common divisors (GCD) of multivariate polynomials have
been developed over the last 40 years. Many of the general purpose computer algebra systems are using
either Zippel’s GCD Algorithm [5] or the EEZ-GCD [4] Algorithm or both. Both algorithms sequentially
interpolate variables one at a time which limits parallel speedup. Since multi-core processors are now
widely available, parallel algorithms are desirable. In this poster, we present a first multivariate GCD
computation algorithm over Z which is based on the Ben-Or/Tiwari interpolation [1]. By using Ben-
Or/Tiwari interpolation, we reduce the number of points needed to interpolate the GCD and improve
parallelism.

Our algorithm considers multivariate GCD problems with at least three variables. The structure of the
algorithm is similar to Zippel’s GCD Algorithm except the way we determine the first modular image which
determines all the monomials. Once this correct form is obtained with those monomials, we use Zippel’s
sparse interpolation with this form to compute more modular images and apply Chinese remaindering to
reconstruct the true GCD over Z.

Our algorithm determines the first modular image as follows: Suppose a, b ∈ Z[x1, . . . , xn] are the
input polynomials and let

g = gcd(a, b) =
l∑

i=1

ciMi(x1, x2)

where l is the number of terms of g(x1, x2) and Mi is the ith monomial of g(x1, x2) and ci ∈ Z[x3, ..., xn]
is the ith coefficient of g(x1, x2). The algorithm projects a and b down to bivariate polynomials by
evaluating {x3, . . . , xn} at specific point {ek3, . . . , ekn} which satisfies the requirement of the Ben-Or/Tiwari
interpolation. Then we compute bivariate

gk = gcd(a(x1, x2, e
k
3, . . . , e

k
n), b(x1, x2, e

k
3, . . . , e

k
n)) ∈ Zp[x1, x2],

where p is a carefully chosen prime. We redo this for k = 0, 1, 2, . . . ,m until m is large enough. Now all
bivariate GCDs should have the same monomials but different coefficients. For each monomial Mi(x1, x2)
in the gk, we form an integer sequence by collecting Mi’s coefficient in gk (0 ≤ k ≤ m). Then the Ben-
Or/Tiwari algorithm is applied to this sequence to interpolate the coefficient ci ∈ Zp[x3, . . . , xn]. For this to
work we require m ≥ 2t where t = maxl

i=1(# terms ci). Obviously all polynomial coefficients ci(x3, ..., xn)
can be recovered in parallel. Moreover, the bivariate GCDs can be computed in parallel as well. In general,
this approach is easy to parallelize.

1



ISSAC poster abstracts

Compared with Zippel’s algorithm, our algorithm uses fewer evaluation points – O(t) instead of O((n−
2)dt) and fewer trial divisions – O(1) instead of O(n). One disadvantage of our algorithm is that we do
not know t. We must try t = 2, 4, 8, 16, . . . stopping when we have redundancy.

A problem with the original Ben-Or/Tiwari algorithm is the intermediate expression swell that occurs
using ek3, e

k
3, e

k
4, ... = 2k, 3k, 5k, ... and computing over Q. A modular version of the algorithm was first

developed by Kaltofen, Lakshman and Wiley in [3]. Their algorithm uses a small prime q with a lifting
technique to determine the monomials in the ci. One lifts until qk > pdn−2 where pn denotes the n’th prime
and d ≥ max(deg ci). Instead, we adapt Giesbrecht, Labahn and Lee’s method in [2]. We construct a
smooth prime p so that we can efficiently compute discrete logarithms in Zp. The prime p is slightly larger
than

∏n
i=3 di where di = degxi

g thus of size O(n log d). To determine the di accurately we compute one
univariate image of g in each variable (in parallel).

A further problem is that all underlying bivariate GCDs are monic over Zp. The leading coefficient
of the true GCD is required to scale all bivariate GCDs consistently. We use Wang’s leading coefficient
algorithm [4] to solve this problem. We compute and factor the gcd h of the leading coefficients of
a, b ∈ Z[x3, . . . , xn][x1, x2]. This creates another sequential step in our algorithm. This is the main reason
why we reduce to bivariate GCDs instead of univariate – we likely reduce the size of h. We also likely
reduce t and hence the number of bivariate GCDs needed. If a(x1, x2) and b(x1, x2) are dense (which they
often are in practice) we lose nothing by doing this.

We have implemented our algorithm in Maple. For most large problems, it outperforms Maple’s
default multivariate GCD procedure, which is a Zippel based algorithm and almost entirely coded in C.
For example, for input polynomials having 5 variables and 500 terms, our algorithm is almost 2 times
faster than Maple’s default procedure; with input polynomials having 40 variables and 4000 terms, our
algorithm is almost 20 times faster. We have not yet attempted a parallel implmentation but plan to do
so using Cilk. We expect that such an implementation will be much faster.

References

[1] M. BEN-Or, P. Tiwari: A deterministic algorithm for sparse multivariate polynomial interpolate.
Proc. 20th annual ACM Symp Theory Comp, 1988, 301–309.

[2] M. Giesbrecht, G. Labahn, W-S. Lee: Symbolic-numeric sparse interpolation of multivariate
polynomials. ISSAC’06, 2006.

[3] E. Kaltofen, Y.N. Lakshman, J-M. Wiley: Modular rational sparse multivariate polynomial
interpolation. Watanabe and Nagata, 1990, 135–139.

[4] P. Wang: The EEZ-GCD Algorithm. SIGSAM Bulletin, 14, 1980, 50–60.

[5] R. E. Zippel: Probabilistic algorithms for sparse polynomials. EUROSAM ’79, Springer-Verlag
LNCS, 2, 1979, 216–226.

2


