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For given n univariate polynomials with n ≥ 3, we present a Symbolic-Numeric method for calculating
approximate greatest common divisor (GCD) of them by calculating approximate Syzygies. This kind of
GCD calculation can be used in application such as blind image deconvolution [1]. In such a case, it is
especially effective when we try to restore the original image from several number of blurred images.

In our previous research, we have developed a method for calculating approximate GCD, called GPGCD
[4]. Furthermore, we have extended the original method for n polynomial inputs [3] based on Rupprecht’s
first algorithm [2, Sect. 4]. However, this method is inefficient for large number and/or degree of input
polynomials because, in such cases, the dimension of a generalized Sylvester matrix becomes large and
sparse. While Rupprecht’s second algorithm [2, Sect. 5] seems more efficient by using Syzygies with
another generalization of Sylvester matrix whose dimension is much smaller than those used in the first
algorithm, as for our GPGCD method, we have difficulty applying the method directly (we will explain
the reason in detail below). We present a method to overcome the difficulty.

For i = 1, . . . , n, let Pi(x) be real univariate polynomial of degree d1 ≤ · · · ≤ dn, respectively, with

d1 > 0, given as Pi(x) = p
(i)
di
xdi + · · · p(i)1 x + p

(i)
0 . At first we assume that P1, . . . , Pn have a GCD. Let

H = gcd(P1, . . . , Pn) and d = deg(H) with d ≤ d1.
For a real univariate polynomial P (x) represented as P (x) = pnx

n + · · ·+p0x
0, let Ck(P ) be a real (n+

k, k + 1) matrix (called “convolution matrix”) defined as Ck(P ) =
(
t(pn, . . . , p0, 0, . . . , 0),

t(0, pn, . . . , p0, 0, . . . , 0), . . . , t(0, . . . , 0, pn, . . . , p0)
)

and let p be the coefficient vector of P (x) defined as
p = (pn, . . . , p0), and vice versa.

As a generalized Sylvester matrix, we use the second definition by Rupprecht [2, Sect. 5]. For k > d1, de-
fine the k-th Sylvester matrix of P1, . . . , Pn asNk(P1, . . . , Pn) =

(
Ck−d1(P1) Ck−d2(P2) · · · Ck−dn(Pn)

)
,

where Ck−di(Pi) has empty element for k < di.
If a vector v = t

(
r1 r2 · · · rn

)
with dim(ri) = k − di + 1 satisfies Nkv = 0, then we see that the

polynomials R1, . . . , Rn whose coefficient vectors are r1, r2, . . . , rn, respectively, satisfy R1P1+· · ·+RnPn =
0. In such a case, we call a tuple of polynomials (R1, . . . , Rn) a Syzygy of P1, . . . , Pn of degree k.

In Rupprecht’s second method, we first calculate Syzygies of P1, . . . , Pn, then calculate cofactors of
P1, . . . , Pn by using calculated Syzygies, as follows.

1. Calculate n− 1 “independent” (as elements in a module over polynomial ring R[x]) Syzygies which

satisfy the following condition on the degrees. For j = 1, . . . , n− 1, let Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ) be

a Syzygy of P1, . . . , Pn of degree rj . Then, we have

d = d1 + · · ·+ dn − (r1 + · · ·+ rn−1) (1)

[2, Lemma 5.3]. With numerical computation on coefficients, we calculate a Syzygy by the Singular
Value Decomposition (SVD) on Sylvester matrix Nk by increasing the degree k by 1 from the initial
value d1, until we obtain n− 1 Syzygies satisfying condition (1).
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2. For calculated Syzygies Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ), j = 1, . . . , n − 1, define a matrix U = (uij) as

uij = U
(i)
j , and let ∆i be the minor of U by deleting the i-th column (note that we must define U

satisfying that ∆i 6= 0 for all i). Then, ∆i is the cofactor of Pi satisfying Pi = H ·∆i [2, Lemma 5.2].
Thus, by calculating U and ∆i, we obtain desired GCD H.

In our GPGCD method, we accept polynomials P1, . . . , Pn that are pairwise relatively prime in general,
then find “perturbation terms” ∆Pi, i = 1, . . . , n, satisfying that “perturbed polynomials” P̃i = Pi +∆Pi

have a nontrivial GCD H. With the original method by Rupprecht, we may encounter the following issue
in Step 1. In our GPGCD method, we set up constrained optimization problem with constraints on the
coefficients in input polynomials and their Syzygies that need coefficients in all input polynomials at once.
On the other hand, Step 1 in the above may not involve all input polynomials from the beginning step(s),
thus it is not clear if we can calculate appropriate perturbed terms incrementally to make all the perturbed
polynomials satisfy the Syzygy relations in the final phase. Therefore, we modify the method so that we
use Syzygy relations that involve all input polynomials from the beginning step, as follows.

1. Let l be greater than or equal to dn satisfying (1). For given polynomials P1, . . . , Pn, calculate

perturbed polynomials P̃1, . . . , P̃n along with Syzygies Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ) of degree l sat-

isfying U
(j)
1 P̃1 + · · · + U

(j)
n P̃n = 0, as follows. Let v1, . . . ,vm be the right singular vectors of

Nl(P1, . . . , Pn) calculated with the SVD. By optimization method (in our case we use so-called
the modified Newton method; see our literature [4] for reference), we obtain P̃1, . . . , P̃n by per-
turbing coefficients in P1, . . . , Pn, and ṽ1, . . . , ṽm by perturbing v1, . . . ,vm, respectively, satisfying

Nl(P̃1, . . . , P̃n)ṽj = 0. From vector ṽj =
(
r
(j)
1 r

(j)
2 · · · r

(j)
n

)
, we extract coefficients of a Syzygy

Rj = (U
(j)
1 , U

(j)
2 , . . . , U

(j)
n ).

2. Using Syzygies Rj calculated in the above step, select and/or calculate Syzygies of appropriate degree
satisfying (1) to make up matrix U with the following strategies.

(a) If we need to calculate Syzygies of degree k smaller than l, make appropriate linear combination
of the right singular vectors ṽ1, . . . , ṽm to eliminate coefficients of degrees greater than k in the
corresponding Syzygy, as follows. Let M be a submatrix of

(
ṽ1 · · · ṽm

)
consisting of the

rows corresponding the coefficients of U
(j)
i of degree greater than k. Then, calculate the SVD

on M to find basis of the null space of M . Repeat this step until we find appropriate Syzygies
satisfying (1) along with ∆i 6= 0 for all i.

(b) If we could not find all of n− 1 independent Syzygies satisfying (1) with the above procedure,
then, for degree k 6= l satisfying (1), calculate new Syzygies from Nk(P̃1, . . . , P̃n) until we find
all of n− 1 independent Syzygies satisfying (1) along with ∆i 6= 0.
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